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Abstract

Peniodic orbit theory methods for evaluation of average values of observables for chaotic dynamical systems are reviewed
and 1illustrated by several examples, such as evaluation of the Lyapunov exponents and the diffusion constants

In chaotic dynamics detailed prediction 1s 1mpossible, as any finitely specified imitial condition, no matter
how precise, will fill out the entire accessible phase space (simularly finitely gramned) in finite time Hence for
chaotic dynamics one does not attempt to follow individual trajectories to asymptotic times, what 1s possible
(and sensible) 1s description of the geometry of the set of possible outcomes, and evaluation of the asymptotic
time averages Examples of such averages are transport coefficients for chaotic dynamical flows, such as the
escape rate, mean drift and the diffusion rate, power spectra, and a host of mathematical constructs such as
the generalized dimensions, Lyapunov exponents and the Kolmogorov entropy Here we shall outline how
such averages are evaluated within the framework of the periodic orbit theory The key idea 1s to replace
the expectation values of observables by the expectation values of generating functionals This associates a
Ruelle operator with a given observable, and leads to cycle averaging formulas for 1ts dynamical averages In
contradistinction to averages evaluated on finite approximations to Cantor sets, these formulas are exact, and
highly convergent for nice hyperbolic dynamucal systems We 1llustrate the utility of such cycle expansions by
several examples, such as evaluation of the Lyapunov exponents and the diffusion constants

1. Dynamical averaging

Consider a d-dimensional dynamical system described by d first order ordinary differential equations

dx
—_’=E ’ =1527 7d 1
7 (x), (1)

The trajectory passing through point x 1s parameterized by the integral of the above equations
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!
x, (1) = /dTF,(x) =), =10
0

The flow mught describe a trajectory of a particle moving 1n a potential, evolution of concentrations of a set ot
chemicals, a discrete time mapping x, = f"(x), or even a renormalization operator flow describing a transition
to chaos

11 Tume averaging

Let ¢(7,x(7)) be any “observable” evaluated on a trajectory x(7) = f7(x) Function ¢ can be a scalar, a
vector, a tensor, for example, the coordinate ¢, (7, x) = x,(7) The integral of an observable along the trajectory
is

!

tP’(x)=/dT¢(T, (7)), a=x(0) (2)

0
A familiar example of such function for Hamiltoman flows 1s the action associated with a trajectory,

t

P'(x) = S(q(1),4(0)) =/dq(7) p(7), wu=(q,p)
0

The nime average of the observable along the trajectory 1s given by

(#(0)) = hm 1/ (x) (3)

If ¢ does not behave too wildly as a function of time - for example, ¢, = x, 1s bounded for bounded dynamical
systems — @’(x) 1s expected to grow not faster than ¢, and the limat (3) mught exist In other contexts, such as
n the case of anomalous diffusion, &'(x) 1s not proportional to ¢ but some function of f such as %, 1n such
cases (3) has to be suitably redefined

However, (¢(x)) 1s a very wild function of x, for a nice hyperbolic system 1t takes the same value (¢) for
almost all initial x, but a different value on any periodic orbit, 1€ on a dense set of 1mtial points For example,
for an open system such as the Sinar gas (an infimite 2D periodic array of scattering disks) the phase space 1s
dense with mnitial x which correspond to periodic runaway trajectories The mean distance squared traversed by
such trajectory grows as x(£)? ~ %, and its contribution to the diffusion rate D ~ x(t)%/t, (3) evaluated with
¢ (x) = x(1)?, diverges Hence for chaotic dynamical systems robust averaging requires also averaging over the
mitial x and worrying about the measure of the “pathological” trajectories

12 Space averaging

The expectation value (¢$), the asymptotic time and space average over the “phase space” M (d-dimensional
mtegral over x, € M, where x, are the d coordinates of the dynamical system) 1s not of a particularly tractable
form
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() =]17|A/dx (p(x)) , |M| =/a’x = volume,

M
!

= Iim L/dx /de)(T,fT(x)) (4)

T
M 0

Such averages are more conveniently studied by introducing an auxihary variable 8. and investigating instead
of (¢) the expectation value of

! 1 / 1 1 / .
Be'N _ B () _ , ' B '(x)
)= dxe = dxdyd(y — f'(x))e (5)
< > |M|M |M|M

For example, 1f the observable 1s a d-dimensional vector ¢,(7, x), then B 1s a conjugate vector B € R, 1f the
observable 1s a [d x d] tensor, B 1s also a rank-2 tensor, and so on The auxiliary variable 8 usually has no
particular physical meaning

2. Evolution operator formalism

Formally, all we have done above 1s to nsert the identity

= /d.\'5(.\' - f1), (6)
M
1€ we are averaging over trajectories that remain 1in M for all imes However, this substitution enables us to
shift the focus from studying individual trajectories f'(x) to the evolution of the totality of mitial conditions
The kernel of (5) 1s the Ruelle (or the evolution) operator [1]

L'y, 1) = 8(y — f(x)) PPV (7)

The integral over the observable @ 1s additive along the trajectory
1 n+n
@' (%) =/a’rd>(r.x(r)) + / dr (1, x(7)) = D" (x) + P (x(1))
0 h

etther 1f the observable 1s periodic, ¢(7 + t;,x(7)) = ¢(7,x(7)), or if 1t has no explicit dependence on 7,
@d(7,1) = P(x) (why we might care about periodic observables will become clear in Section 4 4) If @'(x)
1s additive along the trajectory, the Ruelle operator has the semigroup property [dz L£72(y,z)L"(z.2) =
L0y, x) This semigroup property is the reason why (5) 1s preferable to (4) as a starting powt for
evaluation of dynamical averages, their value 1n the asymptotic + — oo limit can be recovered by means of
evolution operators If the limit ($(x)), Eq (3) exists for “almost all” initial x, the expectation value (5) 1s
an integral over exponentials, which therefore also grows exponentially with time

<€ﬂ (,,/> N nE dx eB (B0 0B

|M|
M
and the function

0(B) = Jim ~log () ®)
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also exists L’ 1s a linear operator acting on a distribution of initial conditions p(1), x € M, so the t — x
limit will be dominated by e’@(#), the leading eigenvalue of L',

(L7 pg) (¥) = /d"‘s(.\' — £1(x))eP PV pg(x) = P pp(y), 9)
M

where pg(x) 1s the corresponding eigenfunction For 8 = 0 the Ruelle operator (7) 1s a dynamical flows
generalization of the Perron-Frobenius operator of probability theory, with pg(1) the natural measure [1-3]
If the system 1s bounded and no trajectories escape, the leading eigenvalue of £ 1s exactly 1,1e Q(0) =0
The expectation value (¢# ®') 1s a generating function for the moments of ¢, and averages such as (4) are
recovered by evaluating the derivatives of Q(3)

L
5151 B=0 - zl_lglo t <(15[> - <¢1> s (10)

SO | = im 4 (ol (o) @) = i L (c0f - 1(6)(@ 1 (6)) (an
(9,3:3,31 B=0 r—oc t 17y ] g Jm - ! l : :

and so forth

What are such formulas good for? A typical application 1s to the problem of describing a particle scattering
elastically off a 2D triangular array of disks If the disks are sufficiently large to block any infinite length free
flights, the particle will diffuse chaotically, and the transport coefficient of interest 15 the diffusion constant
given by x(t)? =~ 4Dt In contrast to D estmated numerically from trajectories x(t) for finite but large 7, the
above formulas yield an expression for D evaluated 1n the + — oo limit For example, for ¢, = x, and zero
mean dnft (x,) = 0, the diffusion constant 1s given by the curvature of the leading eigenvalue exponent Q(3)
at B=0

_ l aQ
D= Im > ( (x(1)?) 2dz

12
%0 2dt B | 4y (2

As we shall see below, evolution operator formalism yields an explicit closed form expression for D

21 Fredholm determinants, Ruelle zeta functions
Extraction of the spectrum of £ commences with the evaluation of the trace

tr L’ =/dxeﬂ PS(x — f'(x))

As the relation between evolution operators and the associated Fredholm determunants, Ruelle zeta functions
and cycle expansions 1s discussed at length 1n literature (see for example Ref [4,5]), here and in the next
section we only state the results needed for understanding the central formula of this paper, cycle averaging
tormula (21) For a continuous time hyperbolic flow one obtains [6]

> 6(t —T,r)
r L' = ! Be 13
P AP T S A e

where the sum 1s over all prime (1 e, nonrepeating) cycles p whose period 7, divides ¢, and J,(x) = D f™ (%) L
1s the Jacobian (monodromy matrix) transverse to the flow
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The above trace formula has a simple geometncal interpretation Prime cycles partition the phase space
into closed tubes of length 7, and thickness 1/|det(1 — J,)|, the trace picks up a periodic orbit contribution
only when the time ¢ equals a prime period or 1ts repeat, hence the time delta function 6(¢ — 7,,r) Finally.
e ® 15 the mean value of e# *'(9) evaluated on this part of phase space, so the trace formula 1s nothing
but the integral fM dx P PV partitioned by the intrinsic topology of the flow, and discretized as a sum over
neighborhoods of periodic orbits The beauty of the formula 1s that 1t 1s coordinatization independent both
det(1 —J,) =det(1 —J7(x)) and @, = &7 (x) are independent of the starting periodic point point 1, for
the Jacobian J, this follows from the chain rule for derivatives, and for ¢, from the fact that the integral
15 evaluated on a closed loop The sum over time delta functions 1s smoothened over by taking a Laplace
transform,

trL(s) = /dte_"trﬁ’
0,

The 1dentity tr £L(s) = B‘I—YF(,B, s) then yields [6] the periodic orbit formula for the Fredholm determinant of
the evolution operator (7)

H i 1 e(BPr—smp)r
F(B,s) = exp| =) —i (14)
s ~— r|det (1-J7) |
Values of s for which F(8,s) vanishes yield the eigenvalues of the operator £

If one 1s 1nterested only 1n the leading eigenvalue of £, the size of the p cycle neighborhood 1/|det (1 — J;,) |
can be approximated by 1/|A,|", the dominant term in the t — oo lmit, where 4, =[], A, . 1s the product
of the expanding eigenvalues of the Jacobian J, Performing the r sum, the Fredholm determinant 1s thus
approximated by the Ruelle zeta function [1]

1
1/;(:8»3)=H (l—tp) s [p—_eﬁtl’p—srp (15)

pEP |/1[,|

The Ruelle zeta function 1s useful because 1t also vanishes at e’ equal to /@' the leading eigenvalue of L',
defined implicitly as the largest solution of either of the equations

F(B,Q(B))=0, 1/{(B.Q(B))=0 (16)

In practice Fredholm determinants and Ruelle zeta functions are preferable to the trace (13) because they are
much easier to compute, the main difference 1s that while a trace diverges at an eigenvalue, they vamsh at s
corresponding to an eigenvalue, and are analytic 1n s 1n 1ts neighborhood

3. Cycle expansions

The above 1nfinite products can be rearranged as expansions with improved convergence properties [4,5] To
present the result we expand the zeta function (15) as a formal power series,

’
1/§=H(1_tp)=1_ Z Ik +pes
P m+ +pe

ot e = (=D 0 1, (7
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where the prime on the sum indicates that the sum 1s over all distinct non-repeating combinations of prime
cycles For k > 1, t),+ 4, are weights of “pseudocycles”, they are sequences of shorter cycles that shadow a
cycle with symbol sequence p1p»  pi along segments py, p2. . px

The simplest example 1s the cycle expansion for a system described by a complete binary symbolic dynamics
In this case the Euler product (15) 1s given by

1/{=(1—10) (1 = 1) (1 —tor) (1 — t901) (1 — to11) (1 — topo1) (1 — tgo11) (1 — tor11)

X (1 = tooo01) (1 — tooo11) (1 — too101) (1 = toor11) {1 — to1011) (1 — fo1111)

and the first few terms of the expansion (17) ordered by increasing total pseudocycle length are

1/{=1—19—t1 — tor — toor — tor1 — tooor — foot1 — for11 —

—lo+1 — fo+01 — To1+1 = To4+001 — fo+011 — f001+1 — fO11+1 — 040141 —

We refer to such series as cicle expansions
The next step 1s the key step regroup the terms into the domunant fundamental contributions t; and the
decreasing curvature corrections ¢, For the binary case this regrouping 1s given by

1/{=1—1tg—t1 — [(tor — titg) ] — [ (toor — torto) — (for1 — toit1)1]

—[ (tooo1 — totoor) + Ctorrn — torit1) + (toor1 — toortt — totonn + totort1) 1 —

=1-) 15— (18)
t n

We refer to such regrouped series as curvature expansions The separation into “fundamental” and “curvature”
parts of cycle expansions 1s possible only for dynamical systems whose symbolic dynamics has finite grammar
The fundamental cycles ¢y, ¢} have no shorter approximants, they are the “building blocks” of the dynamics 1n
the sense that all longer orbits can be approximately pieced together from them The fundamental part of a cycle
expansion 1s given by the sum of the products of all nonintersecting loops of the associated Markov graph [ 7]
The terms grouped 1n brackets are the curvature corrections, the terms grouped 1n parenthesis are combinations
of longer orbits and their shorter “shadowing” approximants If all orbits are weighted equally (z, = ),
such combinations cancel exactly If the flow 1s continuous and smooth, orbits of similar symbolic dynamics
will traverse the same neighborhoods and will have similar weights, and the weights 1n such combinations will
almost cancel The utility of cycle expansions, in contrast to direct averages over periodic orbits such as the
trace formulas (see (37) below), lies precisely 1n this orgamization into nearly cancelling combinations cycle
expansions are dominated by short cycles, with long cycles giving exponentially decaying corrections

A cycle expansion 15 1n essence not much more than a Taylor expansion 1n a topological cycle length 1n the
following sense, 1f the number of cycles and their weights grow not faster than exponentially with the cycle
length, and we multiply each cycle p by a factor ", n, = symbol string length of p, the cycle expansion
converges for sufficiently small z The pleasant surprise 1s that after the prime cycles and the pseudocycles have
been grouped 1nto subsets of equal topological length, the dummy vanable can be set equal to £ = 1, as the
coefficients 1n this Taylor expansion can be proven to fall off exponentially or even faster [4,5], guaranteeing
the analiticity of F( . s) for s values well beyond those for which the trace formula diverges

Cycle expansions of Fredholm determinants are obtained in the same way, by grouping together contributions
of cycles and pseudocycles of the same symbolic dynamics length
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31 Cycle formulas for dynanmucal averages

The cycle averaging formulas for the slope and the curvature of Q(/3) are obtained by taking the derivatives
of the Eq (16)

oQ oF oQ  AF JOF
=_F = — - _ = — —_— 19
5T (B0 +5ﬁ o os = 353 (19)
The second derivative of F(B,Q(8)) =0 yields
Q[P 00 FF 0\ S| joF
ap? (?,82+2(?,8c9,80s (aﬁ) 6s2] ds (20)

With F — 1/ the same formulas apply Substituting (17) we obtain the cycle averaging formulas [4] for the
expectation value of the observable (10) and 1ts variance (11)

(@ (D7) = 7= (@~ 70D, 1)

where (®), and (r)  are respectively the mean cycle @ and the mean cycle period

a1 d 1

' ’
<¢>,7 = V%Z = Z Pt +plpit +pes <T>,7 = gz = Z Tpit +pdpit s

the integrals over the pseudocycles are given by
d’p.+ 4 = (15[,1 + (pp: + d’pk B T+ +m = Ty + Tm + Tpi »

and ( >p stands for the average over prime cycles For bounded flows both 8 =0 and Q(0) =0, so

Z( 1)k+l Ppit 4 Z( 1)L+I Tpi+ +m (22)

/71 A[’k | [1| < 1[’& |

The mean cycle period <T>p fixes the normalization of the unit of time For example, if we have evaluated
a billiard expectation value (@) 1n terms of continuous time, and would like to also have the corresponding
average [¢] measured 1n discrete time given by the number of reflections off billiard walls, the two averages
are related by [¢] = (¢) (1), / (n) ,, where n), 1s the number of bounces along the cycle p

As we shall explain in Section 51, the above averages are not what one would intuitively write down
Note also that the cycle averaging formulas, 1n contrast to some of the earlier analytic work {8], require no
knowledge of explicit eigenvalues of the Perron-Frobenius operator (1 e, the natural measure pg) This 1s one
of the main virtues of the cycle expansions their evaluation does not require construction of the (coordinate
dependent) eigenfunctions

4. Applications of cycle expansions

The cycle averaging formulas (21) are the main result of the periodic orbit theory applied to evaluation of
dynamical averages We now give a few examples of their applicability An application to the evaluation of
correlation functions, formulated very much 1n the same spirit as this paper, was given recently by Eckhardt
and Grossmann [10] A few more examples of “thermodynamic” averages are given in Refs [4,12]
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41 Probability conservation

If the system 1s bounded, all trajectories remain confined for all times and the leading eigenvalue (9) must
equal 1, g(0) = 0 Probability conservation thus provides the first and a very useful check of the quality
of finite cycle truncations of cycle expansions the dynamical zeta function (15) should have 1ts first zero at
B,s=0

—_1*
=D (23)
‘Am A[’k|

1/20.00=1+ 3

m+ +pe

42 Lyapunov exponents

The largest Lyapunov exponent u of a given dynamical trajectory 1s given by the ¢ — oc Iimit of
Llog|D f*(x)|. where |Df'(x)| 15 the absolute value of the largest eigenvalue of the linearized flow The
corresponding “‘observable™ (2)

@' (x) =tu(x) =log|Df(x)]

1s additive for 1D maps by the chamn rule formula for the derivative of the iterated map f' For higher-
dimensional flows only stability matrices are multiplicative, not individual eigenvalues, and the construction of
the correct Ruelle operator for evaluation of the Lyapunov spectra for higher-dimensional flows 1s not trivial, 1t
requires an extension of evolution equations to the flow 1n the tangent space, and was given only recently [13]
However, the modification affects only the nonleading eigenvalues of the evolution operator, and the Ruelle
zeta function and the associated cycle averaging formula (21) for the largest Lyapunov exponent are of the
expected form

1 ! Tpifipy + + TpiMpy
w=-——3) (=DMt , (24)
<T>I> Z [Ap Al

with p, = In|AJ®| /7, the Lyapunov exponent of the p cycle, and A} 1ts largest eigenvalue The above cycle

averaging formula has been applied to many 1D maps, 2D maps and 3D flows, and works well in practice
43 Diffusion

Consider a d-dimensional flow on a periodic potential and let X(¢) be the trajectory of the initial point x(0)
The cycle expansion for the diffusion constant (12) with zero mean drift (£,) =0 1s given by [14-16]

LED, 11 ' Gp+  +ip)°
D= — Pt (—])I‘H m Pk (25)
2d <T>p 2d <T>p Z |Al’l APL'

The alert reader should immediately protest that x, = x(7,) — x(0) 1s manifestly equal to zero for a periodic
orbit That 1s correct, ¥, 1n the above formula refers to a displacement on a periodic lattice, while p refers
to closed orbit of the dynamics reduced to the fundamental cell, with x, belonging to the closed prime orbit
p Even so, this 1s not an obvious formula Globally periodic orbits have ilz, = 0, and contribute only to
the time normalization (r), The mean square displacement <)‘cz>1) gets contributions only from the periodic
runaway trajectories, they are closed in the fundamental cell, but on the periodic lattice each one grows like
(1) = (I/T,,)zfc%, ~ t* Nevertheless, thanks to the exponential suppression of long cycles by the 1/] 1,]
weights, the mean %(#)> grows linearly with ¢ If the system 1s not hyperbolic, the supression of long cycles
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can be weaker, 1/|4,| ~ 1/7,% rather than 1/|A4,| =~ e~"# (here w 1s the Lyapunov exponent), and the
diffusion can be anomalous [20]

A very simple example of applicability of the above formula for the diffusion constant D 1s offered by an
mfinite chain of 1D maps, each acting on interval [n — %,n + %] with a single constant slope branch

]

If A > 1, a fraction of i iterate into neighboring intervals, inducing diffusion The associated map reduced to

the fundamental cell [7%, %] 1s given by the 3-branch fractional part of f,

() =A-n)+n, t-ne[-1,

tI|—

1 1
Ax + 1 1fx61a—[*§,—z]. g=-1
1
Ax 1fx61;,=[——1,0], ag=0
fx) = ’1 ) (26)
Ax lf’f€1¢=[0,‘z]’ o=0
1 1 frel —[1 ]] =1
Ax ifre ly= 13h o=

where, for 1 < A < 3, the drift per iteration 1s given by o(x) = fo(x) — f(x) € {~1,0,1}, and the total
global dnift per one fundamental cell p cycle traversal 1s X, = ZIEP o(x,) The cycle expansions are simple
if the Markov partition 1s finite the simplest example 1s given by fixing the stretching factor to A =3 For
this slope the four intervals 1,, Iy, I, [; give a complete Markov partition f(1lp) = I, + Iy, f(I;) =1 + 4,
so the symbolic dynamics 1s given by four pruning rules subsequences _bc_, _bd_, _ca_, _cb_ are forbidden
The allowed sequences are walks on the associated Markov graph, and 1f the map 1s piecewise linear, the cycle

expansion (17) 1s polynomial 1n 7 = e ™", with coefficients given by products over all non-intersecting walks
on the Markov graph [7]

VE=1—ty—th—t — by~ tap —tea+ (ta+ta) Uty + 1) Ftpte + tapt + taty — (ty + ty) tote

For the piecewise linear maps with uniform stretching the weight of a symbol sequence 1s a product of weights
for individual steps, t,, = 1,1,, where p, g stand for

[a=€_BZ/A, [b=[£=:',//1, [d=eBz/A, z=e '
1 Z e
=1-22+eP+ef)+ S (1+eP+ef
fEy - Talre e st
ty, ty correspond to translations by ¢ = %1 along the 1D chain For 8 = 0 the dynamics 1s symmetric under
¥ — —x, and zeta function factorizes into { = ¢ {,, product of the zeta functions for the symmetric and
antisymmetric subspaces [17]

7w = (35 (-5)

The probability conservation serves here as a check, (23) 1s indeed satisfied, as A =3 The leading (probability
conserving) eigenvalue s = 0 belongs to the symmetric subspace 1/£,(0,0) = 0, so the derivatives also act only
on the symmetric subspace

_d 1 __ e 1
() = 35 200.5) | o~ £a(0,0) 3s £,(0,5)

R
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The cycle averaging formula for the “mean square dnft”

a- 1 2 1
(= 2] =2 (- 1)
! ap-{(B.0) g0 A A
now ytelds the diffusion constant

1(89), 1

“2(n), 3

We would have obtained this result immediately, 1f we treated 1, + I, as a single Markov partiion 1nterval,
however. keeping them separate highlights most of the steps that would be needed 1n analysis of systems with
more complicated symbolic dynamics

This formalism works well for simple 1D maps with finite Markov partittons [ 14], piecewise linear standard
map [ 18], and even infinite partitions [19] Anomalous diffusion can be treated in a similar way [20]
Regrettably, for physically interesting problems such as the finite horizon Lorentz gas, the convergence of cycle
expansions has - so far — been mediocre due to the severe pruning of symbolic dynamics [16,21]

44 Power spectra

Pikovsky et al [22] have applied the cycle averaging formulas to evaluation ot the power spectra of chaotic
discrete time sertes The key 1dea 1s to think of the diffusion constant (25) as the value of the power spectrum
at zero {requency, and then generalize the diffusion cycle averaging formula to evaluation of the power spectrum
at any rational frequency

Consider (¢(x)), the ume averaged observable (3) of the form

1 t—1
X (w,x) =?Z_0Xn€mw (28)
H=t

where the time 1s discrete, and 1, = f"(x) In the + — oc limut this 1s the Fourter transform of the orbit of a
dynamical system passing through xo = x The power spectrum consists of broad band noise D(w) and discrete
spectrum A(w),

([t3,()?) ~ A (@) +2tD(w) ,

s0 D(w) 1s the diffusion constant for quantity @' (x) = t%,(w, 1), and A(w) 1s 1ts mean drift
The Fourier transform %,(w) 1s an average of the form % > ayx, . where a, 1s also an orbit of a dynamical
system 1n the case of Fourter analysis a; = ¢, and the extended dynamical system 1s

X1 = [0 = 8u(0)) =w+ 6, (mod27m) (29)

where the 6, dynamics 1s the trivial dynamics on the circle For rauonal @ = 27n/t periodic orbits of f are
also periodic orbits of the extended system, hence the periodic theory can be applied to this problem We take
as the Ruelle operator (where the € §-function 1s taken mod 27)

L(x,6,x,0") =8(x — f(3') 8(8 — g.(6") exp (Bx' 1 (e + ™)) (30)

This operator acts multiplicatively on functions defined on the extended phase space

(L) (x.0) = / df%&l ~ f1(x") 8(8 — g,(8)) exp (Bt | cos(8' + a)) Y (x'.6) .
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with @, the complex phase of X, However, as the trivial dynamics on the circle 1s not hyperbolic, care has to
be taken [22] in defimng £’ For the measure uniform 1n 6, the 8’ integration can be shifted to absorb «;, so
the £7 ¢ ntegrated over x and 8 yields

dé R exp (B11z:))
</§exp(,3tlx,|cosﬁ)> — <\/—_ZTTT~H> fort - o (3])

Apart from a prefactor, the saddle point approximation yields the desired generating function (5) The trace
. . dé R
tr L' = [ dxb(x — f'(x)) 2—ﬂ_exp(,3t|x,(w,x)|cos€) (32)

can pick up contributions only from the periodic points x = f'(x) Every periodic point x belongs to some
prime cycle p, x € {x,0.%p1,  Xpr,—1}, Where 7, 1s the minimal period of x under f, and x,,,, = f" (x,0)
The Fourier transform of a single traversal of a prime cycle 1s given by

Tp—1

2/}((1)) = E Xp.m€ em ,

Tp m=0

and the Fourier transform of the r-th repeat, ¢ = 7,,r, by

r—17p—1 r—1
(w,x) = ZZx,,,,,exp(z(m—kT,,(’)w) —x,,(w)-—Zexp(zT,,éa)) (33)
(o £=0

As 2(w, xpp) = e “" i (w,X,0), |x,,(a))| 1s the same for all cycle points belonging to the prime cycle p, but
the cycle weight depends on the 1nitial cycle point through the phase factor e ~'“™ However, as the trace (32)
18 1nvariant under € translations, this dependence can be rotated away, so the Fourier cycle weight depends only
on the cycle, and not on the 1mtial cycle point

If the frequency 1s irrational, the last sum n (33) 1n the t — oo limit traces out a circle 1n the complex
plane, and averages to zero However, for a rational frequency of form w =2mn/t, n=0, ,t—1, the sum
projects out resonant periodic orbits,

r—1
1
; Z eZ'mn[/r = 6" kr s k=0, »Tp — 1

Here n,t can share common divisors Thus, %,(w) contributes 1ts own value to (32)

|%,(w)| if 7,]t and w=2mk/T),

[#(w, Xpm)| = { 0 otherwise o

Integrating (32) over x yields the trace formula of Ref [22]
[ Tpl
L = Z Z et (1 = 7)) SPAHE@Dl, -

do
ﬁr‘r,,|x,(w)|cos!9 — s =
exp(Bri (@) )], = / ToChrmplip () il =2mk/7,

1 otherwise
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Assuming no drift, the power spectrum 1s given by

197
D(@) = m L (jn(@)) = aﬂ% : (35)
so the second derivative with respect to 3 yields the cycle averaging formula for the power spectrum
( 1)k+1 . N )
D(w )__—Z I (Tpllxpl(a))|+ +Tpk|x1)k(w)|) (36)

APl Pk'

Only those prime cycles p whose whose periods 7, are integer multiples of the frequency w = 27k/n
denominator n contribute to the numerator of the cycle expansion (36) All cycles contribute to the denomunator,
but the denominator 1s a frequency-independent normalization factor which needs to be computed only once

A power spectrum cycle averaging formula has been checked by Pikovsky [11] for several 1D mappings,
and 1t works well However, 1t should be noted that the above formalism 1s inadequate for evaluation of power
spectra of continuous time flows, as 1t hinges on the time 1n (28) being discrete, and picking out sets of orbits
that resonate at rational frequencies For continuous time flows, there 1s generally no reason to expect such
resonant sets

5. How reliable are cycle averaging formulas?
51 Cycle expansions vs log-log fits

The thermodynamic formalism [1-3] takes the parameter 8 seriously, as a kind of mathematician’s temper-
ature, refers to Q(B) as a “pressure”, “free energy” or something similarly puzzling, and studies the function
Q(B), defined implicitly by the condition (16), for ranges of 8 This makes 1t possible to plot a variety of
smooth curves which can be helpful in understanding gross features 1n the distribution of scales 1n dynamucally
generated Cantor sets Various approximations to the trace formula (13) are in physics literature called the
Reny1 [23], the generalized dimensions [24], the “multifractal” [25] or the f-of-a formalism [26] The
1dea 1s to stare at rectangles stretched and squeezed by the flow, and estimate, from the stability of nearby
periodic orbit p or by other means, their size to be proportional to the inverse of local stretching, of order
of 1/|A,|, for example, for large ¢ the weight in (13) 1s dominated by the product of expanding eigenvalues,
det(1—-J,) — A, In such approximations one replaces the exact trace formula (13) by

(1)
rf' ~ Z' —eﬂ 1
(B) = Z Al
where the sum goes over all periodic points x, of period ¢ (In the multifractal Iiterature the “time” ¢ 1s taken
discrete, but one can also model continuous flows by introducing a “ttime ceiling function” [3] ) The finite
time ¢ estimate of the average 1s then

15 @/l4l 19
SRV
which (by log-log extrapolations from the finite ¢ data) leads to a t — oo estimate of the expectation value

{#) Such average 1s an approximate sum built by partiioning the phase space into neighborhoods of periodic
pomnts of period ¢ In contrast, cycle averaging formulas (21) are exact t — oo sums over all prime cycles

<¢>x nZ’(B)'ﬁ:{) s (37)
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As shown 1n the Ref [4], the prefactors (—1)* enforce the curvature (shadowing) cancelations (18), and
accelerate the convergence of finite cycle length truncations of cycle expansions

As tor dynamical systems evaluation of the exact trace (21) and the approximate trace (37) requires the
same amount of labor, nothing 1s gained by the approximation The utility of the f-of-a formalism lies not
n 1ts applications to the deterministic dynamical systems (where the original Bowen-Sinai-Ruelle theory 1s
much more powerful}, but 1n 1ts applications to numerical evaluations of averages over random objects, such
as fractal aggregates and noisy experimental data, where no dynamical theory exists

52 Convergence

When the dynamical system’s symbolic dynamics does not have a finite grammar, and we are not able
to arrange 1ts cycle expansion into curvature combinations (18), the series 1s truncated by including all
pseudocycles such that |4, ~ A,| < [Ap|, where P 1s the most unstable prime cycle included 1nto truncation
The truncation error should then be of order O(e”™"7p/|Ap|), with h the topological entropy, and €™ roughly
the number of pseudocycles of stability = |Ap| In this case the cycle averaging formulas do not converge
significantly better [16,21] than the approximations such as the trace formula (37) Even that 1s not the worst
case scenario, generic dynamical systems are plagued by intermittency and other nonhyperbolic effects, and
methods that go beyond cycle expansions need to be developed [27] However, for smooth hyperbolic flows
with finite symbolic dynamics grammar the convergence as function of the cycle length truncation can be
dramatically better, even faster than exponential [28,5]

Numerical results (see for example the plots of the accuracy of the cycle expansion truncations for the Hénon
map in Re’ [12]) indicate that the truncation error of most averages tracks closely the fluctuations due to the
irregular growth 1n the number of cycles It 1s not known whether one can exploit the sum rules such as the
probability conservation (23) to improve the accuracy of dynamical averaging

53 Mathematical caveats

The periodic orbit theory 1s learned in stages At first glance, 1t seems totally impenetrable After basic
exercises are gone through, 1t seems totally trivial, in practice all that is at stake are elementary manipulations
with traces, determinants, derivatives Still, from the mathematical point of view, the theory 1s full of perils

Birkhoff’s 1931 ergodic theorem [29] states that the time average (3) exists almost everywhere, and, 1f the
flow 1s ergodic, 1t implies that {¢(x)) = (¢) 1s a constant for almost all x The problem 1s that the above cycle
averaging formulas implcitly rely on ergodic hypothesis they are strictly correct only 1f the dynamical system
1s locally hyperbolic and globally mixing If one takes a 8 derivative of both sides of (9)

ps(y) @B = /dx (v = F1(1))eP PP pp(x) |
M

and integrates over y

D]+ % - [axor »
/d) aBPB())‘B:O-Ff aﬂ‘w/d.vpo(,v) —/dx¢(x)po(x)+/dx apPe |

M M M M p=0
one obtains
aQ

3B Bzo:»/dypo(x) {(P(x)) (38)
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This 1s the expectation value (10) only 1f the time average (3) equals the space average (4) (¢(x)) = (¢p) for
all x except a subset x € M of zero measure, 1f the phase space 1s foliated into non-communicating subspaces
M = M; + M; of finite measure such that f/(M;) N M, = () for all ¢, this fails In other words, we have
tacitly assumed ergodicity We have also glossed over the nature of the “phase space” M For example, 1f the
dynamical system 1s open, such as the 3-disk pinball, M 1n the expectation value integral (6) 1s a Cantor
set, the closure of the union of all periodic orbits Alternatively, x can be considered continuous, but then the
measure pg 1n (38) 1s highly singular The beauty of the periodic theory 1s that instead of using an arbitrary
coordinatization x € M 1t partitions the phase space by the intrinsic topology of the dynamical flow and builds
the correct measure from cycle invariants, the stability eigenvalues of periodic orbits

Were we to restrict the applications of the formalism only to systems which have been rigorously proven to
be ergodic, we would not have much to do For example, even for something as simple as the Hénon mapping
we do not know whether the asymptotic time attractor 1s strange or periodic Physics applications require a
more pragmatic attitude In the cycle expansions approach we construct the invariant set of the given dynamical
system as a closure of the union of periodic orbits, and 1nvestigate how robust are the averages computed on
this set This turns out to depend very much on the observable being averaged over, dynamical averages exhibit
“phase transitions” [30], and the above cycle averaging formulas apply in a “hyperbolic phase” where the
average 1s dominated by exponentially many exponentially small contributions, but fail 1n a phase dominated
by few marginally stable orbits

Sull, 1n spite of all the caveats, periodic orbit theory 1s a beautiful theory, and the cycle averaging formulas
are the most elegant and powerful tool available today for evaluation of dynamical averages for low dimensional
chaotic deterministic systems
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