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We apply Lindstedt’s method and multiple scale perturbation theory to analyze spatio-temporal
structures in nonlinear Schro¨dinger equations and thereby study the dynamics of
quasi-one-dimensional Bose–Einstein condensates with mean-field interactions. We determine the
dependence of the amplitude of modulated amplitude waves on their wave number. We also explore
the band structure of Bose–Einstein condensates in detail using Hamiltonian perturbation theory and
supporting numerical simulations. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1779991#

Bose–Einstein condensates„BECs… were observed experi-
mentally in 1995 using dilute vapors of sodium and ru-
bidium. The macroscopic behavior of BECs at zero tem-
perature is modeled by the nonlinear Schro¨dinger
equation in the presence of an external potential. This
model has proven to be an excellent one for most experi-
ments on BECs. When the external potential is spatially
periodic „e.g., due to an optical lattice, which may be
created using counter-propagating laser beams…, the spec-
trum of the BEC exhibits a band stucture „spatial reso-
nance structure…. This paper utilizes Hamiltonian pertur-
bation theory and supporting numerical simulations to
study this structure in detail.

I. INTRODUCTION

At low temperatures, particles in a dilute gas can reside
in the same quantum~ground! state, forming a Bose–
Einstein condensate.1–4 This was first observed experimen-
tally in 1995 with vapors of rubidium and sodium.5,6 In these
experiments, atoms were confined in magnetic traps, evapo-
ratively cooled to tempuratures on the order of fractions of
microkelvins, left to expand by switching off the confining
trap, and subsequently imaged with optical methods.2 A
sharp peak in the velocity distribution was observed below a
critical temperature, indicating that Bose–Einstein condensa-
tion had occurred.

BECs are inhomogeneous, so condensation can be ob-
served in both momentum and coordinate space. The number
of condensed atomsN ranges from several thousand to sev-
eral million. Confining traps are usually approximated well
by harmonic potentials. There are two characteristic length
scales: the harmonic oscillator lengthaho5A\/(mvho)
@which is on the order of a few microns#, where vho

5(vxvyvz)
1/3 is the geometric mean of the trapping fre-

quencies, and the mean healing lengthx51/A8puaun̄,
where n̄ is the mean density anda, the ~two-body! s-wave
scattering length, is determined by the atomic species of the
condensate.2,4,7,8 Interactions between atoms are repulsive
whena.0 and attractive whena,0. For a dilute ideal gas,
a'0. The length scales in BECs should be contrasted with
those in systems like superfluid helium, in which the effects
of inhomogeneity occur on a microscopic scale fixed by the
interatomic distance.2

If considering only two-body, mean-field interactions, a
dilute Bose–Einstein gas can be modeled using a cubic non-
linear Schro¨dinger equation~NLS! with an external poten-
tial, which is also known as the Gross–Pitaevskii~GP! equa-
tion. BECs are modeled in the quasi-one-dimensional@quasi-
~1D!# regime when the transverse dimensions of the
condensate are on the order of its healing length and its lon-
gitudinal dimension is much larger than its transverse
ones.2,9–11In the quasi-1D regime, one employs the 1D limit
of a 3D mean-field theory rather than a true 1D mean-field
theory, which would be appropriate were the tranverse di-
mension on the order of the atomic interaction length or the
atomic size.9–13

When examining only two-body interactions, the con-
densate wave function~‘‘order parameter’’! c(x,t) satisfies a
cubic NLS

i\c t52@\2/~2m!#cxx1gucu2c1V~x!c, ~1!

whereucu2 is the number density,V(x) is an external poten-
tial, g5@4p\2a/m#@11O(z2)#, andz5Aucu2uau3 is the di-
lute gas parameter.2,7,8Because the scattering lengtha can be
adjusted using a magnetic field in the vicinity of a Feshbach
resonance,14 the contribution of the nonlinearity in~1! is tun-
able.

PotentialsV(x) of interest in the context of BECs in-
clude harmonic traps, periodic potentials~‘‘standing light
waves’’!, and periodically perturbed harmonic traps. The ex-
istence of quasi-1D cylindrical~‘‘cigar-shaped’’! BECs mo-
tivates the study of periodic potentials without a confininga!Electronic mail: mason@math.gatech.edu
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trap along the dimension of the periodic lattice.15 Experi-
mentalists use a weak harmonic trap on top of the periodic
lattice to prevent the particles from spilling out. To achieve
condensation, the periodic lattice is typically turned on after
the trap. If one wishes to include the trap in theoretical analy-
ses,V(x) is modeled by

V~x!5V0 sin~k~x2x0!!1V1x2, ~2!

wherek is the lattice wave number,V0 is the height of the
periodic lattice, andx0 is the offset of the periodic potential.
~Note that these three quantities can all be tuned experimen-
tally.! The periodic term dominates for smallx, but the har-
monic trap otherwise becomes quickly dominant. WhenV1

!V0 , the potential is dominated by its periodic contribution
for many ~20 or more! periods.16–18 ~For example, when
V0 /V15500, k510, andx050, the harmonic component of
V(x) essentially does not contribute for 10 periods.! In this
work, we usually letV150 and focus on periodic potentials.
Spatially periodic potentials have been employed in experi-
mental studies of BECs19,20 and have also been studied
theoretically.9–11,17,18,21–25

When the optical lattice has deep wells~large uV0u), an
analytical description of BECs in terms of Wannier wave
functions can be obtained in the tight-binding
approximation.26 The Bose–Hubbard Hamiltonian, which is
a better description than~1! in the tight-binding approxima-
tion, is derived by expanding the field operator in a Wannier
basis of localized wave functions at each lattice site. This
Hamiltonian has has three contributions: A kinetic energy
term yielding contributions from tunnelling between adjacent
wells, an energy offset in each lattice site~due, for example,
to external confinement!, and a potential energy term char-
acterized by atom–atom interactions~that indicates how
much energy it takes to put a second atom into a lattice site
that already has one atom present!. One can use the Bose–
Hubbard Hamiltonian to examine transitions between super-
fluidity and Mott insulation.27

In the present paper, we examine in detail the band struc-
ture of BECs in shallow periodic lattices using Hamiltonian
perturbation theory and supporting numerical simulations.28

Our methodology, which yields analytical expressions de-
scribing the features of BEC resonance bands, exploits the
elliptic function solutions of the NLS in the absence of a
potential. Note, however, that this paper doesnot explore the
chaotic dynamics of BECs.

II. COHERENT STRUCTURES

We consider uniformly propagating coherent structures
with the ansatzc(x2vt,t)5R(x2vt)exp(i@u(x2vt)2mt#),
where R[ucu is the magnitude~amplitude! of the wave
function, v is the velocity of the coherent structure,u(x)
determines its phase,vW 0}¹u is the particle velocity, andm is
the chemical potential~which can be termed an angular fre-
quency from a dynamical systems perspective!. Considering
a coordinate system that travels with speedv ~by defining
x85x2vt and relabelingx8 asx) yields

c~x,t !5R~x!exp~ i @u~x!2mt# !. ~3!

@From a physical perspective, we consider the casev50, as
V(x8)5V(x2vt).] When the~temporally periodic! coherent
structure~3! is also spatially periodic, it is called amodu-
lated amplitude wave~MAW !.29,30 The orbital stability of
MAWS for the cubic NLS with elliptic potentials has been
studied by Bronski and co-authors.9–11 To obtain stability
information about the sinusoidal potentials we consider, one
takes the limit as the elliptic modulusk approaches zero.31,32

When V(x) is periodic, the resulting MAWs generalize
the Bloch modes that occur in the theory of linear systems
with periodic potentials, as one is considering a nonlinear
Floquet–Bloch theory rather than a linear one.15,20,22,33,34In
this paper, we employ phase space methods and perturbation
theory to examine MAWs and their concomitant band struc-
ture.

The novelty of our work lies in its illumination of BEC
band structure through the use of perturbation theory and
supporting numerical simulations to examine 2m8:1 spatial
subharmonic resonances in BECs in periodic lattices. Such
resonances correspond to spatially periodic solutionsc of
period 2m8 and generalize the ‘‘period doubled’’ states~in
ucu2) studied by Machholmet al.35 which pertain to the ex-
periments of Cataliottiet al.36

Previous theoretical work in this area has focused on
different aspects of BEC band structure, such as loop
structure37–39 and hysteresis.40 In contrast to the coherent
structures we consider, these authors studied band structure
using a Bloch wave ansatz. In our notation, they assumeda
priori that R(x)5R(x12p/k) has the same periodicity of
the underlying spatial latticeV(x), whereas we have made
no such assumption and instead use Hamiltonian perturba-
tion theory to study the dynamical behavior ofR(x). Addi-
tionally, the analytical components of these works are con-
fined to two-to-three Fourier mode truncations of the Bloch
wave dynamics.37–39

Inserting ~3! into the NLS ~1! and equating real and
imaginary parts yields

\mR~x!52
\2

2m
R9~x!1F \2

2m
@u8~x!#21gR2~x!

1V~x!GR~x!,

05
\2

2m
@2u8~x!R8~x!1u9~x!R~x!#, ~4!

which gives the following two-dimensional system of non-
linear ordinary differential equations:

R85S,

S85
c2

R3 2
2mmR

\
1

2mg

\2 R31
2m

\2 V~x!R. ~5!

The parameterc is defined via the relation

u8~x!5
c

R2 , ~6!

and therefore plays the role of ‘‘angular momentum,’’ as dis-
cussed by Bronski and co-authors.10 @Equation~6! is a state-

740 Chaos, Vol. 14, No. 3, 2004 M. A. Porter and P. Cvitanović
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ment of conservation of angular momentum.# Constant phase
solutions, which constitute an important special case, satisfy
c50.

III. BECs WITHOUT AN EXTERNAL POTENTIAL

WhenV(x)[0, the dynamical system~5! is autonomous
and hence integrable, as it is two-dimensional. Its equilibria
(R* ,S* ) satisfyS* 50 and eitherR* 50, c50 or

gR62\mR41
\2

2m
c250, ~7!

which can be solved exactly because it is cubic inR2. When
c50, one obtainsR* 56A\m/g. One thus obtains equilib-
ria at (R* ,0)Þ(0,0) for g.0 if m.0 andg,0 if m,0.

The eigenvalues of the equilibrium (R* ,0) satisfy

l252
3c2

R
*
4 2

2mm

\
1

6mg

\2 R
*
2 . ~8!

Whenc50 andR* 50, one obtainsl56A22mm/\. Ad-
ditionally, one obtains a center at~0, 0! when m.0 and a
saddle whenm,0. One also obtains saddles at theR* Þ0
equilibria for g.0 when m.0 and centers at those same
locations forg,0 when m,0. These latter equilibria are
surrounded by periodic orbits that satisfyRÞ0. The possible
qualitative dynamics~for c50) are illustrated in Fig. 1 and
summarized in Table I.

FIG. 1. Phase portraits of coherent structures in BECs with no external potential. The signs ofm andg determine the dynamics of~5!. ~a! Repulsive BEC with
m.0. The two-body scattering length isa50.072 nm, the value~Ref. 53! for atomic hydrogen (1H). Orbits inside the separatrix~which consists of two
heteroclinic orbits! have bounded amplitudeR(x). The period of such orbits increases as one approaches the separatrix, whose period is infinite.~b! Attractive
BEC with m.0. The two-body scattering length isa520.9 nm, the value~Refs. 18 and 54! for 85Rb. ~c! Attractive BEC~again85Rb) with m,0. Here there
are two separatrices, each of which encloses periodic orbits satisfyingRÞ0.

TABLE I. Type of equilibria of~5! whenV(x)50, andc50.

Equilibrium at ~0,0! Equilibria at (R* ,0)Þ(0,0) g m

Center None 2 1

Center None 0 1

Center Saddles 1 1

Saddle None 1 2

Saddle None 0 2

Saddle Centers 2 2
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To study the dependence of the wave number of periodic
orbits~centered at the origin! of ~5! on the amplitudeR when
V(x)[0, we employ Lindstedt’s method34 and consider null
angular-momentum wave functions for the casem.0. We
also assumeg5«ḡ, where«!1 and ḡ5O(1). Theperiod
of R(x) is given by

T5
2p

a
52pF11

3gA2

8m\ G1O~«2!, ~9!

whereR(j)5R0(j)1O(«), jªax, a511«a11O(«2) is
the wave number,AªR0(0), and

R0~j!5A cosSA2mm

\
j D . ~10!

Note that all periodic orbits are centered at the origin
whenm.0. Wheng,0, the spatial period becomes smaller
with increasingA. When g.0, the period becomes larger
with increasingA. In the latter case, the wave number-
amplitude relation holds only for solutions inside the separa-
trix, as the trajectories are unbounded outside the separatrix
and hence not periodic.

Before deriving the wave number-amplitude relations
when V(x)Þ0, we comment briefly on the preceeding re-
sults. The spatial period for smallcÞ0 is similar to~9!, but
it cannot be estimated as easily because Eq.~5! now includes
a term of orderO(R23) with coefficientc. Although~9! can
be computed exactly in terms of elliptic functions, here we
are interested in elucidating the qualitative dynamics of the
MAWs of interest as well as establishing the methodology to
be employed in the presence of potentialsV(x). We will
utilize elliptic function solutions in Sec. V in our detailed
study of band structure.28 The physical relevance of elliptic
functions to BECs has been discussed by Carr and
collaborators.41,42

IV. BECs IN A PERIODIC LATTICE

To study the wave number-amplitude relations of peri-
odic orbits in the presence of external potentials, we expand
the spatial variablex in multiple scales. We define ‘‘stretched
space’’ jªax as in the integrable situation and ‘‘slow
space’’ hª«x. We consider potentials of the formV(x)
5«V̄(j,h), where V̄(j,h)5V̄0 sin@k(j2j0)#1V̄1(h) and
V̄1 , which is of orderO~1!, is arbitrary but slowly varying.
Cases of particular interest includeV̄150 ~periodic poten-
tial! and V̄15Ṽ1(h2h0)2 ~superposition of periodic and
harmonic potentials!.

WhenkÞ62bª62A2mm/\, the equations of motion
for the slow dynamics of~5! with c50 are

dA

dh
[A852ba1B2

3bḡ

8m\
BC22

b

2m\
BV̄1~h!,

dB

dh
[B85ba1A1

3bḡ

8m\
AC21

b

2m\
AV̄1~h!, ~11!

where g[«ḡ. The leading-order expression for the ampli-
tude is

R0~j,h!5A~h!cos~bj!1B~h!sin~bj!, ~12!

whereC2
ªA(h)21B(h)2 is a constant. The dynamical sys-

tem ~11! is autonomous whenV1(h)[0. Equilibria
(A* ,B* )Þ(0,0) of ~11! correspond to periodic orbits of~5!
with c50. The equilibrium value of the squared amplitude is
denotedC

*
2 5A

*
2 1B

*
2 .

Converting to polar coordinates with A(h)
5C cos(f(h)) and B(h)5C sin(f(h)) and integrating the
resulting equation yields

f~h!5f~0!1Fa1b1
3bḡ

8m\
C2Gh1

b

2m\ E V̄1~h!dh.

~13!

The wave number of the periodic motion is given by

a~C!512
3g

8m\
C22

1

2m\
V1~x!1O~«2!. ~14!

When k562b, we show that the slow flow equations
have an extra term due to resonance. Without loss of gener-
ality, we let k512b, as changing the sign ofV0 produces
the k522b case. Whenm50.5, m510, and\51, for ex-
ample, one obtains this resonant situation fork5610. Ad-
ditionally, we show thatC is no longer constant in this reso-
nant situation.

In polar coordinates, the slow flow equations are

f85a1b1
3bḡ

8m\
C21

V̄0b

4m\
sin@2~f2bj0!#

1
b

2m\
V̄1~h!,

C852
V̄0b

4m\
C cos@2~f22bj0!#. ~15!

Integrating the equation forC8 yields

C5C0 expF2
V̄0b

4m\ E cos@2~f~h!2bj0!#dhG , ~16!

which one may then insert into the equation for the angular
dynamics.

To determine equilibria, one putsC85f850. FromC8
50, one determines that equilibria (C* ,f* ) satisfy

f* 5
~2 j 11!p

4
1bj0 , j P$0,1,2,3%, ~17!

which is independent of the scattering coefficient. Inserting
~17! into C850 yields the wave number-amplitude relation

aR~C!5a~C!7
V0

4m\
1O~«2!, ~18!

for periodic orbits of~5!. In ~18!, the minus sign is obtained
when j P$0,2%, and the plus sign is obtained whenj
P$1,3%. Equation~18! is valid for 2:1 spatial resonances. We
examine 2m8:1 resonances for integerm8 in Sec. V using
Hamiltonian perturbation theory and the elliptic function so-
lutions of ~5! whenV050.

To examine the spatial stability~i.e., stability with re-
spect to spatial evolution! of these periodic orbits in the pres-
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ence of resonant periodic potentials, we compute the spatial
stability of equilibria of~15! whenV1(h)[0. The eigenval-
ues of the periodic orbits are

l56
b

2m
A7

3V̄0ḡC

2\2 . ~19!

We show numerical simulations for~5! in the presence of a
periodic potential in Fig. 2. In this situation,~5! is a nonlin-
ear Mathieu equation.32,34,43Figure 2~d! shows the coherent
structure for the trajectory withk5100 andV0510. Figure
3 depicts a Poincare´ section describing the dynamics of
85Rb, for whicha520.9 nm. Figure 4 depicts spatial pro-
files of the coherent structures corresponding to the locally
chaotic and globally chaotic trajectories in Fig. 3.

V. SUBHARMONIC RESONANCES

In this section, we analyze spatial subharmonic reso-
nances and the band structure of repulsive BECs with a posi-
tive chemical potential. We perturb off the elliptic function
solutions of the underlying integrable system in order to
study 2m8:1 spatial resonances with a leading-order pertur-
bation method. Perturbing off simple harmonic functions, by
contrast, requires a perturbative method of orderm8 to study
2m8:1 resonances. At the center of the KAM islands, we

observe ‘‘period-multiplied’’ states. Whenm851, one ob-
tains period-doubled states inc. As verified numerically in
Sec. VI, our qualitative results are excellent. Given that our
method is a leading-order one, our quantitative results are
also remarkably good.

Recent work by Machholm and co-authors35 on period-
doubled states~in ucu2) follows up experimental studies by
Cataliotti and co-authors,36 who observed superfluid current
disruption in chains of weakly coupled BECs, which is re-
lated to the dependence of the dynamical instability of Bloch
states on the magnitude of particle interactions. Period-
doubled states, which may be interpreted as soliton trains,
arise from dynamical instabilities of the energy bands asso-
ciated with Bloch states.35 In the present work, we offer a
dynamical systems perspective on period-doubled states and
their generalizations. Our theoretical and computational
analysis reveals period-multiplied solutions of the GP~1!.
The existence of these wave functions can be explored ex-
perimentally.

A detailed examination of the band structure of BECs in
periodic lattices requires a more intricate perturbative analy-
sis than that discussed earlier in this work. Previous authors
have concentrated on numerical studies of band
structure.15,22,23The approach we take, on the other hand, is
to analyze the spatial resonance structure that arises from the

FIG. 2. As the wave numberk of the perturbation is increased, periodic behavior persists for largeruV0u. The initial condition in this plot is (R(0),S(0))
5(0.05,0.05), and the parameter valuesa50.072, m510, m50.5, andx050 are used for each trajectory.~a! Poincare´ section determined by sin(kx)50.
Trajectory~1! corresponds to (k,V0)5(100,10), trajectory~2! to (k,V0)5(100,100), and trajectory~3! to (k,V0)5(10,10). These quasiperiodic solutions
indicate the existence of nearby periodic orbits.~b! Phase space plots of the trajectories in~a!. Trajectory~1! is the closest to being periodic and trajectory~3!
is the furthest away.~c! Amplitude R as a function of spacex for trajectories~1!–~3!. The band structure of BECs can be studied not only in real space but
also in phase space by plotting Poincare´ sections and trajectories, as indicated in~a! and ~b!. Examining the proximity of a trajectory to periodicity is most
easily accomplished in phase space.~d! Coherent structure corresponding to quasiperiodic trajectory~1!. This plot depictsRe(c). The horizontal axis
represents time, and the vertical one represents space. The darkest portions are the most negative, and the lightest are the most positive.
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nonlinear Mathieu equation obtained upon the application of
a coherent structure ansatz to the cubic NLS. We examine
situations with null angular momentum (c50), but one ob-
serves similar behavior whencÞ0 whenR is away from the
origin. The analytical approach we employ was introduced
by Zounes and Rand43 for g,0 andm.0 @see Fig. 1~b!#, the
technically easiest case to consider. Their study of nonlinear
Mathieu equations is directly applicable to BECs. Our work
is an extension of their work to the situationg.0, m.0 @see
Fig. 1~a!#, the second easiest case to consider. We study this
case in detail and also apply the results of Zounes and Rand
to attractive BECs with a positive chemical potential. We
briefly discuss attractive BECs with a negative chemical po-
tential @see Fig. 1~c!#, the technically hardest case to con-
sider. Note that this paper doesnot explore the chaotic dy-
namics of BECs, which is an important open issue.32,34,44,45

Let x052p/(2k) andV1(x)[0 so that

V~x!5V0 cos~kx!. ~20!

Whenc50, the equations of motion~2! and ~5! for the am-
plitude of the coherent structure~3! take the form

R91dR1aR31eR cos~kx!50, ~21!

where

d5
2mm

\
, a52

2mg

\2
, e52

2m

\2 V0 . ~22!

~Note that the perturbation parametere is not the same as the
parameter« employed earlier.! The parametersm, V0 , k, and
a ~and henceg) can all be adjusted experimentally. When
e50, solutions of~21! can be written exactly in terms of
elliptic functions:31,32,44,47–49

R5srcn~u,k!, ~23!

where

u5u1x1u0 , u1
25d1ar2,

FIG. 3. Poincare´ section for the parameter valuesm5210, m50.5, x0

50, V055, k510, anda520.9 nm, corresponding to the experimentally
determined scattering length~Refs. 18 and 54! for 85Rb. The depicted tra-
jectories include examples which are quasiperiodic, locally chaotic~near the
resonances!, and globally chaotic~the stochastic sea!.

FIG. 4. ~a! Spatial profile of the coherent structure corresponding to the
locally chaotic trajectory in Fig. 3. The initial conditions are (R(0),S(0))
'(20.018 182 15,25.232 683 58).~b! Spatial profile of the coherent struc-
ture corresponding to the globally chaotic trajectory in Fig. 3. The initial
conditions are (R(0),S(0))'(21.132 835 30,1.283 340 13).
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k25
ar2

2~d1ar2!
, ~24!

u1>0, r>0, k2PR, sP$21,1%,

andu0 is obtained from an initial condition~and can be set to
0 without loss of generality!. We consideru1PR in order to
study periodic solutions. One can use argument transforma-
tions to study solutions with complexu1 . When k2

P(1,̀ ), one makes sense of the cn function with a recipro-
cal modulus transformation.46,47Whenk2,0, one employs a
reciprocal complementary modulus transformation, which
we discuss below.

Equation~21! can be integrated whene50 to yield the
Hamiltonian

1
2 R821 1

2 dR21 1
4 aR45h, ~25!

with given energyh. With ~24!, one computes

h5
1

4
r2~2d1ar2!5

d2

a

k2k82

~122k2!2 , ~26!

wherek82
ª12k2. Earlier in this paper, we enumerated the

different possibilities for the qualitative dynamics of~21! in
terms of the signs ofm andg ~and hence in terms of the signs
of d anda!.

A. Repulsive BECs with a positive chemical potential

We first consider in detail the caseg.0, m.0, for
which d.0, a,0. For notational convenience, we some-
times utilizea8ª2a. This analysis involves a considerable
amount of elliptic-function manipulation, but we are re-
warded in the end by a much more effective perturbation
theory than can be obtained by employing trigonometric
functions.

The center at~0, 0! satisfiesh5r25k250. The saddles
at (6Ad/a8,0) and their adjoining separatrix satisfy

h52
d2

4a
, r25

d

uau
, k252`. ~27!

The signs511 is used for the right saddle, ands521 is
used for the left one. Within the separatrix, all orbits are
periodic and the value ofs is immaterial.

1. Action-angle variable description and
transformations

For this choice of parameters,k2P@2`,0#, so elliptic
functions are defined through the reciprocal complementary
modulus transformation,46,47 which relates the (u,k) coordi-
nate system to another coordinate system, which we denote
(w,k2). To tranform between these two coordinate systems,
one uses the following relations:

cn~u,k!5cd~w,k2!,

dn~u,k!5nd~w,k2!,
~28!

sn~u,k!5k28sd~w,k2!,

k85
1

k28
, u5k28w, K5k28K2 , E5

1

k28
E2 .

Here,K[K(k) denotes the complete elliptic integral of the
first kind, E[E(k) denotes the complete elliptic integral of
the second kind, and items with the subscript ‘‘2’’ denote the
analogous quantities in the (w,k2) coordinate system.31,46,48

We rescale~21! using the coordinate transformation

x5Adx, r 5A d

a8
R, ~29!

to obtain

r 91r 2r 350, ~30!

when V(x)[0. ~Note that in this analysis, the quantityx
does not represent the mean healing length.! In terms of the
original coordinates

R~x!5A d

a8
r ~Adx!5A\m

g
r SA2mm

\
xD . ~31!

The rescaling applied for other choices ofd and a differ
slightly from that in~29!, so that the arguments of their as-
sociated square roots are positive.

The Hamiltonian corresponding to~30! is

H0~r ,s!5 1
2 s21 1

2 r 22 1
4 r 45h, hP@0,1/4#, ~32!

where sªr 85dr/dx. Additionally, r2P@0,1#, k2
2P@0,1#

~corresponding tok2P(2`,0# in the original coordinates!,
and

k25
r2

2~r221!
. ~33!

With the initial conditionr (0)5r, s(0)50, which implies
that u050, solutions to~30! are given by

r ~x!5r cn~@12r2#1/2x,k!,

s~x!52r@12r2#1/2sn~@12r2#1/2x,k!

3dn~@12r2#1/2x,k!. ~34!

The period of a given periodic orbitG is

T~k!5 R
G
dx5

4K~k!

A12r2
, ~35!

where 4K(k) is the period inu of cn(u,k).48 The frequency
of this orbit is

V~k!5
pA12r2

2K~k!
. ~36!

Let Gh denote the periodic orbit with energyh
5H0(r ,s). The area of phase space enclosed by this orbit is
constant with respect tox, so one may define the
action32,46,47,49

Jª
1

2p R
Gh

sdr5
1

2p E
0

T(k)

@s~x!#2dx, ~37!

which in this case can be evaluated exactly:

J5
4A12r2

3p
@E~k!2~12r2/2!K~k!#. ~38!

745Chaos, Vol. 14, No. 3, 2004 A perturbative analysis of MAWs in BECs

Downloaded 07 Sep 2004 to 132.248.209.71. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



The associated angle44,45,49,50in the canonical transformation
(r ,s)→(J,F) is

FªF~0!1V~k!x. ~39!

The frequencyV(k) monotonically decreases ask2 goes
from 2` to 0 @that is, as one goes from the separatrix to the
center at (r ,s)5(0,0)]. With this transformation, Eq.~34!
becomes

r ~J,F!5r~J!cn~2K~k!F/p,k!,

s~x!52r~J!A12r~J!2sn~2K~k!F/p,k!

3dn~2K~k!F/p,k!, ~40!

wherek5k(J).
After rescaling, the equations of motion for the forced

system~21! take the form

r 91r 2r 31
e

d
cosS k

Ad
x D r 50, ~41!

with the corresponding Hamiltonian

H~r ,s,x!5H0~r ,s!1eH1~r ,s,x!

5
1

2
s21

1

2
r 22

1

4
r 41

e

2d
r 2 cosS k

Ad
x D . ~42!

In action-angle coordinates, this becomes

H~F,J,x!5h~J!1eh1~F,J,x!

5
1

2
r~J!22

1

4
r~J!4

1
e

2d
r~J!2cn2~2K~k!F/p,k!cosS k

Ad
x D .

~43!

One obtains a second action-angle pair (f, j ) using the
canonical transformation (F,J)→(f, j ) defined by the rela-
tions

j ~J!5
1

2
r~J!2, F~f, j !5

f

J8~ j !
, ~44!

where

k25
j

2 j 21
,

J~ j !5
2

3
A122 j @Ẽ~ j !2~12 j !K̃~ j !#, ~45!

K̃~ j !5
2

p
K@k~ j !#, Ẽ~ j !5

2

p
E@k~ j !#.

Additionally,

J8~ j !ª
dJ

d j
5A122 j K̃ ~ j !5

122 j

V~ j !
. ~46!

Note thatJ; j for small-amplitude motion. Furthermore,j
50 at the origin, andj 51/2 on the separatrix.

The Hamiltonian~43! becomes

H~f, j ,x!5H0~ j !1eH1~f, j ,x!

5 j 2 j 21
e

d
j cn2S K̃~ j !

J8~ j !
f,kD cosS k

Ad
x D .

~47!

Because we have used elliptic functions rather than
trigonometric functions, all results are exact thus far.43

2. Perturbative analysis
A subsequentO~e! analysis at this stage allows one to

study 2m8:1 subharmonic resonances for allm8PZ. By con-
trast, had we undertaken this procedure with trigonometric
functions ~which would have entailed a perturbative ap-
proach from the beginning!, an O(em8) analysis would be
required to study 2m8:1 subharmonic resonances of~21!.

The Fourier expansion of cn is given by

cn~u,k!5
2p

kK~k! (
n50

`

bn~k!cosF ~2n11!
pu

2K~k!G , ~48!

where the Fourier coefficientsbn(k) are

bn~k!5 1
2 sech@~n11/2!pK8~k!/K~k!#, ~49!

and K8(k)ªK(A12k2) denotes the complementary com-
plete elliptic integral of the first kind.43,48,51 In the present
situation

cnS K̃~ j !

J8~ j !
f,kD 5 (

n50

`

Bn~ j !cosF ~2n11!
f

J8~ j !G , ~50!

where

Bn~ j !5
4

k~ j !K̃~ j !
bn@k~ j !#. ~51!

Consequently,

cn2S K̃~ j !

J8~ j !
f,kD 5B0~ j !1(

l 51

`

Bl cosS 2lf

J8~ j ! D , ~52!

where the Fourier coefficientsBl( j ) are obtained by convolv-
ing the previous Fourier coefficients~51! with each other.43

Before proceeding, it is important to discuss the compu-
tation of the coefficientsBl( j ), which require some care.
Using the Elliptic Nome51,52

q~k!ªe2pK8(k)/K(k), ~53!

the Fourier coefficient~49! is expressed as

bn~k!5
1

q~k!n11/21q~k!2(n11/2) . ~54!

One then expandsBl( j ) in Taylor series aboutj 50. In this
computation, one finds that the coefficients of even powers
of j in Bl( j ) are the same as wheng,0, m.0 and that odd
powers have the opposite sign. This distinction lies at the
root of the qualitatively different dynamics in the two cases,
which we will discuss in Sec. V B. Recall that their underly-
ing integrable dynamics are depicted in Fig. 1.

After the Fourier expansion, the perturbative term in the
Hamiltonian~47! is
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H1~f, j ,x!5
1

d
B0~ j !cosS k

Ad
x D 1

1

2d (
l 51

`

Bl~ j !

3FcosS 2lf

J8~ j !
1

k

Ad
x D

1cosS 2lf

J8~ j !
2

k

Ad
x D G . ~55!

There are infinitely many~subharmonic! resonance
bands,32,44,45each of which corresponds to a single harmonic
in the perturbation series~55!. To isolate individual reso-
nances, we apply a canonical, near-identity
transformation32,43–45,49 to the HamiltonianH5H01eH1 .
This transformation is given by

f5Q1e
]W1

]P
1O~e2!,

j 5P2e
]W1

]Q
1O~e2!, ~56!

where the generating functionW1 is

W15
PB0~P!

kAd
sinS k

Ad
x D 1

P

2Ad
(

l 51,lÞm8

`

Bl~P!

3F sinS 2lQ

J8~P!
1

k

Ad
x D

k12lAdV~P!
1

sinS 2lQ

J8~P!
2

k

Ad
x D

k22lAdV~P!
G .

~57!

To obtain ~57!, one uses the fact@from ~46!# that V(P)
5(122P)/J8(P).

The resulting Hamiltonian is

K~Q,P,x!5K0~P!1eK1~Q,P,x!,

K0~P!5P2P25H0~P!, ~58!

K1~Q,P,x!5H1~Q,P,x!1$H0 ,W1%2
]W1

]x
,

where$A1 ,A2% denotes the Poisson bracket ofA1 and A2 .
For the present choice ofW1 , one obtains the resonance
Hamiltonian

K~Q,P,x;m8!5P2P21
e

2d
PBm8~P!cosS 2m8Q

J8~P!

2
k

Ad
x D 1O~e2!. ~59!

The choice of the generating function~57! eliminates all
resonances from the HamiltonianK except the 2m8:1 reso-
nance. In focusing on a single resonance band in phase
space, one restrictsP to a neighborhood ofPm8 , which de-
notes the location of them8th resonant torus~associated with
periodic orbits in 2m8:1 spatial resonance with the periodic
lattice!.

3. Resonance relations

Resonant frequencies arise when the denominators of the
terms inW1 vanish,32,43,44which yields the equation

k

Ad
562m8V~Pm!, ~60!

for the resonance of order 2m8:1. As V<1 is a decreasing
function of PP@0,1/2), the resonance band associated with
2m8:1 subharmonic spatial resonances is present when

k

Ad
<2m8. ~61!

For example, whenk52.5 andd51, there are resonances of
order 4:1, 6:1, 8:1, etc., but there are no resonances or order
2:1. Whenk55 andd51, there are resonances of order 6:1,
8:1, 10:1, etc., but there are no resonances of order 2:1 or
4:1. In terms of the original parameters, the condition~61!
describing the onset of 2m8:1 resonance bands takes the
form

k<2m8A2mm

\
. ~62!

If the lattice V(x) has a smaller wave number~larger
periodicity!, then the chemical potentialm has a smaller
threshold for a given resonance to occur. Ask is decreased
for a fixedm ~i.e., d! or asm is increased for a given lattice
sizek, resonance bands of lower order emerge from the ori-
gin and propagate in phase space. Consequently, a suffi-
ciently high order resonance is always present in~21!, but a
given number of low-order ones may not be. Lower-order
resonances occupy larger regions of phase space, so~61! also
indicates the volume of phase space affected by spatial reso-
nances. We will illustrate this in more detail in Sec. VI with
numerical simulations.

4. Analytical description of resonance bands

To further examine the resonance structure of~21!, we
make ~59! autonomous via another canonical change of
coordinates.32,43 Toward this end, we define the generating
function

F~Q,Y,x;m8!5QY2
k

2m8Ad
J~Y!x, ~63!

which yields

P5
]F

]Q
~Q,Y,x!5Y,

j5
]F

]Y
~Q,Y,x!5Q2

k

2m8Ad
J8~Y!x

5Q2
k

2m8Ad
J8~P!x. ~64!
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~Note that in this analysis,j does not represent stretched
space, as it did in our multiple scale expansion.! With this
final transformation, the resonance Hamiltonian~59! be-
comes

Km8~j,Y!5K~Q,P,x;m8!1
]F

]x
~Q,Y,x!

5Y2Y22
k

2m8Ad
J~Y!

1
e

2d
YBm8~Y!cosS 2m8j

J8~Y! D , ~65!

which is integrable in the (Y,j) coordinate system. In
(R,S)-space, level curves ofKm8 correspond to invariant
curves of Poincare´ sections of~21!, which are defined by
strobing the system when the spatial variable takes the values
xn52np/k.

We now provide an analytical description of the reso-
nance bands under discussion. In particular, we compute the
locations and type of equilibria and width of resonance bands
as functions of the parametersd, e, andk, and hence ofm,
V0 , and k. Such bands emerge from the actionP5Y
5Ym8 , which designates the location of them8th resonance
torus in phase space and is determined by the resonance re-
lation ~60!:

k

Ad
52m8V~Ym8!. ~66!

This resonance band is associated with periodic orbits in
2m8:1 spatial resonance with the periodic lattice. The reso-
nance torus is filled with degenerate periodic orbits that
split44,45 into 2m8 saddles and 2m8 centers when a perturba-
tion is introduced.

From ~65!, one obtains Hamilton’s equations

Y852
]Km8

]j
5

eYBm8~Y!

J8~Y!
sinS 2m8j

J8~Y! D ,

j85
]Km8
]Y

5122Y2
k

2m8Ad
J8~Y!

1
e

2d F ~YBm8~Y!!8 cosS 2m8j

J8~Y! D
12m8j

J9~Y!

@J8~Y!#2 YBm8~Y!sinS 2m8j

J8~Y! D G .
~67!

Equilibria satisfy eitherY50 or

sinS 2m8j

J8~Y! D50. ~68!

They also satisfy

j8505122Y2
k

2m8Ad
J8~Y!6

e

2d
@YBm8~Y!#8, ~69!

where the sign6 in ~69! arises from

cosS 2m8j

J8~Y! D50. ~70!

Using J8(Y)5A122YK̃(Y), Eq. ~69! is written

122Y2
k

2m8Ad
A122YK̃~Y!6

e

2d
@YBm8~Y!#850.

~71!

Wheng,0 andm.0, the1 case yields a saddle and the
2 case yields a center. In the present situation (g.0,m
.0), this holds for oddm8. Whenm8 is even,2 is a saddle
and1 is a center.

At equilibria, the actionY takes the value

Ye5Ym81eDY1O~e2!5Ym86O~e!, ~72!

with the signs as in~71!. However, note thatYc.Ym8
.Ys , just as forg,0. One inserts~72! into ~71! and ex-
pands the result in a power series. At orderO(e0)5O(1),
this reproduces the resonance relation~66!. At order O~e!,
one obtains

DY57
e

2d F Bm8~Ym8!1Ym8Bm8
8 ~Ym8!

V~Ym8!
A122Ym8K̃8~Ym8!21

G , ~73!

where saddlesYs use the1 sign and centersYc use the2
sign whenm8 is even, and the opposite is true whenm8 is
odd. Whenm8 is even,DY.0, butDY,0 whenm8 is odd.
Additionally, Yc is always larger thanYs ~for both signs of
e!.

Resonance bands occupy a finite region of phase space
bounded by a pendulum-like separatrix. When a perturbation
is introduced, trajectories outside the separatrix behave al-
most as they would in the absence of a perturbation, so it is
important to estimate the width of resonance bands, which
emerge at action values satisfying the resonance relation
~66!. Because of the direction of the inequality in~62!, this is
more of a condition for nonexistence of given resonances
@see the discussion following Eq.~61!#. For a given set of
parameters, there will always be resonances of sufficiently
high order~i.e., for a sufficiently largem8). However, as we
illustrate numerically below, there are parameter regions in
which no 2:1 resonances exist, regions in which no 2:1 or 4:1
resonances exist, etc. This behavior contrasts markedly with
that observed wheng,0.43 In that situation, there exist pa-
rameter regions in which only 2:1 resonances exist, regions
in which only 2:1 and 4:1 resonances exist, etc.

We now show that the width of a resonance band is

OSAYm8Bm8~Ym8!ueu
d D , ~74!

for perturbations of sizee522mV0 /\2.
The separatrix of interest passes through the saddle point

Ys , and the maximum extent of the resonance band occurs at
the same phasej as the associated center, so

Km8S cosS 2m8j

J8~Ys!
D521,Y5YsD

5Km8S cosS 2m8j

J8~Y! D511,YD , ~75!

whenm8 is odd and

748 Chaos, Vol. 14, No. 3, 2004 M. A. Porter and P. Cvitanović
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Km8S cosS 2m8j

J8~Ys!
D511,Y5YsD

5Km8S cosS 2m8j

J8~Y! D521,YD , ~76!

whenm8 is even. This implies that

~Y2Ys!2~Y2Ys!
22

k

2m8Ad
~J~Y!2J~Ys!!

6
e

2d
~YBm8~Y!1YsBm8~Ys!!50, ~77!

where the1 sign holds for oddm8 and the2 sign holds for
evenm8. ~Only the 1 case needs to be considered wheng
,0 andm.0.)

Solutions Y* of ~77! are perturbations toYm8 of the
form

Y* 5Ym81Weg1O~e2g!, ~78!

for an appropriate choice ofg, to be determined by a self-
consistency argument.@When e,0, one writes~78! with
(2e)g instead. Everything stated here is otherwise the same
in that situation.# In this analysis, one uses the fact thatYs

5Ym86e(DY)1O(e2), where the1 sign is for oddm8 and
the 2 sign is for evenm8.

To find W and g, we insertY* and Ys into ~77! and
expand the resulting expression in a power series aboute
50. During this process, one obtains

Y
*
2 5Ym8

2
12Ym8Weg1W2e2g,

J~Y* !5J~Ym8!1egWJ8~Ym8!1e2gW2J9~Ym8!

1O~e3g!, ~79!

which shows that that the only suitable value ofg is 1/2.
Equating terms of orderO~1! yields no new information.
Equating terms of orderO(e1/2) yields the resonance relation
~66!. Equating terms of orderO~e! shows that

W5F 6
Ym8Bm8~Ym8!

dF11
k

2m8Ad
J9~Ym8!G G

1/2

, ~80!

where the1 sign occurs for oddm8 and the2 sign occurs
for evenm8. Therefore, the miminal action of the resonance
band is

Ymin5Ym82AeW1O~e!, ~81!

and the maximal action is

Ymax5Ym81AeW1O~e!. ~82!

The width of the resonance band isYmax2Ymin52AeW
1O(e).

In Sec. VI, we compare these analytical results with nu-
merical simulations.

B. Attractive BECs with a positive chemical potential

Zounes and Rand43 considered~21! when d.0 anda
.0 ~in other words,m.0 andg,0), which is depicted in

Fig. 1~b!. They did not consider the application of their
analysis to Bose–Einstein condensates, so we presently in-
terpret their results in this new light and compare it to our
analysis of the repulsive case. Whend.0, a.0, the phase
space of the integrable problem contains no separatrix, and
the entire space is foliated by periodic orbits~see Table I!.
This choice of parameters also leads to the simplest applica-
tion of the perturbation technique described in Sec. V A. In
this case,kP@0,1#, so one need not apply a modulus trans-
formation in the elliptic function solution. One may also set
s51.

We refer the reader to Zounes and Rand43 for details.
Here, we highlight a few results that we wish to contrast
directly. Wheng,0 andm.0, the resonance relation one
obtains is

k

Ad
52m8Va~Pm8!, ~83!

where the frequencyVa(P) has a similar form to that ofV
described above. In this situation,Va(P)>1, so subhar-
monic periodic orbits are present when

k

Ad
>2m8, ~84!

which is the reverse inequality as that derived in the repul-
sive case. Hence, there exist regimes in whichonly 2:1 reso-
nances are present,only 2:1 and 4:1 resonances are present,
etc. In terms of BEC parameters, the condition~84! describ-
ing the onset of 2m8:1 resonance bands takes the form

TABLE II. Comparison of perturbation theory and numerics for 2:1 reso-
nances (k51.5, d51). In this table,Y1 is the action value of the primary
resonance,Ys is the location of its nearby saddle, (Rs,0) is its location in
(R,S)-coordinates,Yc is the location of the nearby center, (Rc,0) is its
location in (R,S)-space,Ymin is the minimum action value of the separatrix
determined from~81!, Ymax is the maximum determined from~82!, Rin is
where the inner separatrix crosses theR-axis, Rout is where the outer sepa-
ratrix crosses theR-axis,Ymin,2 andYmax,2 are the minimum and maximum
actions obtained by solving~77! numerically, andRin,2 and Rout,2 are their
corresponding predictions of where the inner and outer separatrices cross the
R-axis. The symbol • means a calculation is not applicable and — means it
was not computed.

Quantity

e50.01 e50.05

Perturbative Numerical Perturbative Numerical

Y1 0.281 33 • 0.281 33 •
Ys 0.279 49 • 0.272 13 •
Rs 60.7477 60.66 60.737 75 6(0.56– 0.66)
Yc 0.283 17 • 0.290 53 •
Rc 60.7526 60.757 60.762 27 60.774

Ymin 0.161 75 • — •
Ymax 0.400 91 • — •
Rin 60.568 77 60.66 — —
Rout 60.895 45 60.85 — —

Ymin,2 0.222 03 • — •
Ymax,2 0.358 07 • — •
Rin,2 60.666 38 60.66 — —
Rout,2 60.846 26 60.85 — —
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FIG. 5. Poincare´ sections~a! and~b! and resonance HamiltoniansK1 ~c! and~d! for k51.5 andd51. ~a! Poincare´ section fore50.01. The 2:1 resonances
are displayed, as indicated by the numbered trajectories.~b! e50.05. ~c! Resonance Hamiltonian fore50.01 with vertical axis in units of actionY and
horizontal axis in units ofj/J8(Y). ~d! Resonance Hamiltonian fore50.05.

TABLE III. Comparison of perturbation theory and numerics for 2:1 resonances (k50.75, d50.2). The
quantities computed are defined in the caption of Table II.

Quantity

e50.01 e50.05

Perturbative Numerical Perturbative Numerical

Y1 0.194 43 • 0.194 43 •
Ys 0.184 99 • 0.147 18 •
Rs 6272 02 6(0.1920.20) 60.242 64 —
Yc 0.203 89 • 0.241 69 •
Rc 60.285 58 60.2908 60.310 93 60.335

Ymin 0.074 85 • — •
Ymax 0.314 02 • — •
Rin 60.173 03 60.19 — —
Rout 60.354 41 60.37 — —

Ymin,2 0.096 44 • — •
Ymax,2 0.349 04 • — •
Rin,2 60.196 40 60.19 — —
Rout,2 60.373 66 60.37 — —
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k>2m8A2mm

\
. ~85!

Because the inequalities in~62! and ~85! are oppositely di-
rected, adjustments tok and m have the opposite effect in
these two cases.

Additionally, in this case there is no alternating of signs
in the location of saddles and centers in resonance bands, as
there is wheng.0 and m.0. Because the attractive case
with a positive chemical potential is simpler than the one we
studied, Zounes and Rand43 were able to obtain better pre-
dictions describing the location of saddles and centers and
the width of resonance bands from a perturbation analysis
like that discussed in Sec. V A.

C. Attractive BECs with a negative chemical potential

The most difficult case to consider is that of attractive
BECs with a negative chemical potential. In~21!, a.0 and
d,0 ~i.e., m,0), so the integrable dynamics exhibit two
homoclinic orbits@see Fig. 1~c!#. The perturbative approach
used in this paper must be applied separately inside and out-
side the separatrix. Orbits inside the separatrix satisfyh,0,
those on the separatrix satisfyh50, and those outside the
separatrix satisfyh.0.

Inside the separatrix,kP(1,̀ ), so one must apply the
reciprocal modulus transformation to the arguments of the
elliptic functions ~23! and ~24!. The sign ofs determines
whether one is considering perturbations of periodic orbits in
the right half or left half of the phase plane. To utilize our
perturbative analysis outside the separatrix, one must expand
elliptic functions and elliptic integrals in power series about
infinity, where k50. This requires delicate numerical com-
putations of Laurent series coefficients.

In principle, one can overcome the increased technical
challenges present in this third case~which is also of interest!
and apply the same analysis as in Sec. V A, but the lengthy
calculations involved would entail a separate publication.

VI. NUMERICAL SIMULATIONS

To compare the analytical results in Sec. V with numeri-
cal simulations, we utilize (R,S) coordinates withm51/2

and \51. To lowest order ine, the change of variablesY
→P→ j is a near-identity transformation, soY5 j 1O(e).
Recall from~32! that

j 5 1
2 r2,

~86!
H05h~ j !5 j 2 j 25 1

2 s21 1
2 r 22 1

4 r 4,

where s5]r /]x. For this comparison, we leta851 and
vary k, d[m, ande[22mV0 /\2. Recall additionally from
~29! that

r 5A g

\m
R5Aa8

d
R, s5

1

m
A g

2m
R85

Aa8

d
R8.

~87!

A. Methodology

Before discussing our results, we briefly overview our
comparison procedure.

The ‘‘exact’’ locations of saddles and centers and sizes
of resonance bands were determined using direct numerical
simulations of Poincare´ sections of~21!. The surface of sec-
tion we employed satisfiesxn52np/k (nPZ), which con-
sists of integer multiples of the periodicity of the sinusoidal
forcing in ~21!. In our simulations, the variablekx is peri-
odic, so the surface of section is defined by the condition
kx50. We used this framework to find saddles, centers, and
resonance band sizes~i.e., separatrix widths! empirically.

To obtain our predictions, we employed the resonance
Hamiltonian~65!, whose level curves correspond to invariant
curves of Poincare´ sections. As each trajectory yields a level
set of this Hamiltonian, we solvedKm8 5constant numerically
at appropriate energy values to obtain predictions for the
locations of saddles and centers and the size of resonance
bands; these latter quantities are determined from the widths
of separatrices in~65!. For these computations, we expanded
elliptic functions and elliptic integrals in Taylor series and
subsequently transformed these results to (R,S)-space to
compare these calculations with our empirical ones. We also
predicted the locations of saddles and centers~72! and ~73!
and the size of resonances bands~80!–~82! using the predic-
tions obtained from further perturbation expansions. We

TABLE IV. Comparison of perturbation theory and numerics for 4:1 resonances (k52.5, d51). The action
value of the secondary resonance is denotedY2 . Saddles that intersect theR-axis are denoted (Rs,0), and those
that intersect theS-axis are denoted (0,Ss). Centers are denoted (Rc ,Sc). The other quantities computed are
defined in the caption of Table II.

Quantity

e50.01 e50.05

Perturbative Numerical Perturbative Numerical

Y2 0.373 58 • 0.373 58 •
Ys 0.372 94 • 0.370 36 •
Rs 60.863 64 60.88 60.860 65 60.88
Ss 60.683 89 60.687 60.682 93 60.68
Yc 0.374 22 • 0.376 80 •

(Rc ,Sc) See text (60.691,60.332) See text (60.697,60.330)
Ymin 0.348 14 • 0.316 70 •
Ymax 0.399 02 • 0.430 46 •
Ymin,2 0.355 71 • 0.329 89 •
Ymax,2 0.412 37 • 0.462 40 •
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again tranformed back to (R,S) space to compare this sec-
ond set of predictions with our empirical results.

B. Primary resonances

Our comparison between theory and numerics for pri-
mary resonances is summarized in Tables II and III.

Consider firstk51.5 andd51. Poincare´ sections and
level sets of the resonance HamiltonianK1 @in units of
j/J8(Y)] are depicted in Fig. 5. The results of our compari-
son between perturbation theory and numerical simulations
are summarized in Table II.

We do relatively well in locating saddles and extremely
well in locating centers. This is especially significant in light
of the fact that many canonical transformations were re-
quired to obtain our analytical predictions. Although the req-
uisite calculations are complicated, we are rewarded by ex-
cellent qualitative agreement and good~and sometimes
excellent! quantitative agreement. Fore50.05, the numeri-
cal resolution of the location of the saddles was problematic,
so a direct comparison is necessarily less accurate. As a re-
sult, a range of values is sometimes indicated for the numeri-
cally determined location of saddles. Such difficulties with
direct numerical simulation emphasize the importance of us-
ing qualitative analytical methods to study the features of
resonance bands.

Our comparisons between perturbation theory and nu-
merical simulations fork50.75, d50.2 are summarized in
Table III.

If desired, one can improve these quantitative predic-
tions by including higher-order contributions in the perturba-
tion expansions.

C. Secondary resonances

Our comparison between theory and numerics for sec-
ondary resonances is summarized in Table IV.

FIG. 6. Resonance HamiltonianK2 for k52.5, d51, ande50.05.

FIG. 7. ~a! Poincare´ section fork52.5, d51, ande50.05. Note that there
is no 2:1 resonance band for this choice of~k, d!. The 4:1 resonance is
depicted.~b! Upper right corner of~a!.
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We study 4:1 resonances fork52.5 andd51. No 2:1
resonances exist for this choice of parameters. The resonance
Hamiltonian is depicted fore50.05 in Fig. 6. The corre-
sponding Poincare´ section is shown in Fig. 7.

Whene50.01, we observe numerically that centers are
located at approximately (R,S)5(60.691,60.332). With
R560.691, we predict a value ofS560.323 84. WithS
560.332, we predict a value ofR560.683 62. These pre-
dictions are remarkably good, as we have used leading-order
perturbation theory to derive analytical predictions for 4:1
~secondary! resonances. However, they are not as good as
those obtained for the location of saddles in this case or the
location of centers for 2:1~primary! resonances.

When e50.05, numerical simulations suggest that cen-
ters are located at about (R,S)5(60.697,60.330). Using

R560.697 leads to a prediction ofS560.319 12. Using
S560.330 leads to a prediction ofR560.687 21.

D. Tertiary resonances

Our comparison between theory and numerics for ter-
tiary resonances is summarized in Table V.

We consider 6:1 resonances fork53.8, d51, and e
50.01. No 2:1 resonances exist for this choice of param-
eters, but 4:1 resonances do exist. The resonance Hamil-
tonian is depicted fore50.01 in Fig. 8. The correspondingFIG. 8. Resonance HamiltonianK3 for k53.8, d51, ande50.01.

FIG. 9. ~a! Poincare´ section fork53.8, d51, ande50.01. ~b! Close-up of
the resonances in~a!. Both 6:1~1! and 8:1~2! resonances are displayed. A
higher-order resonance~3! is also depicted. Although not shown, 4:1 reso-
nances are also present for this choice of parameter values.

TABLE V. Comparison of perturbation theory and numerics for 6:1 reso-
nances (k53.8, d51, e50.01). The action value of the tertiary resonance
is denotedY3 . The other quantities computed are defined in the caption of
Table II.

Quantity Perturbative Numerical

Y3 0.368 57 •
Ys 0.368 51 •
Rs 60.858 50 6(0.859– 0.860)
Yc 0.368 63 •
Rc 60.858 64 60.870

Ymin 0.362 14 •
Ymax 0.375 00 •
Ymin,2 0.366 14 •
Ymax,2 0.386 53 •
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Poincare´ section is shown in Fig. 9.~The 4:1 resonance
bands are not shown in this plot.!

The predictions for centers are not as good as those for
saddles, but there is nevertheless good quantitative agree-
ment between observation and prediction, especially consid-
ering that a leading-order perturbation method has been em-
ployed. Of course, given that higher-order resonances
occupy smaller regions of phase space, the absolute errors
indicate that these predictions are not as good as the same
absolute errors would be when studying lower-order reso-
nances. This caveat notwithstanding, our theoretical analysis
does an excellent job of determining the location of reso-
nances and offers a useful tool for locating high-order reso-
nances~and thus studying band structure in great detail! in
numerical simulations.

VII. CONCLUSIONS

In this paper, we studied in depth the band structure of
BECs in periodic lattices. We approached this problem using
a coherent structure ansatz, in contrast to the Bloch wave
ansatz of earlier studies.37,39,41

Using a technically delicate perturbative approach rely-
ing on elliptic function solutions of the integrable NLS, we
examined the spatial resonance structure~band structure! of
coherent structure solutions of the NLS in considerable de-
tail, providing both an analytical description and numerical
verifications of this theory. We derived conditions for the
onset of 2m8:1 spatial resonances for all integerm8 and
developed analytical expressions for the width of these reso-
nance bands and the locations of saddles and centers therein.
Comparison with numerical simulations of primary, second-
ary, and tertiary resonances illustrate the applicability of our
analytical theory.

Utilizing a simpler perturbative approach that employs
Lindstedt’s method and multiple scale analysis, we also es-
tablished wave number-amplitude relations for coherent
structure solutions of the NLS with a periodic potential. In so
doing, we explored 2:1 spatial resonances and illustrated the
utility of phase space analysis for the study of band structure
as well as the structure of modulated amplitude waves in
BECs.

In sum, our perturbative approach does an excellent job
of determining the location of resonances and analyzing their
structure and offers a useful tool for locating high-order reso-
nances~and thus studying BEC band structure in great detail!
in numerical simulations. An important open direction, to be
addressed in a future publication, is the extent to which the
theory developed here is an effective starting point for stud-
ies of the chaotic dynamics of BECs.
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