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Abstract. The trace formula for the evolution operator associated with nonlinear stochastic flows
with weak additive noise is cast in the path integral formalism. We integrate over the neighbourhood
of a given saddlepoint exactly by means of a smooth conjugacy, a locally analytic nonlinear change
of field variables. The perturbative corrections are transferred to the corresponding Jacobian, which
we expand in terms of the conjugating function, rather than the action used in defining the path
integral. The new perturbative expansion which follows by a recursive evaluation of derivatives
appears more compact than the standard Feynman diagram perturbation theory. The result is a
stochastic analogue of the Gutzwiller trace formula with the ‘h̄’ corrections computed an order
higher than what has so far been attainable in stochastic and quantum mechanical applications.
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1. Introduction

The study of stochastic perturbations of dynamical systems is important in applications to
realistic systems since their description contains uncertainties due to degrees of freedom that
are not included, either because they are not measurable, or because their inclusion would
complicate the analysis. A small stochastic perturbation can smooth the singular distributions
inherent in many nonlinear dynamical systems. This makes it easier to study averages over such
distributions as well defined deterministic limits of smooth stochastic distributions. Besides
being an ubiquitous fact of life—any dynamics in nature is stochastic to some degree, however
weak—stochastic processes offer us a great freedom in picking problems and testing ideas.

The properties of the weakly stochastic system are determined here from the unstable
periodic orbits of the unperturbed (deterministic) system, decorated by the stochastic
corrections. The central object in the theory, the trace of the evolution operator, is a discrete
path integral, similar to those found in field theory and statistical mechanics. The weak noise
perturbation theory, likewise, resembles perturbative field theory, and in the preceding paper
[1] we developed such a perturbation theory for trace formulae for weakly stochastic chaotic
dynamics in the standard field-theoretic language of Feynman diagrams.
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Here we approach the same problem from an altogether different direction; the key idea
of flattening the neighbourhood of a saddlepoint can be traced back to Poincaré [2], and is
perhaps not something that a field theorist would instinctively hark to as a method of computing
perturbative corrections. In the Feynman diagram approach [1] we observed that the sums of
diagrams simplify for saddlepoints corresponding to repeats of shorter periodic orbits, and were
surprised by the compactness of the order σ 2 correction. Here we explain this simplification
in geometric terms that might be applicable to more general field theoretic problems.

2. Stochastic evolution operator

The periodic orbit theory allows us to calculate long time averages in a chaotic system as
expansions in terms of the periodic orbits (cycles) of the system. The simplest example is
provided by the Perron–Frobenius operator

Lρ(x ′) =
∫

dx δ(f (x) − x ′)ρ(x)

for a deterministic map f (x) which maps a density distribution ρ(x) forward in time.
The periodic orbit theory relates the spectrum of this operator and its weighted evolution
operator generalizations to the periodic orbits via trace formulae, dynamical zeta functions
and spectral determinants [3, 4]. For quantum mechanics the periodic orbit theory is exact
on the semiclassical level [5], whereas the quintessentially quantum effects such as creeping,
tunnelling and diffraction have to be included as corrections. In particular, the higher-order h̄

corrections can be computed perturbatively by means of Feynman diagrammatic expansions
[6]. Our purpose here is to develop the parallel theory for stochastic dynamics. We show that
a discrete time one-dimensional discrete Langevin equation [7, 8],

xn+1 = f (xn) + σξn, (1)

with ξn independent normalized random variables, already suffices to reveal the structure of
the perturbative corrections.

We treat a chaotic system with weak external noise by replacing the deterministic evolution
δ-function kernel by Lσ , the Fokker–Planck kernel corresponding to (1), a sharply peaked noise
distribution function

Lσ (x ′, x) = δσ (f (x) − x ′). (2)

In [1] we have treated the problem of computing the spectrum of this operator by standard field-
theoretic Feynman diagram expansions. This time we formulate the perturbative expansion in
terms of smooth conjugacies and recursively evaluated derivatives. The procedure, which is
relatively easy to automate, enables us to go one order further in the perturbation theory, with
much less computational effort than Feynman diagrammatic expansions would require.

In the weak noise limit the kernel is sharply peaked, so it makes sense to expand it in terms
of the Dirac delta function and its derivatives:

δσ (y) =
∞∑

m=0

amσm

m!
δ(m)(y) = δ(y) + a2

σ 2

2
δ(2)(y) + a3

σ 3

6
δ(3)(y) + · · · , (3)

where

δ(k)(y) = ∂k

∂yk
δ(y),

and the coefficients am depend on the choice of the kernel. We have omitted the δ(1)(y) term
in the above because in our applications we shall impose the saddlepoint condition, that is, we
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shift f by a constant to ensure that the noise peak corresponds to y = 0, so δ
′
σ (0) = 0. For

example, if δσ (y) is a Gaussian kernel, it can be expanded as

δσ (y) = 1√
2πσ 2

e−y2/2σ 2 =
∞∑

n=0

σ 2n

n!2n
δ(2n)(y)

= δ(y) +
σ 2

2
δ(2)(y) +

σ 4

8
δ(4)(y) + · · · . (4)

3. Stochastic trace formula

We start our computation of the weak noise corrections to the spectrum of Lσ by calculating the
trace of the nth iterate of the stochastic evolution operator, Lσ , for a one-dimensional analytic
map f (x) with additive noise σ . This trace is an n-dimensional integral on n points along a
discrete periodic chain, so x becomes an n-vector xa with indices a, b, . . . ranging from 0 to
n−1 in a cyclic fashion

tr Ln
σ =

∫ n−1∏
a=0

dxa δσ (ya)

ya(x) = f (xa) − xa+1, xn = x0.

(5)

To the order σ 3 the composition is simple: all compositions but one can be made, resulting
in

tr Ln
σ =

∫
dx δ(f n(x) − x) +

a2

2
σ 2

∫
dx1 . . . dxn

×
n−1∑
a=0

δ(f (xn) − x1) . . . δ(2)(f (xa) − xa+1) . . . δ(f (x1) − x2) + · · ·

= tr Ln +
a2

2
σ 2

n−1∑
a=0

∫
dx δ(2)(f n(xa) − xa)

+
a3

3!
σ 3

n−1∑
a=0

∫
dx δ(3)(f n(xa) − xa) + O(σ 4). (6)

At fourth order we get contributions from δ(4), as well as the two-point contributions

tr Ln
σ = (· · ·) +

a4

4!
σ 4

n−1∑
a=0

∫
dx δ(4)(f n(xa) − xa)

+
a2

2

4
σ 4

∑
a<b

∫
dxa dxb δ(2)(f j (xa) − xb)δ

(2)(f k(xb) − xa), (7)

where j is the number of steps from points a to b on the cycle, and k is the number of steps
from b to a, so that j + k = n.

If the map is smooth, the periodic points of given finite period n are isolated and the noise
broadening σ sufficiently small so that they remain separated, the dominant contributions come
from neighbourhoods of periodic points; in the saddlepoint approximation the trace (5) is given
by

tr Ln
σ −→

∑
xc∈Fixf n

eWc . (8)
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As traces are cyclic, eWc is the same for all periodic points in a given cycle, independent of
the choice of the starting point xc. Hence it is customary to rewrite this sum in terms of prime
cycles and their repeats,

tr Ln
σ |saddles =

∑
p

np

∞∑
r=1

eWpr , (9)

where pr labels the rth repeat of prime cycle p.

4. Trace evaluated at a fixed point to all orders

We now derive the perturbative expansion for a fixed point (n = 1) to all orders in σ . A fixed
point and its repeats are of particular interest having the same interaction at every site, as does
the usual field theory. What we do here is to formulate (and partially solve, in the sense of
determining a few orders of the exact perturbation theory expansion) the field theory on finite
periodic one-dimensional discrete chains.

Defining y = f (x) − x, we can write the fixed point trace as

tr Lσ =
∫

dx δσ (f (x) − x) =
∫

dy
1

|y ′(x)|δσ (y). (10)

Expanding the kernel δσ (y) as in (3) and integrating by parts, we see that all is well if we know
the d/dx derivatives of 1/y ′(x). Replacing

d

dy
→ ∂x

∂y

d

dx
= 1

y ′(x)

d

dx

we obtain in the saddlepoint approximation contributions to each fixed point of f evaluated
recursively as derivatives of 1/y ′(x)

∫
dx δ(k)(y) =

∑
x:y(x)=0

(−1)k
dk

dyk

1

|y ′(x)| =
∑

x:y(x)=0

(
− 1

y ′(x)

d

dx

)k 1

|y ′(x)| .

The d/dy derivatives of 1/y ′ are related to the d/dx derivatives of the map f by

1

y ′ = 1

f ′(x) − 1
d

dy

1

y ′ = − f ′′

(y ′)3

d2

dy2

1

y ′ = − f ′′′

(y ′)4
+ 3

(f ′′)2

(y ′)5

d3

dy3

1

y ′ = − f ′′′′

(y ′)5
+

10f ′′f ′′′

(y ′)6
− 15(f ′′)3

(y ′)7
.

(11)

Here, and also later, we have relegated the fourth and fifth derivatives (A.1) to the appendix.
For example, for the second derivative of the delta function we have∫

dx δ(2)(y) =
∑

x:y(x)=0

1

|y ′|
(

3
(y ′′)2

(y ′)4
− y ′′′

(y ′)3

)
, (12)

where the sum is over all fixed points f (x) = x. In general, for n � 1

(−1)n
dn

dyn

1

|y ′| = 1

|y ′|
∑
{k�}

(2n − k1)!

(−y ′)2n−k1

∏
��2

f (�)k�

(�!)k�k�!
(13)
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where f (�) is the �th derivative and the sum is over all sets {k�} satisfying � � 1, k� � 0,∑
k� = n, and

∑
�k� = 2n, that is, all partitions of 2n into n terms. The product contains

only the finitely many nonzero k� for � � 2. This formula may be proved in a staightforward
manner by induction. It may be simplified substantially by defining a generating function

F(z, x) =
∞∑

n=1

zn dn−1

dyn−1

1

y ′(x)

∣∣∣∣
x:y(x)=0

= exp

(
− z−1

∞∑
j=2

f (n)zn∂n
y ′

n!

)
z

y ′ , (14)

where ∂y ′ = ∂/∂y ′ acts only on y ′. The sum in the exponential is formally a Taylor series
expansion of

F(z, x) = exp
{−z−1[f (x − ∂u) + 	∂u − x]

}
1
u
, (15)

with u = y ′/z, f ′(x) = 	 and f (x) = x.

5. Smooth conjugacies

The next step injects into field theory a standard method in the analysis of fixed points and
construction of normal forms for bifurcations, see [9–18]. The idea is to perform a smooth
nonlinear change of coordinates that flattens out the vicinity of a fixed point and makes the map
linear in an open neighbourhood. This can be implemented only for an isolated nondegenerate
fixed point (otherwise higher terms will contribute to the normal form expansion around the
point), and only in a finite neighbourhood of a point, as the conjugating function has, in general,
a finite radius of convergence. Later we extend the method to periodic orbits, which are fixed
points of the nth iterated map.

5.1. Fixed points

Let the fixed point of f (x) be x = 0 and the stability of that point be 	 = f ′(0). If |	| �= 1,
there exists a smooth conjugation h(x) satisfying h(0) = 0 such that:

f (x) = h(	h−1(x)). (16)

In several dimensions, 	 is replaced by the Jacobian matrix, and one has to check that its
eigenvalues are nonresonant, that is, there is no integer linear relation between their logarithms.
If h(x) is a conjugation, so is any scaling h(αx) of the function for a real number α. Hence
the value of h′(0) is not determined by the functional equation; we shall set h′(0) = 1.

To compute the conjugation h we use the functional equation h(	x) = f (h(x)) and the
expansions

f (x) = 	x + x2f2 + x3f3 + · · ·
h(x) = x + x2h2 + x3h3 + · · · . (17)

In the present context absorbing the factorials into the definition of expansion coefficients
turns out to be more convenient than the standard Taylor expansion. Equating recursively
coefficients in expansions

h(	u) − 	h(u) =
∞∑

n=2

fm(h(u))m

∞∑
n=2

(	n − 	)hnu
n =

∞∑
m=2

fmum

(
1 +

∞∑
k=2

hku
k−1

)m (18)
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yields

h2 = f2

	(	 − 1)
, h3 = 2f 2

2 + 	(	 − 1)f3

	2(	 − 1)(	2 − 1)
, . . . . (19)

Noting that the left-hand side of (18) generates denominators in (19) that are the same as those
appearing in the Euler formula
∞∏

k=0

(1 + tuk) = 1 +
t

1 − u
+

t2u

(1 − u)(1 − u2)
+

t3u3

(1 − u)(1 − u2)(1 − u3)
. . .

=
∞∑

k=0

tk
u

k(k−1)

2

(1 − u) . . . (1 − uk)
, |u| < 1,

we find it convenient to factorize hn as

hn = bn

Dn

, Dn =
(

1 − 1

	

) (
1 − 1

	2

)
. . .

(
1 − 1

	n−1

)
	

(n+2)(n−1)

2 .

Computer algebra then yields

b2 = f2

b3 = 2f 2
2 + 	(	 − 1)f3

b4 = (5 + 	)f 3
2 − 	(5 − 2	 − 3	2)f2f3 + 	2(	 − 1)(	2 − 1)f4.

(20)

The expressions (A.2) for b5 and b6 are given in the appendix.

5.2. Longer cycles

Now that we have constructed the conjugation function for a fixed point, we turn to the
problem of constructing it for periodic orbits. Each point around the cycle has a differently
distorted neighbourhood, with differing second and higher derivatives, so we need to compute
a conjugation function ha at each cycle point xa . We expand the map f around each cycle
point along the cycle,

ya(φ) = fa(φ) − xa+1 = φfa,1 + φ2fa,2 + · · ·
where xa is a point on the cycle, fa(φ) = f (xa + φ) is centred on the deterministic orbit, and
the index k in fa,k refers to the kth order in the (modified) Taylor expansion (17).

For a periodic orbit the conjugation formula (16) generalizes to

fa(φ) = ha+1(f
′
a(0)h−1

a (φ))

at each point. The conjugation functions ha are obtained in the same way as before, by equating
coefficients of Taylor series, and assuming that the cycle stability is not marginal, |	| �= 1.
The explicit expressions for ha in terms of f are obtained by iterating around the whole cycle,

f n(xa + φ) = ha(	h−1
a (φ)) + xa, (21)

so each ha function is given by the derivatives given in the previous section acting on f n,
evaluated at each cycle point a (recursive formulae for evaluation of such derivatives are given
in appendix A of [1]). Again we have the freedom to set h′

a(0) = 1 for all a.
We shall also find it convenient to define partial stabilities along cycle laps

f j (xa + φ) = xb + hb(	jh
−1
a (φ))

f k(xb + φ) = xa + ha(	kh
−1
b (φ))
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where

	j =
b−1∏
c=a

f ′(xc), 	k =
a−1∏
c=b

f ′(xc)

and 	j	k = 	.
At this point we note that while in the deterministic case the cycle weight is given by the

cycle stability, a quantity invariant under all smooth coordinate transfomations, the higher-
order corrections are not invariant. The noise is defined with respect to a particular coordinate
system, and it has no invariant meaning.

6. Trace formula for repeats of periodic orbits

What is gained by rewriting the perturbation expansion for f in terms of the equally messy
perturbation expansion for the conjugacy function h? Once the neighbourhood of a fixed
point is linearized, the repeats of it are trivialized; from the conjugation formula (16) one can
compute the derivatives of a function composed with itself r times:

f r(x) = h(	rh−1(x)).

One can already discern the form of the expansion for arbitrary repeats; the answer will depend
on the conjugacy function h(x) computed for a single repeat, and all the dependence on the
repeat number will be carried by factors polynomial in 	r , a result that emerged as a surprise
in the Feynman diagrammatic approach [1].

6.1. Repeats of fixed points

The above observation enables us to move from a field theory constructed at a single point to
a field theory which is translationally invariant on a periodic chain of arbitrary length r . The
first and the second derivatives are

d

dx
f r(x) = h′(	rh−1(x))	r 1

h′(h−1(x))

d2

dx2
f r(x) = 	2rh′′(	rh−1(x))

h′(h−1(x))2
− 	rh′′(h−1(x))h′(	rh−1(x))

h′(h−1(x))3
.

(22)

The third derivative is too long to write down here. Evaluation at the fixed point x = 0 yields

d

dx
f r(0) = 	r,

d2

dx2
f r(0) = 	r(	r − 1)h(2)

d3

dx3
f r(0) = 	r(	2r − 1)h(3) − 3	r(	r − 1)h(2)2

. . . .

(23)

(For brevity we shall often replace h(r)(0) → h(r) = r!hr , f (r)(0) → f (r) = r!fr throughout,
where the superscript (r) labels the rth coefficient in the standard Taylor expansion.) In general,
the kth derivative of a function composed with itself r times is a polynomial in 	r of degree k

dk

dxk
f r(0) =

k∑
j=1

cj	
jr .

The coefficients cj are in turn expressed in terms of the first k derivatives h(j) of the conjugation
function.
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Now we can re-evaluate the fixed-point derivatives of section 4 for the case of rth repeat
of a fixed point

y(x) = f npr (x) − x (24)

in terms of the conjugating function h by substituting (23) into (11):

1

3!

∂2

∂y2

1

y ′(x)

∣∣∣∣
x=0

= 	r(1 + 	r)

(	r − 1)3 (2h2
2 − h3) (25)

1

4!

∂3

∂y3

1

y ′(x)

∣∣∣∣
x=0

= −5	r (	r + 1)2

(	r − 1)4
h3

2 + 	r 5	2r + 8	r + 5

(	r − 1)4
h2h3 − 	r 	2r + 	r + 1

(	r − 1)4
h4.

(26)

The fourth- and fifth-order derivatives (A.3) are relegated to the appendix.

6.2. Repeats of periodic orbits

The above fixed-point formulae carry over to the case of general periodic orbits, if f is identified
with the nth iterated map at a particular point along the cycle a from which we define ha as
in (21). The second derivative required for the σ 2 correction follows immediately, with (25)
evaluated for each cycle point in the prime cycle trace (6). It is easily checked that this second
derivative (25) has exactly the same form as that we obtained in a much more involved manner
in [1]. The somewhat more complicated sum of Feynman diagrams is here replaced by (25),
the conjugation function determined from the iterated map, with h carrying all dependence on
the higher derivatives of the original map.

The factorization is not quite as simple for higher orders in the trace formula. For a general
non-Gaussian case at order σ 3 we have three terms from (26), each of which may be resummed
separately. The calculation is entirely analogous to the second-order calculation in [1]. Powers
of 	r are moved around in order to express (26) in terms of |	|−r < 1 and generate convergent
geometric series; each of the three terms is expanded using identities such as

3
(1 + x)2

(1 − x)4
=

∞∑
k=0

k(1 + 2k2)xk, (27)

so that repeats r can be resummed. (The remaining identities (A.6)–(A.8) used here
are relegated to the appendix.) This yields the saddlepoint approximation to the spectral
determinant in product form up to order σ 3

det(1 − zLσ ) =
∏
p

∞∏
k=0

(1 − tp,k) (28)

tp,k = znp

|	p|
1

	k
p

exp

(
1

2
a2σ

2w
(2)
p,k +

1

3!
a3σ

3w
(3)
p,k + O(σ 4)

)

w
(2)
p,k = (k + 1)2

∑
a

(2h(2)2

a − h(3)
a )

w
(3)
p,k = −k(1 + 2k2)

3

∑
a

h(2)3

a + (1 + k)(5 + 6k + 3k2)
∑

a

h(2)
a h(3)

a

− (1 + k)(2 + 2k + k2)

2

∑
a

h(4)
a .

The meaning of this factorization is that in the saddlepoint approximation the spectral
determinant is composed of local spectra evaluated for each prime cycle separately, with
the index k labelling the kth local eigenvalue.

From σ 4 onward further terms come into play, as we now describe.
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7. Two-point integrals

In general, a saddlepoint at each cycle point may be expanded in second and higher derivatives
(3), with the trace to nth order receiving a single δ(n) integral contribution as in (6). At fourth
order we need to also include the two-point integral contribution (7). Setting yj = f j (xa)−xb,
yk = f k(xb) − xa , and integrating by parts, we obtain for each pair of points along the cycle

∫
dyj dyk

|f j ′
(xa)f k′

(xb) − 1|δ
(2)(yj )δ

(2)(yk) = ∂2

∂y2
j

∂2

∂y2
k

1

|f j ′
(xa)f k′

(xb) − 1| .

This expression looks innocent enough, but its evaluation requires attention to some subtle
points, and more algebra than a human would be willing to handle. Performing the required
derivatives taxes the ability of general purpose symbolic algebra packages, so the results in
this section are obtained with a program written in C.

Consider evaluating partial derivatives of a function q with respect to, say, yj keeping yk

constant in terms of xa and xb derivatives. The solution is to consider an arbitrary infinitesimal
transformation which respects the dyk = 0 constraint:

dq = ∂q

∂xa

dxa +
∂q

∂xb

dxb

dyj = ∂yj

∂xa

dxa +
∂yj

∂xb

dxb

dyk = ∂yk

∂xa

dxa +
∂yk

∂xb

dxb = 0.

These equations can then be solved for the ratio of dq and dyj ,

∂q

∂yj

=
∂q

∂xa

∂yk

∂xb
− ∂q

∂xb

∂yk

∂xa

∂yj

∂xa

∂yk

∂xb
− ∂yj

∂xb

∂yk

∂xa

and similarly for ∂q/∂yk .
Sixth-order corrections require a three-point integral, which we leave as an exercise for

the reader.
If for some reason the noise kernel contains a linear a1σ term in the expansion (3), for

example if the evolution operator is weighted, and the shift that this causes to the saddlepoint
is not taken into account, the relevant second-order correction includes the term

∂

∂yj

∂

∂yk

1

|(∂f j (xa)/∂xa)(∂f k(xb)/∂xb) − 1|
= 	

(	 − 1)3

[
(	 + 1)h(2)

a h
(2)
b + 2	kh

(2)2

a + 2	jh
(2)2

b − 	kh
(3)
a − 	jh

(3)
b

]
.

This we have written down just to illustrate the form of a two-point term. In our application
the saddlepoint condition sets a1 = 0, and what is really required is the two-point fourth-order
correction (A.4) and (in case of non-Gaussian noise) the two-point fifth-order correction (A.5).
The corresponding expressions are too cumbersome for the main text, so we relegate them to
the appendix.

There are some convenient cross-checks on the algebra. The results reduce to those of
(26) and (A.3) for single repeat r = 1, by setting ha = hb = h, 	j = 	, 	k = 1, and
remembering that in order to retain integer coefficients, we have here replaced power series
coefficients hr by the Taylor expansion derivatives h(r) = r!hr . This reduction to the one-point
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case also means that for the Gaussian case (a2 = 1, a4 = 3), expression (7) can be written as
an unrestricted double sum,

σ 4

8

∑
x∈Fix f n

∑
ab

∂2

∂y2
j

∂2

∂y2
k

1

|(∂f j (xa)/∂xa)(∂f k(xb)/∂xb) − 1|
where it is understood that j = n and k = 0 when a = b.

Now the stage is set to return to the investigations of [1], where the σ 2 term was evaluated
analytically, while the σ 4 term was only estimated from the numerically computed leading
eigenvalue.

8. Numerical tests

Here we continue the calculations of section 5 of [1], where more details and discussion
may be found. We test our perturbative expansion on the repeller of the one-dimensional
map f (x) = 20[( 1

2 )4 − ( 1
2 − x)4]. This repeller is a nice example of an ‘axiom A’

expanding system of bounded nonlinearity and complete binary symbolic dynamics, for which
the deterministic evolution operator eigenvalues converge super-exponentially with the cycle
length. We compute the leading eigenvalue of the evolution operator (the repeller escape rate)
in the presence of Gaussian noise, using two complementary approaches. The perturbative
result in terms of periodic orbits and the weak noise corrections is compared to a numerical
eigenvalue obtained in [1] by approximating the dynamics by a finite matrix. In the preceding
paper we compared the numerical eigenvalue with the σ 2 result and estimated the coefficient of
σ 4 to be approximately 38. Here we compute the order σ 4 coefficient to 14 digits accuracy, and
estimate the σ 6 term. In the Feynman diagram language, the σ 4 contribution is a ‘two-loop’
calculation, albeit one of a relatively simple kind where space integrals are replaced by discrete
sums over finite periodic chains. The conjugation functions (21) at each point around the cycle
are obtained by a recursive evaluation of (18), and then substituted into (25) for the second
order and (A.5) for the fourth order. The expansion for the spectral determinant is obtained by
differentiating ln det(1 − zLσ ) = tr ln(1 − zLσ ) with respect to z, multiplying through by the
determinant, and equating coefficients order-by-order in z and σ , as in [1]. That is, we define
coefficients

tr Ln
σ =

∞∑
j=0

Cn,jσ
j , det(1 − zLσ ) = 1 −

∞∑
n=1

∞∑
j=0

Qn,j z
nσ j ,

and obtain the cumulants Qn,j recursively as

Qn,0 = 1

n

[
Cn,0 −

n−1∑
k=1

Qk,0Cn−k,0

]

Qn,2 = 1

n

[
Cn,2 −

n−1∑
k=1

(Qk,2Cn−k,0 + Qk,0Cn−k,2)

]

Qn,4 = 1

n

[
Cn,4 −

n−1∑
k=1

(Qk,4Cn−k,0 + Qk,2Cn−k,2 + Qk,0Cn−k,4)

]
,

where it is understood that the sums do not contribute when n = 1.
The noiseless, zeroth-order eigenvalue equation det(1 − zL0) = 0 is solved by Newton’s

method to find the leading eigenvalue ν0 = z−1 at σ = 0, and the higher-order equations give
the noise corrections ν(σ ) = ν0 + ν2σ

2 + ν4σ
4 + O(σ 6) in terms of ν0 and the expansion of the

determinant. Expanding the spectral determinant order-by-order in z and σ we find

det(1 − zLσ ) = F − F10z − F02σ
2 − F20z

2 − F12zσ
2 − F04σ

4 − · · · (29)
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Table 1. Significant digits of the leading deterministic eigenvalue and its σ 2 and σ 4 coefficients,
calculated from the spectral determinant as a function of the cycle truncation length n. Note the
super-exponential convergence of all coefficients (the n = 6 result is here limited by the machine
precision).

n ν0 ν2 ν4

1 0.308 0.42 2.2
2 0.371 40 1.422 32.97
3 0.371 109 6 1.435 55 36.326
4 0.371 110 995 255 1.435 811 262 36.358 377 7
5 0.371 110 995 234 863 1.435 811 248 197 37 36.358 371 233 74
6 0.371 110 995 234 863 1.435 811 248 197 49 36.358 371 233 836

where the expansion coefficients

F = 1 −
n∑

m=1

Qm,0

νm
0

, F10 =
n∑

m=1

mQm,0

νm−1
0

, F02 =
n∑

m=1

Qm,2

νm
0

F20 =
n∑

m=2

m(m − 1)Qm,0

2νm−2
0

, F12 =
n∑

m=1

mQm,2

2νm−1
0

, F04 =
n∑

m=1

Qm,4

νm
0

are obtained from derivatives of (8). Finally, we expand ν = z−1 in powers of σ 2 and equate
coefficients of powers of σ to obtain

ν2 = F02ν
2
0

F10
, ν4 = F20F

2
02 − 2F12F10F02 + F04F

2
10 + F10F

2
02ν0

F 3
10

ν2
0 .

The perturbative corrections to the leading eigenvalue (escape rate) of the weak-noise
evolution operator are given in table 1, showing super-exponential convergence with the
truncation cycle length n. The super-exponential convergence has been proven for the
deterministic, ν0 part of the eigenvalue [19, 20], but has not been studied for noisy kernels. It
is seen that a good first approximation is obtained already at n = 2, using only three prime
cycles, and n = 6 (23 prime cycles in all) is in this example sufficient to exhaust the limits of
double precision arithmetic. The exact value of ν4 = 36.358 . . . is encouragingly close to our
previous numerical estimate [1] of 38. As in the preceding paper [1], we subtract the known
terms in the expansion from the numerically evaluated eigenvalue, and obtain a good fit to the
next term, approximately 2700σ 6, see figure 1.

9. Summary and outlook

We have formulated a perturbation theory of stochastic trace formulae based on smooth
nonlinear field transformations around infinitely many chaotic saddlepoints (unstable periodic
orbits). In contrast to previous perturbative expansions around vacua and instanton solutions,
the location and local properties of each saddlepoint must be found numerically. In addition,
every interaction term depends on the position, hence also the classical periodic solution at
which it is evaluated.

Even though in the model calculation we have chosen a Gaussian one-step noise, the
accumulated noise along a trajectory is distorted by the nonlinear flow, and orbit-by-orbit the
noise corrections are not Gaussian. Thus Gaussian noise has no privileged role in nonlinear
dynamical systems.

The key idea is this: instead of separating the action into quadratic and ‘interaction’
parts, we first perform a nonlinear field transformation (‘smooth conjugation’) which turns
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Figure 1. Numerically computed eigenvalue minus known terms, that is, ν(σ )−ν0 −σ 2ν2 −σ 4ν4
(dots), together with estimated next term 2700σ 6 (solid line). Deviations occur at small σ due to
discretization errors in the numerical eigenvalue of order 10−7, and at large σ due to further omitted
terms (σ 8 . . .).

the saddlepoint into an exact quadratic form. The price one pays for this is the Jacobian of
the nonlinear field transformation—but it turns out that the perturbation expansion of this
Jacobian in terms of the conjugating function is order-by-order considerably more compact
than the Feynman-diagrammatic expansion.

We have resummed repeats of prime cycles to third order in the noise strength, carried
out the numerical tests to fourth order, given the trace formula for general periodic orbits
to fifth order, and for a fixed point to all orders. Higher orders for general periodic orbits
may be obtained numerically using a local matrix representation of the evolution operator
[21]. The rapid rate of increase of the numerical coefficients confirms the expectation that the
series is asymptotic, and is to be used with caution unless a summation beyond all orders is
implemented [22].

The smooth conjugacy method of perturbation expansions can be extended to the case
of higher dimensions and continuous time dynamics (stochastic flows), but the main interest
comes from the observation that we have a new method of evaluating perturbative corrections
to saddlepoints of path integrals. In quantum mechanics and field theory the perturbative
corrections do matter, and the method might have applications there, in particular to the h̄

expansion of semiclassical periodic orbit theory. If efficient methods are found for computing
numerical periodic solutions of spatially extended systems, the method might apply to the field
theory as well.
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Appendix. Some algebra

We collect here some of the formulae used in our calculations, but that are too long for the
patience of a casual reader.
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Evaluation of the trace of a fixed point (11) continued to fourth and fifth order:

d4

dy4

1

y ′ = − f (5)

(y ′)6
+

15f ′′f ′′′′

(y ′)7
+

10(f ′′′)2

(y ′)7
− 105(f ′′)2f ′′′

(y ′)8
+

105(f ′′)4

(y ′)9

d5

dy5

1

y ′ = − f (6)

(y ′)7
+

21f ′′f (5)

(y ′)8
+

35f ′′′f ′′′′

(y ′)8
− 210(f ′′)2f ′′′′

(y ′)9
− 280f ′′(f ′′′)2

(y ′)9

+
1260(f ′′)3f ′′′

(y ′)10
− 945(f ′′)5

(y ′)11
.

(A.1)

Perturbative formulae for fifth- and sixth-order conjugacy coefficients, continuation of
(20):

b5 = 2(7 + 3	 + 2	2)f 4
2 + 	(−21 + 	 + 6	2 + 11	3 + 3	4)f 2

2 f3

+2	2(	 − 1)2(3 + 5	 + 4	2 + 2	3)f2f4 + 3	2(	 − 1)(	3 − 1)f 2
3

+	3(	 − 1)(	2 − 1)(	3 − 1)f5

b6 = 2(21 + 14	 + 14	2 + 8	3 + 3	4)f 5
2

+	(−84 − 21	 − 6	2 + 25	3 + 44	4 + 27	5 + 14	6 + 	7)f 3
2 f3

+2	2(14 + 	 − 7	2 − 9	3 − 11	4 + 	5 + 	6 + 7	7 + 3	8)f 2
2 f4

+(−1 + 	)2	2f2
[
(28 + 43	 + 50	2 + 43	3 + 22	4 + 6	5)f 2

3

+	(−7 − 12	 − 10	2 − 3	3 + 7	4 + 10	5 + 10	6 + 5	7)f5
]

+(−1 + 	)3	3(1 + 	 + 	2 + 	3)

×[
(7 + 7	 + 4	2)f3f4 + 	(−1 − 	 + 	3 + 	4)f6

]
.

(A.2)

Continuation of the derivative evaluation (26)—the fourth- and fifth-order derivatives:

1

5!

∂4

∂y4

1

y ′(x)

∣∣∣∣
x=0

= 	r(1 + 	r)

(	r − 1)5

{
14(1 + 	r)

2
h4

2 − 3(7 + 10	r + 7	2r )h2
2h3

+3(1 + 	r + 	2r )h2
3 + 2(3 + 2	r + 3	2r )h2h4 − (1 + 	2r )h5

}
1

6!

∂5

∂y5

1

y ′(x)

∣∣∣∣
x=0

= − 	r

(	r − 1)6

{
42(1 + 	r)

4
h5

2 − 28(1 + 	r)
2
(3 + 4	r + 3	2r )h3

2h3

+14(1 + 	r)
2
(2 + 	r + 2	2r )h2

2h4

−(7 + 14	r + 18	2r + 14	3r + 7	4r )h3h4

+7(4 + 11	r + 15	2r + 11	3r + 4	4r )h2h
2
3

−(7 + 12	r + 12	2r + 12	3r + 7	4r )h2h5 + (1 + 	r + 	2r + 	3r + 	4r )h6
}
.

(A.3)

The two-point fourth-order correction (continuation of calculations of section 7):

∂2

∂y2
j

∂2

∂y2
k

1

|(∂f j (xa)/∂xa)(∂f k(xb)/∂xb) − 1|
∣∣∣∣
cycle

= 	

(	 − 1)5

{
(1 + 	)

[
	2

k(60h(2)4

a − 72h(2)2

a h(3)
a + 12h(2)

a h(4)
a + 9h(3)2

a − h(5)
a )

+	2
j (60h

(2)4

b − 72h
(2)2

b h
(3)
b + 12h

(2)
b h

(4)
b + 9h

(3)2

b − h
(5)
b )

]
+(3 + 10	 + 3	2)

[
	kh

(2)
b (12h(2)3

a − 9h(2)
a h(3)

a + h(4)
a )

+	jh
(2)
a (12h

(2)3

b − 9h
(2)
b h

(3)
b + h

(4)
b )

]
+(1 + 	)(1 + 10	 + 	2)(3h(2)2

a − h(3)
a )(3h

(2)2

b − h
(3)
b )

}
, (A.4)

and the two-point fifth-order correction is:

∂3

∂y3
j

∂2

∂y2
k

1

|(∂f j (xa)/∂xa)(∂f k(xb)/∂xb) − 1|
∣∣∣∣
cycle
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= 	

(	 − 1)6

{
(1 + 	)	3

k(−360h(2)5

a + 600h(2)3

a h(3)
a − 180h(2)

a h(3)2

a

−120h(2)2

a h(4)
a + 30h(3)

a h(4)
a + 15h(2)

a h(5)
a − h(6)

a )

+6(1 + 3	 + 	2)	2
kh

(2)
b (−60h(2)4

a + 72h(2)2

a h(3)
a − 9h(3)2

a − 12h(2)
a h(4)

a + h(5)
a )

+
[
15(1 + 7	 + 7	2 + 	3)h

(2)2

b − 2(2 + 13	 + 13	2 + 2	3)h
(3)
b

]
×	k(−12h(2)3

a + 9h(2)
a h(3)

a − h(4)
a )

+
[
15(1 + 18	 + 42	2 + 18	3 + 	4)h

(2)3

b

−2(5 + 82	 + 186	2 + 82	3 + 5	4)h
(2)
b h

(3)
b

+(1 + 14	 + 30	2 + 14	3 + 	4)h
(4)
b

]
(−3h(2)2

a + h(3)
a )

+3
[ − 30(3 + 17	 + 17	2 + 3	3)h

(2)4

b

+5(19 + 101	 + 101	2 + 19	3)h
(2)2

b h
(3)
b

−10(1 + 5	 + 5	2 + 	3)h
(3)2

b − 2(7 + 33	 + 33	2 + 7	3)h
(2)
b h

(4)
b

+(1 + 4	 + 4	2 + 	3)h
(5)
b

]
	jh

(2)
a

+
[ − 630(1 + 2	 + 	2)h

(2)5

b + 30(31 + 58	 + 31	2)h
(2)3

b h
(3)
b

−60(4 + 7	 + 4	2)h
(2)
b h

(3)2

b − 15(11 + 18	 + 11	2)h
(2)2

b h
(4)
b

+2(17 + 26	 + 17	2)h
(3)
b h

(4)
b + 6(3 + 4	 + 3	2)h

(2)
b h

(5)
b

−(1 + 	 + 	2)h
(6)
b

]
	2

j

}
. (A.5)

The repetition number dependent prefactors in (26) are turned into power series in 	rk using
identities

1 + x

(1 − x)3
=

∞∑
k=0

(k + 1)2xk (A.6)

5 + 8x + 5x2

(1 − x)4 =
∑
k�0

(1 + k)(5 + 6k + 3k2)xk (A.7)

1 + x + x2

(1 − x)4
= 1

2

∑
k�0

(1 + k)(2 + 2k + k2)xk. (A.8)
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