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Abstract. The global constraints on chaotic dynamics induced by the analyticity of smooth
flows are used to dispense with individual periodic orbits and derive infinite families of exact
sum rules for several simple dynamical systems. The associated Fredholm determinants are
of particularly simple polynomial form. The theory developed suggests an alternative to the
conventional periodic orbit theory approach for determining eigenspectra of transfer operators.
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1. Introduction

Low-dimensional chaotic classical and quantum dynamical systems [1, 2] can be analysed
in terms of unstable periodic orbits. The periodic orbit theory of such systems has been
successfully applied to a wide range of physical problems [3–5]. However, since the phase
space is tessellated into linearized neighbourhoods of periodic points, analyticity properties
of smooth flows are not fully utilized in the conventional periodic orbit theory.

In this paper we explore global constraints on chaotic dynamics induced by the
analyticity of the flow. We propose dispensing with the periodicorbits altogether, and
extract spectra of transfer operators from dynamics-induced relations among periodic orbit
sums.

For example, evaluating the trace formulae [6] for the Hénon map(x, y)→ (1− ax2+
y,−x) we find exact periodic orbit sum rules (see section 6 below)∑

i∈Fix(f n)

1

3i(1− 1/3i)2
= 0

∑
i∈Fix(f n)

3i + 1/3i

3i(1− 1/3i)2
= 2n,

where3i is the expanding eigenvalue of theith periodic point of the map, real or complex.
Such relations are remarkable in so far as they require a high degree of correlation between
the stabilities of exponentially large numbers of periodic orbits distributed over the entire
phase space. As a matter of fact, for at least two of the dynamical systems studied here,
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the quadratic polynomial map and the Farey map, the information carried by the periodic
points is so redundant that the periodic points must satisfyinfinitely manyindependent sum
rules.

The key idea behind the method by which the sum rules are derived is to replace a
weighted sum over periodic orbits by an integral representation; the dynamics then induces
recursion relations between these for cycles of different topological length. In posing the
problem in this way we draw inspiration from the work of Eremenko, Levin, Sodin, and
Yuditskii [7–9] and Hatjispiros and Vivaldi [10] on the polynomial mappings, and Contucci
and Knauf [11] for the Farey map. For these models the recursions relate finite numbers
of terms, and yield expressions (27), (61) for the corresponding Fredholm determinants in
terms offinite polynomials of the form

det(1− zL) = det(1− zL)
whereL is a weighted transfer operator andL is the corresponding finite [`×`]-dimensional
matrix that relates̀ consecutive sums.

While this finiteness is a very special property of the particularly simple models
considered and cannot hold for a generic dynamical flow, the method nevertheless suggests
that one might be able to dispense with the periodic orbit theory altogether, and manipulate
instead the traces of dynamical transfer operators by means of such integral representations.
This tempting possibility motivates us to explore the applicability of the method in some
depth, the main results being the sum rules and closed-form expressions for Fredholm
determinants of weighted transfer operators.

We start with polynomial mappings in section 3, and then specialize to quadratic
mappings (section 4) for which an infinity of sum rules is easily derived. Special examples
are worked out in the appendices. In section 5 we generalize a result of [8] about the
spectrum of a non-polynomial transfer operator for quadratic mappings. In section 6 we
show that our method can be extended to higher dimensions and we apply it to the Hénon
map and the kinematic dynamo model. Finally, in order to show that the contour integrals
are not the essence of the method, in section 7 we derive the same kind of explicit polynomial
Fredholm determinants for the circle-map (or spin-chain) thermodynamics. We discuss the
applicability of the method to continuous flows in section 8.1: the sum rules offer a new
invariant characterization of the errors due to approximating a flow by a polynomial Poincaré
section return mapping. The sum rules of section 4 use a ‘signed’ rather than the ‘natural’
measure; in section 8.3 we outline how they might be applicable to the period-doubling
presentation function, for which the ‘signed’ measure yields a formula for the Feigenbaumδ.
We finish with a critical summary and relegate some details to the appendices.

2. Transfer operators and Fredholm determinants

Let us start with a brief summary of the dynamical systems concepts needed in the following.
For motivation and background we refer the reader to the literature, for example [12, 13].

A dynamical flow can be investigated via its Poincaré return mapf , with the evolution
of a density functionφ(x) given by

(Lφ)(y) =
∫

dx δ(x − f −1(y))φ(x) =
∑

x:f (x)=y
φ(x) (1)

(for the time being we assume thatf is a one-dimensional map). A variety of applications
[14, 12], some of which we shall turn to below, requires the use of generalized transfer
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operators weighted by integer powers of the stability of the orbit

L(k)(y, x) = f ′(x)k−1δ(x − f −1(y)). (2)

Let f n(x) be thenth iterate of the map, and let

3i :=
n−1∏
j=0

f ′(f j (xi)) (3)

be the linear stability evaluated at the periodic pointxi , given by the product over then
periodic points belonging to a givenn-cycle. We shall denote thenth iterate raised tomth
power byf n(x)m, and the derivative of thenth iterate byf n′(x) = d

dx f
n(x). Traces of the

powers of this transfer operator are given by

trLn(k) =
∑

xi∈Fix(f n)

3k−1
i

|1− 1/3i | , (4)

where we have assumed that all cycles have stability eigenvalues3i 6= 1 strictly bounded
away from unity. A cycle is called attracting, neutral or repelling if|3i | < 1, |3i | = 1,
|3i | > 1, respectively. If the map is repelling and all|3i | > 1, we can drop the absolute
value brackets in (4) anddefinethe trace by

Tn(k) :=
∑

xi∈Fix(f n)

3k
i

3i − 1
. (5)

A corresponding ‘determinant’ or ‘zeta function’ is related to the traces by

F(z, k) = det(1− zL(k)) = exp

(
−
∞∑
n=1

zn

n
Tn(k)

)
=
∞∑
n=0

an(k)z
n, (6)

and the spectrum of the transfer operator is given by the zeros ofF(z, k). In applications
[14, 12] determinants are often preferable to the trace sums. For want of a better term we
shall refer to this function as the ‘Fredholm determinant’ of the transfer operator (2) even
though, strictly speaking, the term should be used only for determinants of operators proven
to be trace class.

The main difference between the generalized transfer operators defined by (2), and the
operators that usually arise in the dynamical systems theory is that instead of the ‘natural
measure’ 1/|3p| we deal here with a ‘signed’ and possibly complex cycle weight 1/3p. In
particular,L(0) is a ‘signed’ version of the usual Frobenius–Perron operator,

(L(0)φ)(y) =
∑

x:f (x)=y

φ(x)

f ′(x)
.

There are several important applications of transfer operator formalism based on such
‘signed’ measures, in particular the periodic orbit formulae for the spectrum of the period-
doubling operator (section 8.2).

Hereafter wedefinethe trace of a transfer operatorL by the above trace sum (5) over
all cycles, real and complex. This choice of the cycle weight is motivated by the contour
integral sums to which we turn now.
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Figure 1. Shrinking the contourC to a sum of contours around individual zeros leads to a sum
over fixed pointsxi of the mapf . For a sufficiently large contourC, the iterateC → f (C)

wraps twice around the periodic point set, leading to the key formula (24). In this figure the
map isf (x) = x2 − c, c = 0.5− 0.7i, and the eight periodic points plotted are the zeros of
f 3(x)− x = 0.

3. Contour integral evaluation of periodic orbits sums

A sum that runs over zeros of a function can be cast as a contour integral residue calculation.
Periodic orbit formulae are sums over zeros of the periodicity conditionx − f n(x) = 0,
therefore we consider contour integrals of type

T =
∮

dx

2π i

h(x)

f (x)− x
wheref andh are polynomials, and the contour encloses all zeros off (x)−x. By shrinking
the contour to a sum of contours around individual zeros (figure 1), and using the Cauchy
formula ∮

dx

2π i

1

xk
= δk,1

we obtain a sum over fixed pointsxi of the mapf :

T =
∑

xi∈Fix(f )

h(xi)

f ′(xi)− 1
. (7)

Note that this cycle sum includes all periodic points, real as well as complex. Forf n,
n → ∞ these points fill out the Julia set, the closure of the set of the repelling periodic
points [15]. We assume that all zeros are simple; multiple zeros can be treated as well.
Here we shall compute

T (k) =
∮

dx

2π i

f ′(x)k

f (x)− x (8)

for k = 0, 1, 2, 3, . . . (we turn to thek = −1 case in section 5).
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The key observation is thatT can be evaluated by pushing the contour to|x| → ∞,
where the individual fixed points play no role. Whenk > 0, the following expansion of (8)
is convenient:

T (k) =
∮

dx

2π i

f ′(x)k

x

x/f (x)

1− x/f (x)

=
∮

dx

2π i

f ′(x)k

x

(
x

f (x)
+
(

x

f (x)

)2

+ · · · +
(

x

f (x)

)k)
. (9)

For a polynomial this is an exact formula; we use the fact that for sufficiently large|x| and
orderN > 2 of the polynomialf , (1− x/f (x))−1 can be expanded as a geometric series.
Terms with powers of(x/f (x))r higher thanr > k are of the order of at least O(x−N) and
do not contribute to the|x| → ∞ contours. Conversely, iff is an analytic function, no
such finite-series representation is immediately apparent.

By rescaling and translation, any polynomial of orderN can be brought to the form
f (x) = xN − cxN−2− · · ·. Hence, the last term is given by∮

dx

2π i

1

x

f ′(x)k

(f (x)/x)k
=
∮

dx

2π i

1

x

Nkxk(N−1)(1+O(x−2))

xk(N−1)(1+O(x−2))
= Nk. (10)

The first term in (9) is a sum over the zeros off (x)

C(k) :=
∮

dx

2π i

f ′(x)k

f (x)
=

∑
f (x)=0

f ′(x)k−1. (11)

By the chain rule (3), thenth iterate sum is given by

Cn(k) =
∑

f n(x)=0

f n
′
(x)k−1 =

∑
f n−1(y)=0

f (n−1)′(y)k−1
∑

f (x)=y
f ′(x)k−1. (12)

For k 6 3, the sum over zeros off (x) = 0 can be replaced [7] by the pre-imagesf (x) = y
of arbitrary constanty, as fork = 2, 3 the difference∮

dx

2π i

{
f ′(x)k

f (x)− y −
f ′(x)k

f (x)

}
=

k∑
j=2

yj−1
∮

dx

2π i

(Nx(N−1) − (N − 2)cxN−3− · · ·)k
(xN − c xN−2− · · ·)j (13)

vanishes, and hence by induction thenth iterate sum (12) is given by [7]

Cn(2) = C(2)n Cn(3) = C(3)n. (14)

The value of the sumC(k) depends on the parametrization of the particular polynomial.
For example, for the cubic polynomial

f (x) = x3− cx − d (15)

we have

C(2) =
∮

dx

2π i

(3x2− c)2
x3− cx − d =

∮
dx

2π i
32x

(
1− 2c

3x2
+ c

x2
+ · · ·

)
= 3c.

If the polynomial is even,f (x) = g(x2), the terms for(x/f (x))j for which k + j is
odd vanish, as∮

dx

2π i

f ′(x)k

x

(
x

f (x)

)j
= 2k

∮
dxxk+j−1

2π i

g′(x2)k

g(x2)j
. (16)

For example, for even polynomialsC(2) = 0. For generalk there are no formulae of the
above type for the other terms in expansion (9).
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3.1. Sum rules for periodic orbits of any polynomial

Our periodic orbits sum rules are obtained by pushing the contour to|x| → ∞ in (8). The
first periodic orbits sum rule for one-dimensional maps follows from

T (0) =
∮

dx

2π i

1

f (x)− x =
∮

dx

2π i

1

xN(1+O(x−1))
= 0,

hence ∑
i∈Fix(f n)

1

3i − 1
= 0. (17)

The second and third periodic orbits sum rules follow from (10):

Tn(1) =
∮

dx

2π i

f n′(x)
f n(x)− x =

∑
i∈Fix(f n)

3i

3i − 1
= Nn (18)

Tn(2) =
∮

dx

2π i

f n′(x)2

f n(x)− x =
∑

i∈Fix(f n)

32
i

3i − 1
= N2n + C(2)n. (19)

The corresponding Fredholm determinants follow from (6):

F(z, 0) = 1, F (z,1) = 1− zN,
F (z, 2) = (1− zN2)(1− zC(2)). (20)

TheTn(0), Tn(1) sum rules will be generalized tod-dimensions in section 6. Using (9) we
obtain the fourth sum rule

Tn(3) = C(3)n +
∮

dx

2π i

xf n′(x)3

f n(x)2
+N3n =

∑
i∈Fix(f )

33
i

3i − 1
. (21)

For even polynomials the second term vanishes.
These are exceedingly simple sum rules and expressions for Fredholm determinants,

and we can already discern both their utility and the ways in which they might fall short of
what we need in order to perform efficient dynamical systems computations. By taking into
account all periodic points, not just the real ones, these sum rules dispense with the infinite
intricacies of controlling the parameter dependence of symbolic dynamics of systems as
simple as a parabola. However, there are clearly very important physical effects that our sum
rules are blind to: the most striking is the role played by bifurcations. While at a bifurcation
real dynamics changes qualitatively, going from hyperbolic through intermittent to a stable
attractor, the corresponding complexified ‘signed’ sum rules are arranged precisely in such
a way that these effects cancel.

Starting withT (3), the sum rules cannot be cast into a form applicable to arbitrary
polynomials, so we now specialize to the quadratic polynomials. We refer the reader
interested in the transfer operators weighted by more general rational polynomials to [8].

4. Sum rules for the quadratic map

The quadratic polynomial

f (x) = x2− c (22)

is the simplest example of a nonlinear one-dimensional mapping (note the unconventional
sign of the parameterc, chosen to simplify our final formulae). By the chain rule (3) for
the derivative of an iterated function, the stability of ann-cycle {x1, x2, . . . , xn} is given by

3 = 2nx1x2 . . . xn. (23)
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We shall now derive an explicit formula for the sum rules and Fredholm determinants
for transfer operators (2) weighted by integer powers of the unstable eigenvalue3k in (5).
The derivation is based on the following simple observation which relates contour integrals
of functions of thenth iteratef n(x) to contour integrals of functions off n+1(x): for a
quadratic polynomial and a sufficiently large contour, a change of the integration variable
x → y = f (x) wraps the contour around twice∮

γ

dx f ′(x)
2π i

h(f (x)) = 2
∮
γ

dy

2π i
h(y). (24)

The factor of 2 arises because for large|x| the phase off (x) ≈ x2 advances at twice the
speed of the phase ofx (see figure 1). Reconsider now the sum (9) with the last term
evaluated as in (10):

Tn(k) =
∮

dx

2π i

f n′(x)k

x

k−1∑
s=1

(
x

f n(x)

)s
+ 2kn.

The individual terms in the sum are the diagonal terms of the [(k − 1)× (k − 1)] matrix

A(n)
rs :=

∮
dx

2π i

xs−1

f n(x)r
f n
′
(x)k, r, s = 1, 2, . . . , k − 1, (25)

so thenth iterate trace can be expressed as

Tn(k) = tr A(n) + 2kn.

Trivially, for even polynomialsArs 6= 0 if k and s − 1 are either both odd or both even.
The motivation for introducing the matrixA(n) is the observation that its elements are a
convenient basis for relating the successive trace sumsTn(k)→ Tn+1(k). By (16)

A(n+1)
rs =

∮
dxf ′(x)

2π i

xs−1f ′(x)k−1

f n(f (x))r
f n
′
(f (x))k

vanishes for even polynomialf unless s + k = even. Hence we can substitute
xs−1f ′(x)k−1 = 2k−1xs+k−2 = 2k−1(y + c) s+k−2

2 , and by applying (24) we obtain

A(n+1)
rs = 2k

∮
dy

2π i

(y + c) k+s−2
2

f n(y)r
f n
′
(y)k.

We note that this step relies on the very simple form of the quadratic polynomial, so a
generalization to arbitrary polynomial mappings is not immediate. Now expand binomially
the (y + c) term

A(n+1)
rs = 2k

k+s−2
2∑

p=0

( k+s−2
2

p

)
c
k+s−2

2 −pA(n)

r,p+1

and observe that the successiveA(n) are obtained by multiplication by the [(k−1)×(k−1)]-
dimensional matrix

L(k)rs :=


0 if k, s differ in parity( k+s−2

2

r − 1

)
c
k+s

2 −r otherwise.
(26)

As A(0) = 1, the nth level trace sums are given by the trace ofA(n) = 2knLn(k), and the
Fredholm determinant (6) of the transfer operator (2) is given by

F(z/2k, k) = (1− z) det(1− zL(k)). (27)
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Table 1. Fredholm determinants (27) for the quadratic map transfer operatorsL(k), for k a
positive integer.

k det(1− zL(k))
2 1
3 1− cz
4 1− 2cz
5 1− (3+ c)cz+ 2c3z2

6 1− (4+ 3c)cz+ 8c3z2

7 1− (5+ c)(1+ c)cz+ (20+ 5c + 3c2)c3z2 − 8c6z3

8 1− (6+ 10c + 4c2)cz+ (40+ 24c + 20c2)c3z2 − 64c6z3

9 1− (7+ 15c + 10c2 + c3)cz+ (70+ 70c + 82c2 + 14c3 + 4c4)c3z2

−(280+ 64c + 28c2 + 20c3)c6z3 + 64c10z4

10 1− (8+ 21c + 20c2 + 5c3)cz+ (112+ 160c + 250c2 + 98c3 + 40c4)c3z2

−(896+ 512c + 320c2 + 280c3)c6z3 + 1024c10z4

· · · · · ·

The first 10 such determinants are tabulated in table 1, and an example is given in
appendix A.5. Here is the main result of this section: we have obtained an explicit formula
for the spectrum of the transfer operatorL(k) for any positive integerk in terms of the
eigenvalues of afinite matrix L(k). As by the symmetry off the entries in half of the
columns of (26) vanish, in computations it is convenient to distinguish the odd and even
cases, and takeL(k) to be a [l × l] matrix, i, j = 0, 1, 2, . . . , l − 1:

L(k)ij :=


(
l + j

2i

)
cl+j−2i odd k = 2l + 1(

l + j + 1

2i + 1

)
cl+j−2i evenk = 2l + 2.

(28)

These finite matrices were first introduced by Levinet al in section 4 of [8].

4.1. Dynamical zeta functions

Using a different approach, Hatjispiros and Vivaldi [10] introduced a family of dynamical
zeta functions for complex quadratic polynomials, and conjectured that these zeta functions
are of a particularly simple rational form. We note that formula (27) proves the conjectured
rationality of this family of dynamical zeta functions. However, their method of evaluating
the determinants is still of considerable interest, as it appears to be more efficient for
evaluation of det(1− zL(k)) for high k than the direct evaluation undertaken here.

For purposes of comparison with [10] we need to relate dynamical zeta functions to the
Fredholm determinants given above. For|3| > 1, we expand the weight in (5)

1

3r(1− 1/3r)
= 1

3r

∞∑
j=0

3−jr ,

and obtain the product representation of the Fredholm determinant for one-dimensional maps

F(z, k) = exp

(
−
∑
p

∞∑
r=1

znpr

r

1

3rk
p (3

r
p − 1)

)
=
∏
p

∞∏
j=0

(
1− znp

3
k+j+1
p

)
,
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where thep product goes over all prime cycles, i.e. orbits for which points in a cycle are
traversed only once. The dynamical zeta function is defined [1] as

1/ζ(k) =
∏
p

(
1− znp

3k+1
p

)
, (29)

so for one-dimensional mappings it can be expressed as a ratio of two Fredholm determinants

1/ζ(k) = F(z, k)/F (z, k + 1). (30)

The zeta functions of [10] are indexed and normalized differently; here we follow the
conventions used in [12]. Our Fredholm determinants are related to the polynomialsG of
[10] by det(1− zL(k)) = Gk−1(z/2,−c), and our explicit formula (27) is a proof of their
conjectures.

5. Julia set escape rate

So far we have obtained explicit finite expressions for the Fredholm determinant of signed
transfer operatorsL(k) with weight (f ′)k, k > 0. These results can easily be generalized to
arbitrary polynomial weights. However, the methods outlined in section 3 fail for weights
(f ′)k with k < 0. In particular the casek = −1 is physically interesting, because the
largest eigenvalue of the operator gives the escape rateγ from a given enclosure0, which
is defined by the fraction of initial points that stay in0 after n iterations [13]

e−nγ ≈
∫
0

dx dy δ(x − f n(y))∫
0

dx
. (31)

The signed version of this transfer operator is defined with the weight 1/f ′(y)2 and by
summing over all real and complex pre-images ofx:

(L(−1)φ)(x) =
∑

y:f (y)=x

φ(y)

f ′(y)2
, x, y ∈ C. (32)

If the Julia set is real the two operators coincide.
The Fredholm determinant of (32) was computed in [8] for quadratic mapsf (x) =

x2− c. If c lies outside the Mandelbrot setM, the critical point is attracted by infinity and
the Fredholm determinant is given by the entire function

F(z,−1) = 1+
∞∑
n=1

zn

2nf (0)f 2(0) . . . f n(0)
, (33)

which involves only forward iterates of the critical point off . If c lies inside the Mandelbrot
set, the critical point is attracted by a limit cycle. If the stability of this cycle is different from
zero, (33) is the form of the Fredholm determinant for smallz and can be meromorphically
continued. If, on the other hand, the critical point is periodic with periodnp, the Fredholm
determinant is a polynomial [8].

In this section we first outline the derivation of this result (for details consult [8]). Then
we generalize it and show that it is also correct for a dense set of maps on the boundary of
the Mandelbrot set.

The Julia setJ is the closure of all repelling periodic orbits. Ifc lies outside the
Mandelbrot setM, the Julia set resembles the Cantor dust. To prove (33) we have to
use analyticity properties of the transfer operator and its adjoint. One starts by defining
the evolution operatorL(−1) on the space of functionsψ which are locally analytic in a
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small neighbourhood aroundJ . Then one can prove that the spectrum ofL(−1) is a point
spectrum with the only possible condensation at zero. The dual or adjoint operatorL?(−1)
of the transfer operatorL(−1), defined on densitiesφ? dual to the functionsψ , then has the
same spectrum. The duality is with respect to the bilinear form

φ?(ψ) =
∮
γ

dx

2π i
φ(x)ψ(x), and φ(x) = φ?

(
1

x − .
)

(34)

which is natural if one deals with analytic functions. Thefunction φ(x) is holomorphic on
the complement ofJ and vanishes at infinity. The contourγ encircles the Julia set and lies
in the common domain of analyticity ofφ andψ . The spectral equationφ?− zL?(−1)φ

? = 0
can then be written as∮

γ

dx

2π i
ψ(x)

(
φ(x)− z 1

f ′(x)
φ(f (x))

)
= 0, (35)

for all ψ . Therefore

R(x) := φ(x)− z 1

f ′(x)
φ(f (x)) (36)

has to be holomorphic aroundJ and can have poles only if 1/f ′(x) has poles, becauseφ
is analytic outsideJ .

Specializing to the mapf (x) = x2− c, the adjoint equation (35) leads to

R(x) = φ(x)− z

2x
φ(x2− c). (37)

We conclude thatR vanishes at infinity becauseφ does. Furthermore,R can only have
a pole of order 1 at 0, the unique critical pointxc of f . That means that we have either
R(x) = 1

x
(up to a multiplicative constant) orR(x) = 0. R(x) = 0 is contradictory because

it yields eigenfunctions equal to 0. By iterating (37) after solving it forφ(x) we obtain

φ(x) = 1

x
+
∞∑
n=1

zn

2nf n(x)
∏n−1
j=0 f

j (x)
. (38)

Now note thatφ is only an eigenfunction if it is holomorphic at the poles ofR, that means
at 0 in our case (f ′(xc) = 0). Therefore

0= Resx=0[φ(x)] = 1+
∞∑
n=1

zn

2nf (0)f 2(0) . . . f n(0)
= F(z,−1) (39)

is an equation for the characteristic values ofL(−1) meaning that (38) is an eigenfunction
if and only if z is an eigenvalue. For a generalization of this method to arbitrary rational
maps see [8].

The form (33) for the Fredholm determinant for the mapf (x) = x2− c holds true ifc
lies outside or inside the Mandelbrot setM [8]. However, the method fails ifc lies on the
border ofM, and in this case the form of the Fredholm determinant is unknown.

As a generalization to [8] we show here that on a dense subset of the border ofM,
the so-called Misiurewicz points, formula (33) still applies. The Misiurewicz points are
defined by the requirement that the critical pointxc = 0 is preperiodic [16]. In figure 2 we
introduce the notation for preperiodic points. If we take the validity of (33) for granted, a
straightforward calculation yields that for Misiurewicz points the Fredholm determinant is
in fact a rational function composed of a transient part and a periodic contribution

F(z,−1) = 1+
t−2∑
n=1

zn

2n
∏n
j=1 f

j (0)
+ zt−1

2t−1
∏t−1
j=1 f

j (0)

σ (z)

(1− znp

3p
)
. (40)
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Figure 2. The critical pointxc = 0 is a preperiodic point with transient timet = 3 and period
np = 5. In this case the parameterc of the quadratic map is called a Misiurewicz point. Note
that the periodic orbit is a repeller.

Here

σ(z) = 1+ z

2x1
+ z2

4x1x2
+ · · · + znp−1

2np−1x1 . . . xnp−1
, (41)

3p = 2npx1 . . . xnp is the stability of the periodic orbit,np is the period andt is the transient
time of the Misiurewicz point. Thenp+ t−2 zeros ofF(z,−1) are the characteristic values
of L(−1). F hasnp poles which lie on a cycle around the origin in the complexz-plane.
As the periodnp of the orbit increases to infinity, these poles build up a wall which limits
the region of analyticity.

Presumably, formula (40) can be proved by a generalization of the arguments in [8].
Here we check it by using cycle expansion, i.e. the power series representation (6) of the
Fredholm determinant [14, 13]. As the first example we compute the Fredholm determinant
for the Ulam mapf (x) = x2 − 2. For this map the critical pointxc = 0 iterates via
f (0) = −2 to the unstable fixed pointx? = 2. This means that we havet = 2 andnp = 1,
and formula (40) yields

F(z,−1) = 1− z
4

1

1− z/4 =
1− z/2
1− z/4 (42)

in agreement with the cycle expansion result of [14], where this formula is derived by
observing that for all cycles the stability is|3p| = 2np , with the exception of the fixed point
x0 for which 30 = 4. However, the result for a general Misiurewicz polynomial is not as
trivial.

Next we check (40) by a numerical computation of the Fredholm determinant via
complex cycle expansion. The method is described in detail in [17]. Here we will only
state the results. As a first example we study the casec = 1.543 689 012 692 076 3616. . . ,
for which the critical pointxc = 0 iterates after three steps into a fixed pointx? = c(1− c),
so t = 3 andnp = 1. Therefore we expect a Fredholm determinant of the form

F(z,−1) = 1+ z

2f (0)
+ z2

4f (0)f 2(0)

1

(1− z
2x? )

(43)

with f (0) = −c and f 2(0) = −x? = c(c − 1). In table 2 the coefficientsan of the
cycle expansion for the Fredholm determinantF(z,−1) = ∑∞

n=0 anz
n are depicted. The
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Table 2. Fredholm determinant for a chaotic quadratic map up to order 8 in a complex cycle
expansion. Forn > 1, the ratioan/an+1 of the cycle expansion coefficients (6) computed
from 2n periodic points equals3 = 2c(1− c) = −1.678 573 510 4283 to machine precision, in
agreement with (43).

n an
an
an+1

0 1.000 000 000 000 0000 3.087 378 025 384 153
1 −0.323 899 435 630 5212 1.678 573 510 428 349
2 −0.192 961 126 586 5065−1.678 573 510 428 322
3 0.114 955 422 200 8833−1.678 573 510 428 341
4 −0.068 483 996 373 5331−1.678 573 510 428 292
5 0.040 798 925 961 8778−1.678 573 510 428 285
6 −0.024 305 712 980 9394−1.678 573 510 428 318
7 0.014 479 981 263 8157−1.678 573 510 428 306
8 −0.008 626 361 117 8524

second column of the table demonstrates that they indeed decrease geometrically with
the correct ratio. The remaining coefficients can be checked numerically or computed
analytically from the traces ofL(−1) andL2

(−1). In either case we arrive at (43). Because
the numerator of the Fredholm determinant is quadratic there are two characteristic values,
namelyz = c2 ∗ (1− c) = −1.295 597 742 522 084 andz = 2. That means the spectrum is
real and there is a real pole atz = 2c(1− c) = −1.678 573 510 428 321. The escape rate
(31) is given by the trivial largest eigenvalueγ = log(2).

As our last example we take the mapf (x) = x2+ i, for whichxc = 0 has the trajectory

0 7→ i 7→ x1 = −1+ i 7→ x2 = −i 7→ −1+ i 7→ · · · ,
so t = 2 andnp = 2. The numerical cycle expansion [17] yields

F(z,−1) =
z
2i − z2

4+4i

1− z2

4+4i

, (44)

where by (40) we had expected

F(z,−1) = 1+ z

2f (0)

1+ z
2x1

1− z2

4x1x2

. (45)

After a brief inspection the two expressions turn out to be the same.
Any number of such examples can be worked out in the same way. In every case a

scaling of the numerical coefficients confirms the rational form of the Fredholm determinant
for the Misiurewicz polynomials.

6. Multidimensional polynomial mappings

In the multidimensional case a typical contour integral representation of a periodic orbit
sum is of the form

T (0) =
∮

dx1

2π i

∮
dx2

2π i
. . .

∮
dxd
2π i

d∏
α=1

1

fα(x)− xα . (46)

For example, in two dimensions the contour integral picks up a contribution from each fixed
point i

f1(xi, yi)− xi = 0, f2(xi, yi)− yi = 0.
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The integral can be converted into a sum of local contour integrals around linearized
neighbourhoods of the fixed points(xi, yi)

T (0) =
∑
i

∮
dzi1
2π i

∮
dzi2
2π i

1

(zi1− J11zi1− J12zi2)(zi2− J21zi1− J22zi2)
,

wherex = xi + zi1, y = yi + zi2, andJi is the Jacobian matrix[
J11 J12

J21 J22

]
=
[
∂xf1(x, y) ∂yf1(x, y)

∂xf2(x, y) ∂yf2(x, y)

]
(x,y)=(xi ,yi )

.

Completing the integrals we find for two dimensions

T (0) =
∑

i∈Fix(f )

1

(1− J11)(1− J22)− J12J21
,

and ind dimensions

T (0) =
∑

i∈Fix(f )

1

det(1− Ji )
= 0, (47)

whereJi is the Jacobian (monodromy matrix) of theith fixed point. Pushing all contours
in (46) off to infinity yields the sum ruleT (0) = 0. Just as in the one-dimensional case
(17), T (0) vanishes when all fixed points, real and complex, are included in the sum.

6.1. A sum rule related to the fast kinematic dynamo

Our second multidimensional sum rule arises in the study of a two-dimensional Poincaré
map of a model of the fast kinematic dynamo [6]. The fast kinematic dynamo is a problem
of passive vector field advection: the dynamo rate is determined by the overall growth of a
small vector field embedded into the flow. In this case the transfer operator (2) is weighted
by the Jacobian matrixJt (x, y), a multiplicative function evaluated along the trajectory with
initial point (x, y). For two-dimensional maps this transfer operator leads to traces of form
trL =∑ tr J/| det(1−J)|. We can derive a sum rule for the corresponding signed measure
trace sum:

T (1) =
∮

dx

2π i

∮
dy

2π i

tr J(x, y)
(x − f (x, y))(y − g(x, y)) =

∑
i∈Fix(f )

tr Ji
det(1− Ji )

.

The two-dimensional matrix identity

tr J
det(1− J)

= tr J
1− tr J + detJ

= 1

det(1− J)
− 1

det(1− J−1)
− 1

yields our sum rule

T (1) =
∑

i∈Fix(f )

tr Ji
det(1− Ji )

= −N, (48)

where we have used the fact thatT (0) vanishes for both the forward and the time reversed
flow. As in the one-dimensional case (18),T (1) counts the number of the fixed points of
the map; in polynomial maps this is given by the order of the polynomial.
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6.2. An application: numerical checks of cycle sums

As an example of the utility of sum rules for higher-dimensional polynomial mappings,
consider the two-dimensional Hénon map

xk+1 = 1− ax2
k + yk, yk+1 = bxk. (49)

For the complete repeller case (all binary sequences are realized), the Hénon map is
a realization of the complete Smale horseshoe. Cycle stabilities are easily computed
numerically [12]. We have verified numerically the sum rules (47) and (48) for a volume-
preserving H́enon map repeller (b = −1) by substituting the cycle stabilities of cycles up
to length 12 into∑

i∈Fix(f n)

1

3i(1− 1/3i)2
= 0 (50)

∑
i∈Fix(f n)

3i + 1/3i

3i(1− 1/3i)2
= 2n. (51)

Here 3i is the expanding eigenvalue ofJi , and we have used the fact that for two-
dimensional volume-preserving mapping det(1 − Ji ) = (1 − 3i)(1 − 1/3i). The first
sum can be used to check the accuracy of the periodic orbit data used to compute the
escape rateγ of the H́enon repeller∑

i∈Fix(f n)

1

|3i |(1− 1/3i)2
= e−nγ + (non-leading eigenvalues).

If we add (50) to the above sum, for complete horseshoe all inverse hyperbolic cycle
contributions with3i < 0 cancel, and hence only half of the cycles suffice to compute the
escape rate. The second sum rule can be used to check the accuracy of the data used to
estimate the kinematic dynamo rateη∑

i∈Fix(f n)

3i + 1/3i

|3i |(1− 1/3i)2
= enη + (non-leading eigenvalues).

It was a numerical discovery of these sum rules computed in connection with the kinematic
dynamo model of [6] that leads us to the contour integral formulation and derivation of all
other sum rules given in this paper.

7. Farey map (or spin-chain) thermodynamics

So far, our examples have been based on the contour integral technique. In this section we
shall use a very different, number-theoretic approach to compute the spectrum of transfer
operators. We shall consider the Farey map (figure 3), a combination of two Möbius
transformations

f (x) =
{
x/(1− x) x ∈ [0, 1

2)

(1− x)/x x ∈ [ 1
2, 1].

(52)

The Farey map arises in a variety of contexts: dynamics of circle maps, dynamical
renormalization theory, statistical mechanics, number theory. For dynamical systems
motivation we refer the reader to [18]. In particular, the Farey map plays the same role vis-
à-vis the shift circle map that the highly non-trivial circle map presentation function [19, 20]
plays in the golden-mean renormalization theory, and provides a controllable setting to test
some of the ideas that arise in that context. Another motivation comes from statistical
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Figure 3. The two branches of the inverse to the Farey map (52).

mechanics, where the Farey model thermodynamics corresponds to a number-theoretical
model of an infinite ferromagnetic spin chain with effectiver−α interaction [11], with phase
transition of Thouless type atα = 2. For the purpose at hand the Farey map is of interest
to us because:

(i) again an infinity of sum rules can be obtained, but this time without the contour
integration approach employed above;

(ii) the sum rules apply to the positive measure|3|τ , in contradistinction to the signed
measures of the previous examples;

(iii) the theory can be extended to non-integer exponentsτ , with infinite-range recursion
relations.

Apply the ‘natural measure’ modification of (2)

L(τ )(y, x) = |f ′(x)|τ δ(x − f −1(y)) (53)

to the Farey map (we have redefined the exponent(k+1)→ τ to conform with the notation
conventions of [21, 22]), and consider the sum

Zn(τ) :=
∫

dx |f n′(x)|τ δ(x − f −(n+1)(1)). (54)

The leadingL eigenvalue 2q(τ) (in the notation of [21]) dominates this sum in then→∞
limit and defines a ‘thermodynamic’ functionq = q(τ). For the Farey map (see figure 3)
the pre-images of 1 are

f ( 1
2) = 1, f 2( 1

3) = f 2( 2
3) = 1

f 3( 1
4) = f 3( 2

5) = · · · = 1

f n(Pi/Qi) = · · · = 1.

These fractions form the levels of theFarey tree [23–26, 22, 27], a number-theoretical
construction based on the observation that somewhere midway between two small
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Figure 4. The levelsFn of the Farey tree are generated by the Farey mediant addition rule
P/Q, P ′/Q′ → (P + P ′)/(Q+Q′).

denominator fractions (such as1
2 and 1

3) there is the next smallest denominator fraction (such
as 2

5), given by the ‘Farey mediant’(P+P ′)/(Q+Q′) of the parent mode-lockingsP/Q and
P ′/Q′. The Farey tree is obtained by starting with the ends of the unit interval written as 0/1
and 1/1, and then recursively bisecting intervals by means of Farey mediants. This generates
Farey level setsFn with 2n mode-locking widths on each level (figure 4). In this context,
thenth level of the Farey tree is the set of the 2n distinct backward iteratesf −n−1(xi) = 1
of the Farey map. Furthermore, noting thatf ′o(x) = 1/(1−x)2, f ′1(x) = −1/x2, it is easily
checked that ifPi/Qi ∈ Fn−1, then

|f n′(Pi/Qi)| = Q2
i . (55)

For example

f 2′( 1
3) = f ′( 1

3)f
′( 1

2) = (1− 1
3)
−2(1− 1

2)
−2 = 32.

Hence the sum (54) is the sum over denominators of the Farey rationals of the(n − 1)th
Farey level:

Zn(τ) =
∑
i∈Fn

Q2τ
i , (56)

whereQi is the denominator of theith Farey rationalPi/Qi . For example

Z2(
1
2) = 4+ 5+ 5+ 4.

As we shall now show,Zn(τ) satisfies an exact sum rule for every non-negative integer 2τ .
First one observes thatZn(0) = 2n. It is also easy to check that [23]Zn( 1

2) =
∑

i Qi = 2·3n.
More surprisingly,Zn( 3

2) =
∑

i Q
3 = 54 · 7n−1. Such sum rules are consequences of the

fact that the denominators on a given level are Farey sums of the denominators on preceding
levels. In order to exploit this, the following labelling of the Farey denominators introduced
by Knauf [28] is convenient.

The Farey denominatorsQσ , σ ∈ {s1s2 . . . sn}, si ∈ {0, 1}, up to thenth level of the
Farey tree of figure 4 can be labelled in lexical binary order as illustrated in figure 5. Farey
denominators on the(n+ 1)th Farey tree level are given by [28]

Qσ0 = Qσ (carry over all previous Farey denominators)

Qσ1 = Qσ +Qσ (compute the(n+ 1)th Farey tree level),
(57)

where σ is obtained by exchanging 1’s and 0’s in the stringσ , si → 1 − si , and the
recursion is initiated with the empty string valuesQ. = Q. = 1. The second rule follows
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Figure 5. Lexically ordered binary labelling of all Farey denominators up to and including the
nth Farey tree level, following Knauf [28]. The binary label of the denominatorQσ is read
off starting with the root of the tree, withsi = 1 for a full line, andsi = 0 for a dotted line.
For exampleQ0011 = 7, Q1000 = 2, etc. The 2n denominatorsQ···1 preceded by a full line
constitute thenth Farey levelFn.

from labelling of nearest neighbours on a given level (see figure 5). By construction,Qσ1

is invariant under thesi → 1− si interchange

Qσ1 = Qσ1. (58)

Define a [2τ + 1]-dimensional vectorφ = [φ0, φ1, . . . , φ2τ ], 2τ a positive integer, by

φ(k)m :=
∑

σ∈{s1s2...sk}
Q2τ−m
σ1 Qm

σ0 =
∑
i∈Fk+1

(
Pi

Qi

)m
Q2τ
i .

The zeroth component ofφ(k) is thekth level Farey sum (56)

Zk(τ) = φ(k)0 =
∑

σ∈{s1s2...sk}
Q2τ
σ1. (59)

Motivation for constructing the vectorφ(k) is the observation that its remaining entries
exhaust all combinations that arise in exponentiatingQσ1 = Qσ +Qσ to the integer powers
s 6 2τ

φ(k+1)
m =

∑
σ∈{s1s2...sk+1}

(Qσ +Qσ)
2τ−mQm

σ

=
∑

σ∈{s1s2...sk}
(Qσ1+Qσ0)

2τ−mQm
σ1+ (Qσ0+Qσ1)

2τ−mQm
σ0

=
∑

σ∈{s1s2...sk}
(Qσ1+Qσ0)

2τ−m(Qm
σ1+Qm

σ1)

(we have used
∑

σ =
∑

σ and theQσ1 = Qσ1 symmetry), and that they form a linear basis
for φ(k+1):

φ(k+1)
m =

2τ−m∑
r=0

(
2τ −m
r

) ∑
σ∈{s1s2...sk}

(Q2τ−r
σ1 Qr

σ0+Qr
σ1Q

2τ−r
σ0 )

=
2τ−m∑
r=0

{(
2τ −m
r

)
+
(

2τ −m
r −m

)}
φ(k)r .
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Table 3. Fredholm determinants for the Farey model transfer operator (60), 2τ = 0, 1, 2, . . . ,11,
together with the leading eigenvalue 2q(τ).

2τ 2q(τ) F (z, τ )

0 2 1− 2z
1 3 1− 3z
2 (2.135 78. . .)2 1− 5z+ 2z2

3 7 1− 7z
4 (1.813 46. . .)4 (1+ z)(1− 11z+ 2z2)

5 (1.758 13. . .)5 1− 14z− 47z2

6 (1.723 42. . .)6 1− 20z− 161z2 − 40z3 + 4z4

7 (1.699 91. . .)7 1− 29z− 485z2 − 327z3

8 (1.683 13. . .)8 (1+ z)(1− 44z− 1313z2 − 88z3 + 4z4)

9 (1.670 68. . .)9 1− 65z− 3653z2 − 3843z3

10 (1.661 17. . .)10 (1+ z)(1− z)(1− 100z− 9601z2 − 200z3 + 4z4)

11 (1.653 75. . .)11 1− 156z− 24 882z2 + 83 828z3 + 107 529z4

12 (1.647 84. . .)12 (1+ z)(1− 247z+ 63 659z2 + 797 003z3 − 127 318z4 − 988z5 + 8z6)

. . . . . . . . .

22 (1.624 13. . .)22 . . .

. . . . . . . . .

n ρn in the→∞ limit, ρ = (1+√5)/2= 1.618 03. . .

Hence the family of vectorsφ(1), φ(2), . . . , is generated by multiplicationφ(k+1) = L(τ )φ(k)

by the [(2τ + 1)× (2τ + 1)]-dimensional transfer matrix

L(2τ)mr =
(

2τ −m
r

)
+
(

2τ −m
r −m

)
(60)

consisting of two Pascal triangles. For example

L(2) =
[ 2 4 2

1 2 1
1 0 1

]
.

The growth ofφ(k) in the k → ∞ limit (and in particular, its zeroth component (59),
the thermodynamic sumZk(τ)) is given by 1/z = 2q(τ), the leading zero of theL(2τ)
characteristic polynomial

F(z, 2τ) := det(1− zL(2τ)) = 1− (2τ + 1+ F2τ+1)z− · · · , (61)

see table 3. HereFn = Fn−1 + Fn−2, F0 = 0, F1 = 1, are the Fibonacci numbers. The
largestQi in the nth level sum (56) isFn+2, so for the largeτ the leading eigenvalue
tends toρ2τ . The polynomials of table 3 were first computed by Cvitanović and Kennedy,
appendix B of [22]; here we have followed the more elegant derivation due to Contucci
and Knauf [11].

The Farey model demonstrates that not only are the methods of this paper competitive
with the periodic orbits methods, but they are sometimes superior to them. For the Farey
model the periodic orbit expansions are studied in detail in [29, 30], and depend on quadratic
irrationals rather than the Farey denominators. While such periodic orbit expansions are
analytically intractable, this variant of the finite-level sums yieldsq(τ) exactly for all 2τ
a non-negative integer. Not only that, but Contucci and Knauf [11] have in this case also
been able to analytically continue theL(τ ) matrices to arbitrary real positiveτ .
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8. Some speculations

So far we have derived a series of exact sum rules for very specific simple dynamical
systems. In this section we speculate about possible, but at present still largely unexplored,
applications of the above methods in more general settings.

8.1. Normal form approximations to flows

The Poincaŕe maps of flows of physical interest are in general not polynomials, but smooth
analytic functions. However, in practical applications (such as the long-term integrations in
celestial mechanics) it is often advantageous to replace a differential equation by a normal
form that approximates the return map for a Poincaré section of the flow, and replace
the numerically demanding integration of the flow by a map iteration. Such applications
require a test of the accuracy of the normal form approximation; the above sum rules offer an
estimate of the quality of the approximation, which, as it depends only on cycle eigenvalues,
is coordinatization independent. The idea is simple: were the polynomial representation of
the flow exact, its cycles would satisfy the above sum rules exactly. By comparing the
sums of cycles of the smooth flow with what would be expected if the flow was generated
by a polynomial we learn how good a polynomial approximation of given order would be,
prior to any actual fitting of the flow by an approximate mapping.

As an example, consider a three-dimensional flowẋ = F (x), x = (x1, x2, x3). We
assume that the flow of interest is recurrent, and that given a convenient Poincaré section,
the flow can be described by a two-dimensional Poincaré map

x ′ = f (x, y)
y ′ = g(x, y), (62)

together with the ‘ceiling’ functionT (x, y) which gives the time of flight to the next section
for a trajectory starting at(x, y). In generalf andg can be complicated functions, but the
essential properties of a continuous flow can be modelled by the Hénon map (49), which
we take as a local normal form (up to quadratic terms). In the Hamiltonian case, the normal
form is

xk+1 = 1− ax2
k − xk−1. (63)

If this was an exact representation of the flow, it would satisfy exactly the sum rules
(50) and (51), hence the amount by which they are violated is an indication of how well the
flow is approximated by a quadratic normal form. As we are summing signed rather than
absolute values, this is an underestimate of the actual error, but possibly of interest even so.
While numerical tests of the rule on a three-disk billiard cycles data of [12] suggest that
for sufficiently large disk–disk separation (63) is not a bad approximation, we have not yet
checked whether the best value of the parameters in the approximation can be determined
by minimizing the deviation from the exact sum rules.

8.2. Spectrum of the period-doubling operator

The generalized transfer operators (2) have an important application [14, 31–33] in the
period-doubling renormalization theory: iff is given by the period-doubling presentation
function [27]

f0(x) = αg(x), g(α−1) 6 x 6 1

f1(x) = αx, α−1 6 x 6 α−2,



1228 P Cvitanović et al

where

g(x) = αg ◦ g(x/α)
is the universal period-doubling renormalization fixed-point function, the leading eigenvalue
of L(2)(y, x) = δ(y− f −1(x))f ′(y) is the Feigenbaumδ, and the spectrum ofL(2) is given
by the trace formula [14, 32]

trL(2) =
∑

i∈Fix(f )

32
i

3i − 1
, (64)

or the associated Fredholm determinant. Here the summation is restricted to the real fixed
points in the unit interval; application of our sum rule (19) would also require the inclusion
of the complex periodic points. The crudest approximation tog(x) is a quadratic polynomial.
This already yields a reasonable estimate without any actual polynomial fitting; according to
(19), for a quadratic polynomial the leading eigenvalue (19) is 4, while the period-doubling
leading eigenvalue is the Feigenbaumδ = 4.66. . . . If (19) is really applicable in this
context, the sum rule would require the inclusion of contributions of complex periodic
points of the presentation function—how well that converges has not yet been checked.

9. A critical summary

The conventional periodic orbit theory suffers from one serious limitation; the number
of spectral eigenvalues computable is in practice limited by the exponential growth in
the number of periodic orbits required. This arises because the periodic orbit theory in
its trace formula formulation is essentially a tessellation of the phase space by linearized
neighbourhoods of periodic points which ignores the fact that these neighbourhoods are inter-
related by the analyticity of the flow. This suggests that the local periodic orbit information
should be supplemented by global analyticity constraints. Prior to the work presented
here, analyticity has been exploited to improve the convergence of cycle expansions by
incorporating the shadowing of long cycles by combinations of shorter ones [34, 14],
and to prove that the cycle expansions of Fredholm determinants can converge faster than
exponentially with the topological cycle truncation length [35, 36]. While sometimes very
useful, these results apply only to nice hyperbolic flows with finite symbolic dynamics.
Most realistic physical flows are not uniformly hyperbolic, and do not have finite Markov
partitions. For this reason general analyticity constraints applicable to any flow would be of
great interest. Here another observation is very suggestive; analytic continuation of pairs of
orbits through inverse bifurcations [37] improves the semiclassical quantization in a regime
where the dynamics is non-hyperbolic, and the utility of periodic orbits isa priori in doubt.
Similarly, leading diffraction effects of wavemechanics can be accounted for by inclusion
of complex ‘creeping’ orbits [38] into periodic orbits sums. These examples suggest that
for generic flows perhaps both the non-hyperbolicity and lack of finite Markov partitions
may be tamed by taking into account the totality of periodic orbits, real and complex.

With such considerations in mind we have here compared two strategies to compute the
spectrum of a given transfer operator:

(i) the conventional periodic orbit theory approach: trL = sum over cycles;
(ii) the new recursive approach: relateZn =

∫
dx Ln(0, x) = sum over pre-images to

previous levels sums.
We have established here that sometimes the iterative nature of the dynamics enables us

to obtain formulae for transfer operator eigenvalues without computingany periodic orbits.
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As this paper is a compilation of a number of separate results in this direction, we
summarize the key results here. Sum rules (17)–(19) are valid for arbitrary polynomial
mapping. Sum rule (21) applies only to even polynomials. For quadratic polynomials, (28)
yields the Fredholm determinant for all weighted transfer operators (2) withk a non-negative
integer. Equations (33) and (40) yield the Fredholm determinants fork = −1, in the case
of a quadratic polynomial repeller, respectively Misiurewicz point. In the case of the Farey
map, the Fredholm determinant for all weighted transfer operators (2) withk a non-negative
integer follows from (60). Finally, the multidimensional polynomial mappings satisfy the
two sum rules (47) and (48). This list is only a hint of what we expect to be a rich trove
of exact results; for example, recently discovered infinite families of new exact sum rules
for billiards are explored in a forthcoming paper by Nielsenet al [40].

The sum rules obtained above come as something of a pleasant surprise, especially in the
multidimensional cases, as cycle expansions typically require evaluation of exponentially
many cycles up to a given cycle length, and it is not at all obvious that the cycle weights
should be related in any simple way. Prior to these results, other than the purely topological
Lefschetz fixed-point formulae, there existed only one exact general result for periodic orbit
sums, the flow density conservation [39, 14], and several sum rules specific to billiards. Even
though our sum rules require the determination of not only real cycles, but also the complex
ones (i.e. also those forbidden by the symbolic dynamics), they might be useful in practice.
There are several immediate uses for such rules; one is to check for the correctness of the
numerically calculated cycle weights up to a given cycle length, and another, speculated on
in section 8.1, is to estimate the quality of polynomial approximations to smooth flows.

Applied to higher-dimensional dynamical systems, the new sum rules might shed light on
the role of complex periodic orbits in phenomena such as intermittency and pruning, reduce
the number of periodic orbits required for accurate eigenspectra computations, provide
useful cross checks of the accuracy of trace formulae and cycle expansions, might lead
to replacement of periodic orbit sums by contour integrals, and provide error bounds on
approximations of smooth flows by normal form mappings. Still, the explicit sum rules for
simple models presented above are only a modest step in the direction of moving ‘beyond
periodic orbit theory’.

(a) The results presented depend on either the finiteness of polynomials (for the contour
integral method) or properties of integers (for the Farey map case). One needs to develop
infinite-dimensional versions of the above finite-rank operatorsL ([11] is a step in this
direction).

(b) One needs to reinstate positive measures. While in quantum mechanical applications
the signed measures might be just the right Maslov phases, in the classical context the above
sum rules are essentially index theorems and play a role analogous to what Lefschetz zeta
function plays vis-̀a-vis the Artin–Mazur counting zeta function (the appendix of [9] is a
step in this direction).

(c) The transfer operator weights studied here were restricted to powers of the cycle
stability; one needs to deal with more general classes of weighted operators.
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significant parts of this work was done, for kind hospitality, and the Carlsberg Foundation
for many years of unflagging support. JR gratefully acknowledges financial support by the
Studienstiftung des deutschen Volkes. GV thanks the support of the Hungarian Science
Foundation OTKA (F019266/F17166/T17493) and the Hungarian Ministry of Culture and
Education FKFP 0159/1997.

Appendix. Examples of sum rules

To give the reader a feeling for what the above sum rules mean in practice, we shall work
out explicitly the few simplest examples. The quadratic polynomial fixed points and their
stabilities are given by

x0 = (1+
√

1+ 4c)/2, x1 = (1−
√

1+ 4c)/2,

30 = 2x0, 31 = 2x1,
(A1)

and the two-cycle stability by

301 = 4(1− c).

A.1. Trace formula forL(0)

The sum rule (17) states that for the quadratic polynomial (22)

0= 1

30− 1
+ 1

31− 1
, 0= 1

32
0− 1

+ 1

32
1− 1

+ 2

301− 1
,

and so on. This sum rule is not new; it goes back to Fatou [43] and Julia [44] and can
be found, for example, in section 3.5 of [15], proven by manipulating roots of polynomials
rather than by the contour integration method. The Fredholm determinant (20) is in this
case trivial,F(z, 0) = 1.

A.2. Trace formula forL(1)

The sum rule (18) for the quadratic polynomial fixed points and two-cycles can be checked
manually:

2= 30

30− 1
+ 31

31− 1
, 4= 32

0

32
0− 1

+ 32
1

32
1− 1

+ 2
301

301− 1
.

For quadratic polynomialsN = 2n, so both the Fredholm determinant (20) and the dynamical
zeta function (30) are given byF(z, 1) = 1− 2z, 1/ζ(1) = F(z, 1)/F (z, 0) = 1− 2z. For
the case of all periodic points real, the tracesTn(1) count the numbers of periodic points of
periodn, and 1/ζ(1) is the Artin–Mazur topological zeta function [45].

A.3. Trace formula forL(2)

The sum rule (19) for the quadratic polynomial is given by∑
i∈Fix(f n)

32
i

3i − 1
= 4n,



Beyond the periodic orbit theory 1231

the Fredholm determinant byF(z, 2)(z) = 1− 4z, and the dynamical zeta function by

1/ζ(2) = F(z, 2)

F (z, 1)
= 1− 4z

1− 2z
.

Furthermore, as for everyk > 0 the term (10) contributes a factor(1− 2kz) to F(z, k),
1/ζ(k) always contains a factor(1− 2kz)/(1− 2k−1z), in agreement with [10].

A.4. Trace formula forL(3)

According to (14), we only need to to evaluateC(3) for the quadratic polynomial

C(3) =
∮

dx

2π i

8x3

x2− c = 8
∮

dx

2π i
x
(

1+ c

x2
+ · · ·

)
= 8c.

Together with (21) this yields theTn(3) sum rule for the quadratic polynomial∑
i∈Fix(f n)

33
i

3i − 1
= 8n + (8c)n. (A2)

For example, it is easily verified that

8(1+ c) = 33
0

30− 1
+ 33

1

31− 1

64(1+ c2) = 36
0

32
0− 1

+ 36
0

32
1− 1

+ 2
33

01

301− 1
.

The Fredholm determinant is given by

F(z, 3)(z) = (1− 8z)(1− 8cz),

in agreement with thek = 3 case of our general formula (27). The dynamical zeta function
is

1/ζ(3) = F(z, 3)

F (z, 2)
= (1− 8z)(1− 8cz)

1− 4z
. (A3)

Thus the first ‘non-trivial’ zeta function is indeed of the form conjectured in [10].

A.5. Trace formula forL(7)

We close this appendix by writing out explicitly a typical non-trivial example:k = 7 =
2× 3+ 1. According to (28)

L(7) =
[
c3 3c 0
c4 6c2 1
c5 10c3 5c

]
.

The corresponding Fredholm determinant is given in table 1. This, as well as any other
F(z, k) that we have computed agrees with the form conjectured in [10].
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