
Project Summary

We propose to describe spatio-temporally chaotic (turbulent) dynamics of strongly nonlin-
ear quantum and classical field theories by means of an infinite hierarchy of spatio-temporally
unstable recurrent patterns. The theory proposed is inspired by the unstable coherent struc-
tures observed in turbulence. For any finite spatial resolution, the system approximately
tracks a pattern belonging to a repertoire of patterns, and the dynamics can be thought of
as a walk through the space of such patterns. The dynamics over large space and time scales
is built up from small, computable patches of periodic solutions, without recourse to sta-
tistical assumptions; this is a purely dynamic theory. The periodic orbit theory then yields
the global averages characterizing the chaotic dynamics, as well as a starting semiclassical
approximation to the quantum theory. Here new methods for computing quantum correc-
tions to the semiclassical approximation need to be developed; in particular, we propose to
implement nonlinear field transformations yielding the perturbative corrections in a form
more compact than the Feynman diagram expansions.

Intellectual Merit: Turbulence is the unsolved problem of classical physics. Recent devel-
opments have greatly increased our insights in turbulence, and given us new concepts and
modes of thought with far reaching repercussions in many different fields. However, there is
a big conceptual gap to bridge between what has been achieved, and what needs to be done:
So far, the recurrent patterns program has been implemented only on a very simple model,
flutter of a flame front, and it is an open question to what extent the program remains
viable as systems grow large and more turbulent. A systematic theory of spatio-temporal
turbulence is the grand challenge of complex systems theory - how to deal with dynamics of
very many degrees of freedom? A distinctive aspect of the proposed research is the integra-
tion of diverse areas of expertise: The problem of how to extract the recurrent patterns is
an intensely numerical undertaking, a domain of fluid dynamicists. The proposed method
for what to do with this infinity of patterns, periodic orbit theory, is domain of quantum
theorists. We bring to this project both sets of skills, in an integration that is novel.

Broader Impact: The research proposed will be carried out at the Georgia Institute of
Technology Center for Nonlinear Science, an interdisciplinary environment in which train-
ing of undergraduates, graduate students, and postdocs in relevant conceptual and nu-
merical tools of the mathematics of complex systems is driven by concrete physical prob-
lems. The work will be carried out in collaboration with Profs. C.P. Dettmann, G. Vattay,
V. Putkaradze and others in US and Europe. This type of international collaboration, with
students sent to the other laboratory for extended collaboration periods, offers a unique
environment for interdisciplinary training.

The theory of recurrent patterns that we propose to develop would by no means be re-
stricted to quantum fields. The key concepts should be applicable to many systems extended
in space, from motions of fluids to subatomic phenomena to assemblies of neurons. A suc-
cessful theory of spatially extended systems would have broad impact: some of the examples
of spatio-temporal turbulence to which the theory could be applied are few-particle molec-
ular dynamics, nonlinear wave equations, fluid interfaces in oceanography and meteorology,
chemical reactions, optic fibers, and Bose-Einstein condensates.



Project description: Chaotic Field Theory
Predrag Cvitanović, School of Physics, Georgia Institute of Technology

We start by sketching the challenge of a “Chaotic field theory,” and the need for a deeper under-
standing of classical turbulence that such theory presupposes. Then we illustrate the applicability
of recurrent patterns program by an investigation of what perhaps is the simplest known example of
turbulence, the Kuramoto-Sivashinsky system. We conclude by discussing what needs to be done.

1 Introduction

Formulated in 1946-49 and tested through 1970’s, quantum electrodynamics takes free electrons
and photons as its point of departure, with nonlinear effects taken in account perturbatively in
terms of Feynman diagrams, as corrections of order (α/π)n = (0.002322819 . . .)n. QED is a wildly
successful theory, with Kinoshita’s [1] calculation of the electron magnetic moment agreeing with
Dehmelt’s experiments [2] to 12 significant digits.

Quantum chromodynamics perturbative calculations seemed the natural next step, the only
new feature being the gluon-gluon interactions. However, in this case the Feynman–diagrammatic
expansions for observables such as the meson and hadron masses failed us utterly, perhaps because
the expansion parameter is of order 1. We say perhaps, because more likely the error in this case is
thinking in terms of quarks and gluons in the first place. Strongly nonlinear field theories require
radically different approaches, and in 1970’s, with a deeper appreciation of the connections between
field theory and statistical mechanics, their re-examination led to path integral formulations such as
the lattice QCD [3]. In lattice theories quantum fluctuations explore the full gauge group manifold,
and classical dynamics of Yang-Mills fields plays no role.

We propose to re-examine here the path integral formulation and the role that the classical
solutions play in quantization of strongly nonlinear fields. In the path integral formulation of a
field theory the dominant contributions come from saddlepoints, the classical solutions of equations
of motion. Usually one imagines one dominant saddle point, the “vacuum”:

one dominant extremum an infinity of instanton saddles

The Feynman diagrams of QED and QCD are nothing more than a scheme to compute the correction
terms to this starting semiclassical, Gaussian saddlepoint approximation. But there might be other
saddles. That field theories might have a rich repertoire of classical solutions became apparent
with the discovery of instantons [4], analytic solutions of the classical SU(2) Yang-Mills equations of
motion, and the realization that the associated instanton vacua receive contributions from countable
∞’s of saddles. What is not clear is whether these are the important classical saddles. Could it be
that the strongly nonlinear theories are dominated by altogether different classical solutions?

The search for the classical solutions of nonlinear field theories such as the Yang-Mills and
gravity has so far been neither very successful nor very systematic. In modern field theories the
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main emphasis has been on symmetries as guiding principles in writing down the actions. The
dynamics tends to be neglected, and understandably so, because the wealth of the classical solutions
of nonlinear systems can be truly bewildering. If the classical behavior of these theories is anything
like that of the field theories that describe the classical world — the hydrodynamics, the magneto-
hydrodynamics, the Ginzburg-Landau system — there should be very many solutions, with very
few of the important ones analytical in form; the strongly nonlinear classical field theories are
turbulent, after all. Furthermore, there is not a dimmest hope that such solutions are either
beautiful or analytic, and there is not much enthusiasm for grinding out numerical solutions as
long as one lacks ideas on what to do with them.

By late 1970’s it was generally understood that even the simplest nonlinear systems exhibit
chaos. Chaos is the norm also for generic Hamiltonian flows, and for path integrals that implies
that instead of a few, or countably few saddles, classical solutions populate fractal sets of saddles.

a local unstable extremum a fractal set of saddles

For the path-integral formulation of quantum mechanics such solutions were discovered and ac-
counted for by Gutzwiller [5] in late 1960’s. In this framework the spectrum of the theory is
computed from a set of its unstable classical periodic solutions. The new aspect is that the in-
dividual saddles for classically chaotic systems are nothing like the harmonic oscillator degrees of
freedom, the quarks and gluons of QCD — they are all unstable and highly nontrivial, accessible
only by numerical techniques.

So, if one is to develop a semiclassical field theory of systems that are classically chaotic or
“turbulent,” the problem one faces is twofold
1) determine and classify the classical solutions of nonlinear field theories.
2) develop methods for calculating perturbative corrections to these classical saddles.
In what follows we shall give an overview over the status of this program.

The first task, a systematic exploration of solutions of field theory, has so far been implemented
only for one of the very simplest field theories, the 1-dimensional Kuramoto-Sivashinsky system.
We sketch below how its spatio-temporally chaotic dynamics can be described in terms of spatio-
temporally recurrent unstable patterns. For the second task, the theory of perturbative corrections,
we shall turn to an even simpler system; a weakly stochastic mapping in 1-dimension. The new
aspect of the theory is that now the corrections have to be computed saddle by saddle. In sect. 4.1
to sect. 4.3 we discuss three distinct methods for their evaluation.

2 Unstable recurrent patterns in classical field theories

Field theories such as 4-dimensional QCD or gravity have many dimensions, symmetries, tensorial
indices. They are far too complicated for exploratory forays into this forbidding terrain. We start
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instead by taking a simple spatio-temporally chaotic nonlinear system of physical interest, and
investigate the nature of its solutions.

One of the simplest and extensively studied spatially extended dynamical systems is the Kuramoto-
Sivashinsky system [6] (see Holmes, Lumley and Berkooz [8] for a delightful introduction to the
subject):

ut = (u2)x − uxx − νuxxxx (1)

which arises as an amplitude equation for interfacial instabilities in a variety of contexts, such as
flame front. Amplitude u(x, t) has compact support, with x ∈ [0, 2π] a periodic space coordinate.
The (u2)x term makes this a nonlinear system, t is the time, and ν is a “viscosity” damping pa-
rameter that irons out any sharp features. Numerical simulations demonstrate that as the viscosity
decreases (or the size of the system increases), the “flame front” becomes increasingly unstable
and turbulent. The task of the theory is to describe this spatio-temporal turbulence and yield
quantitative predictions for its measurable consequences.

Armed with a computer and a great deal of skill, one can obtain a numerical solution to a
nonlinear PDE. The real question is; once a solution is found, what is to be done with it? The
periodic orbit theory is an answer to this question.

Dynamics drives a given spatially extended system through a repertoire of unstable patterns;
as we watch a “turbulent” system evolve, every so often we catch a glimpse of a familiar pattern:

=⇒ other swirls =⇒

For any finite spatial resolution, the system follows approximately for a finite time a pattern
belonging to a finite alphabet of admissible patterns, and the long term dynamics can be thought
of as a walk through the space of such patterns, just as chaotic dynamics with a low dimensional
attractor can be thought of as a succession of nearly periodic (but unstable) motions. The periodic
orbit theory provides the machinery that converts this intuitive picture into a precise calculation
scheme. For extended systems the theory gives a description of the asymptotics of partial differential
equations in terms of recurrent spatio-temporal patterns.

We have proposed that the Kuramoto-Sivashinsky system (1) be used as a laboratory for ex-
ploring such ideas. We now summarize the published results obtained so far in this direction by
Christiansen et al. [7] and Zoldi and Greenside [9].

The solution u(x, t) = u(x + 2π, t) is periodic on the x ∈ [0, 2π] interval, so one (but by no
means only) way to solve such equations is to expand u(x, t) in a discrete spatial Fourier series

u(x, t) = i
+∞
∑

k=−∞

ak(t)e
ikx . (2)

Restrict the consideration to the subspace of odd solutions u(x, t) = −u(−x, t) for which ak are
real. Substitution of (2) into (1) yields the infinite ladder of evolution equations for the Fourier
coefficients ak:

ȧk = (k2 − νk4)ak − k
∞
∑

m=−∞

amak−m . (3)
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Figure 1: (a) The return map sn+1 = f(sn) constructed from periodic solutions of the Kuramoto-
Sivashinsky equations (1), ν = 0.029910, with s the distance measured along the unstable manifold
of the fixed point 1. Periodic points 0 and 01 are also indicated. (b) One time period of the Spatio-
temporally periodic solution u0(x, t) of the Kuramoto-Sivashinsky system, viscosity parameter ν =
0.029910. From ref. [7].

u(x, t) = 0 is a fixed point of (1), with the k2ν < 1 long wavelength modes of this fixed point linearly
unstable, and the short wavelength modes stable. For ν > 1, u(x, t) = 0 is the globally attractive
stable fixed point; starting with ν = 1 the solutions go through a rich sequence of bifurcations, and
myriad unstable periodic solutions whose number grows exponentially with period.

The essential limitation on the numerical studies undertaken so far have been computational
constraints: in truncation of high modes in the expansion (3), sufficiently many have to be retained
to ensure the dynamics is accurately represented. Christiansen et al. [7] have examined the dynamics
for values of the damping parameter close to the onset of chaos, while Zoldi and Greenside [9] have
explored somewhat more turbulent values of ν. With improvement of numerical codes considerably
more turbulent regimes should become accessible, and will be investigated within the project proposed
here.

One pleasant surprise is that even though one is dealing with (infinite dimensional) PDEs,
for strong dissipation values of parameters the spatio-temporal chaos is sufficiently weak that the
flow can be visualised as an approximately 1-dimensional Poincaré return map s → f(s) from
the unstable manifold of the shortest periodic point onto its neighborhood, see figure 1(a). This
representation makes it possible to systematically determine all nearby periodic solutions up to a
given maximal period.

So far some 1,000 prime cycles have been determined numerically for various values of viscosity.
In figure 1(b) we plot u0(x, t) corresponding to the 0-cycle. The difference between this solution and
the other shortest period solution is of the order of 50% of a typical variation in the amplitude of
u(x, t), so the chaotic dynamics is already exploring a sizable swath in the space of possible patterns
even so close to the onset of spatio-temporal chaos. Other solutions, plotted in the configuration
space, exhibit the same overall gross structure. Together they form the repertoire of the recurrent
spatio-temporal patterns that is being explored by the turbulent dynamics.
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3 Theory of recurrent patterns

Now we turn to the central issue; qualitatively, these solutions demonstrate that the recurrent
patterns can be found, but how is this information to be used quantitatively? This is what the
periodic orbit theory is about; it offers the machinery that assembles the topological and the
quantitative information about individual solutions into accurate predictions about measurable
global averages, such as the Lyapunov exponents and correlation functions.

Very briefly (for a detailed exposition consult refs. [11, 12]), the task of any theory that aspires
to be a theory of chaotic, turbulent systems is is to predict the value of an “observable” a from the
spatial and time averages evaluated along dynamical trajectories x(t)

〈a〉 = lim
t→∞

1

t

〈

At
〉

, At(x) =

∫ t

0
dτ a(x(τ)) .

where x(t) is a point in a high- (and in this context, infinite-) dimensional state space. The key idea
of the periodic orbit theory is to extract this average from the leading eigenvalue of the evolution
operator Lt(x, y) = δ(y − x(t))eβAt(x) via the trace formula [10]

trLt =
∑

p

p

=
∑

p

∞
∑

r=1

Tp δ(t − rTp)
∣

∣

∣det
(

1 − Jr
p

)∣

∣

∣

erβAp (4)

which relates the spectrum of the evolution operator to a sum over prime periodic solutions p of
the dynamical system and their repeats r.

What does this formula mean? Prime cycles partition the dynamical space into neighborhoods,
each cycle enclosed by a tube whose volume is the product of its length Tp and its thickness
|det(1 − Jp)|−1. The trace picks up a periodic orbit contribution only when the time t equals a
prime period or its repeat, a constraint enforced here by δ(t − rTp). Jp is the Jacobian of cycle p,

so for long cycles
∣

∣

∣det
(

1 − Jr
p

)∣

∣

∣ ≈ (product of expanding eigenvalues), and the contribution of long

and very unstable cycles are exponentially small compared to the short cycles which dominate trace
formulas. The number of contracting directions and the overall dimension of the dynamical space is
immaterial; that is why the theory also applies to (infinite-dimensional) PDEs. All this information
is purely geometric, intrinsic to the flow, coordinate reparametrization invariant, and the same for
any average one might wish to compute. The information related to a specific observable is carried
by the weight eβAp , the periodic orbit estimate of the contribution of eβAt(x) from the p-cycle
neighborhood.

The intuitive meaning of a trace formula is that it expresses the average
〈

eβAt
〉

as a discretized

integral

smooth
dynamics

linearized
neighborhoods
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over the dynamical space partitioned topologically into a repertoire of spatio-temporal patterns,
each weighted by the likelihood of pattern’s occurrence in the long time evolution of the system.

Periodic solutions are important because they form the skeleton of the invariant set of the long
time dynamics, with cycles ordered hierarchically; short cycles give dominant contributions to the
invariant set, longer cycles corrections. Errors due to neglecting long cycles can be bounded, and
for nice hyperbolic systems they fall off exponentially or even super-exponentially with the cutoff
cycle length [13]. Short cycles can be accurately determined and global averages (such as Lyapunov
exponents and escape rates) can be computed from short cycles by means of cycle expansions.

The Kuramoto-Sivashinsky periodic orbit calculations of Lyapunov exponents and escape rates [7]
demonstrate that the periodic orbit theory can be used to predict observable averages for deter-
ministic but classically chaotic spatio-temporal systems. In this particular application, the main
problem is not how to compute such averages — periodic orbit theory as well as direct numer-
ical simulations can handle that — but rather that there is no consensus on what the sensible
experimental observables are worth predicting.

It should be obvious, and it still needs to be said: the spatio-temporally periodic solutions are
not to be thought of as eigenmodes, a good linear basis for expressing solutions of the equations of
motion. Something like a dilute instant approximation makes no sense at all for strongly nonlinear
systems that we are considering here. As the equations are nonlinear, the periodic solutions are in
no sense additive, and their linear superpositions are not solutions.

A + B + ··· 6= u(x,t)

a solution a solution not a solution

Instead, it is the trace formulas and spectral determinants of the periodic orbit theory that prescribe
how the repertoire of admissible spatio-temporal patterns is to be systematically explored, and how
these solutions are to be put together in order to predict measurable observables.

Suppose that the above program is successfully carried out for classical solutions of some field
theory. What are we to make of this information if we are interested in the quantum behavior of
the system? In the semiclassical quantization the classical solutions are the starting approximation.

4 Saddlepoint expansions for stochastic path integrals

For the same pragmatic reasons that we found it profitable to shy away from facing the 4-
dimensional QCD head on in the above exploratory foray into a strongly nonlinear field theory, we
shall start out by trying to understand the structure of perturbative corrections for systems radi-
cally simpler than a full-fledged quantum field theory. First, instead of perturbative corrections to
the quantum problem, we shall start by exploring the perturbative corrections to weakly stochastic
flows. Second, instead of continuous time flows, we shall start by a study of a discrete time process.

For discrete time dynamics a Langevin trajectory in presence of additive noise is generated by
iteration

xn+1 = f(xn) + σξn , (5)

where f(x) is a map, ξn a random variable, and σ parametrizes the noise strength. In what follows
we assume that ξn are uncorrelated, and that the mapping f(x) is one-dimensional and expanding,
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but we expect that the form of the results will remain the same for higher dimensions, including
the field theory example of the preceding section.

Tracking an individual noisy trajectory does not make much sense; what makes sense is the
Fokker-Planck formulation, where one considers instead evolution of an ensemble of trajectories.
An initial density of trajectories φ0(x) evolves with time as

φn+1(y) = (L ◦ φn) (y) =

∫

dxL(y, x)φn(x) (6)

where L is the evolution operator

L(y, x) =

∫

δ(y − f(x) − σξ)P (ξ)dξ = σ−1P
[

σ−1(y − f(x))
]

, (7)

and ξn a random variable with the normalized distribution P (ξ), centered on ξ = 0.

If the noise is weak, the goal of the theory is to compute the perturbative corrections to the
eigenvalues ν of L order by order in the noise strength σ,

ν(σ) =
∞
∑

m=0

ν(m) σ
m

m!
.

One way to get at the spectrum of L is to consider the discrete Laplace transform of Ln, or the
resolvent

∞
∑

n=1

zntrLn = tr
zL

1 − zL =
∞
∑

α=0

zνα

1 − zνα
(8)

which has a pole at every z = ν−1
α .

The effects of weak noise are of interest in their own right, as any deterministic evolution that
occurs in nature is affected by noise. However, what is most important in the present context is
the fact that the form of perturbative corrections for the stochastic problem is the same as for
the quantum problem, and still the actual calculations are sufficiently simple that one can explore
many more orders in perturbation theory than would be possible for a full-fledged field theory, and
develop new perturbative methods.

The first method we apply is the standard Feynman-diagrammatic expansion. For semiclas-
sical quantum mechanics of a classically chaotic system such calculation was first carried out by
Gaspard [14]. Our stochastic version [15] reveals features not so readily apparent in the quantum
calculation.

The Feynman diagram method becomes unwieldy at higher orders. The second method, one
that we have introduced in ref. [16], is based on Rugh’s [13] explicit matrix representation of the
evolution operator. If one is interested in evaluating numerically many orders of perturbation
theory and many eigenvalues, this method is currently unsurpassed.

The third approach, the smooth conjugacies introduced by us in ref. [17], seems to be an
altogether new idea in field theory. In this approach the neighborhood of each saddlepoint is
rectified by an appropriate nonlinear field transformation, with the focus shifted from the dynamics
in the original field variables to the properties of the conjugacy transformation.

4.1 Feynman diagrammatic expansions

We start our computation of the weak noise corrections to the spectrum of L by calculating the
trace of the n-th iterate of the stochastic evolution operator L. A convenient choice of noise is
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Gaussian, P (ξ) = e−ξ2/2/
√

2π , with the trace given by an n-dimensional integral on n points along
a discrete periodic chain

trLn =

∫

dx0 · · · dxn−1L(x0, xn−1) · · · L(x1, x0)

=

∫

[dx] exp

{

− 1

2σ2

∑

a

[xa+1 − f(xa)]
2

}

, xn = x0 , [dx] =
n−1
∏

a=0

dxa√
2πσ2

. (9)

The choice of Gaussian noise is not essential, as the methods that we develop here apply equally
well to other noise distributions, and more generally to the space dependent noise distributions
P (x, ξ). As the neighborhood of any trajectory is nonlinearly distorted by the flow, the integrated
noise is anyway never Gaussian.

If the classical dynamics is hyperbolic, periodic solutions of given finite period n are isolated.
Furthermore, if the noise broadening σ is sufficiently weak they remain distinct, and the dominant
contributions come from neighborhoods of periodic points, the tubes sketched in the trace formula
(4). In the saddlepoint approximation the trace (9) is given by the sum over neighborhoods of
periodic points

trLn −→ trLn|
sc

=
∑

xc∈Fixfn

eWc =
∑

p

np

∞
∑

r=1

δn,npre
Wpr . (10)

As traces are cyclic, eWc is the same for all periodic points in a given cycle, independent of the
choice of the starting point xc, and the periodic point sum can be rewritten in terms of prime
cycles p and their repeats. In the deterministic, σ → 0 limit this is the discrete time version of the
classical trace formula (4). Effects such as noise induced tunnelling are not included in the weak
noise approximation.

We now turn to the evaluation of Wpr , the weight of the r-th repeat of prime cycle p. The
contribution of the cycle point xa neighborhood is best expressed in an intrinsic coordinate system,
by centering the coordinate system on the cycle points,

xa → xa + φa . (11)

From now on xa will refer to the position of the a-th periodic point, φa to the deviation of the noisy
trajectory from the deterministic one, fa(φa) to the map (5) centered on the a-th cycle point, and

f
(m)
a to its m-th derivative evaluated at the a-th cycle point:

fa(φa) = f(xa + φa) − xa+1 , f ′
a = f ′(xa), f ′′

a = f ′′(xa), · · · . (12)

Rewriting the trace in vector notation, with x and f(x) n-dimensional column vectors with com-
ponents xa and f(xa) respectively, expanding f in Taylor series around each of the periodic points
in the orbit of xc, separating out the quadratic part and integrating we obtain

eWc =

∫

c
[dφ] e−(∆−1φ−V ′(φ))

2
/2σ2

=

∫

c
[dφ] e

− 1
2σ2 φT 1

∆T ∆
φ + (···)

= |det∆|
∫

c
[dϕ] e

∑

1
k
tr (∆V ′′(φ))k

e−ϕ2/2σ2
. (13)

The [n×n] matrix ∆ arises from the quadratic part of the exponent, while all higher powers of φa

are collected in V (φ):

∆−1
ab φb = −f

′

aφa + φa+1 , V (φ) =
∑

a

∞
∑

m=2

f (m)
a

φm+1
a

(m + 1)!
. (14)
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The saddlepoint expansion is most conveniently evaluated in terms of Feynman diagrams, by draw-
ing ∆ as a directed line, and the derivatives of V as the “interaction” vertices

∆ab = , f
′′

a = , f
′′′

a = , . . . .

In the language of field theory, ∆ is the “free propagator”. Its determinant

|det ∆| =
1

|Λc − 1| , Λc =
n−1
∏

a=0

f
′

a (15)

is the 1-dimensional version of the classical stability weight |det(1 − J)|−1 in (4), with Λc the
stability of the n-cycle going through the periodic point xc.

Standard methods [18] now yield the perturbation expansion in terms of the connected “vacuum
bubbles”

Wc = − ln |Λc − 1| +
∞
∑

k=1

Wc,2kσ
2k (16)

Wc,2 =
1

2
+

1

2
+

1

2
+

1

2
, Wc,4 = · · · .

In the usual field-theoretic calculations the Wc,0 term corresponds to an overall volume term that
cancels out in the expectation values. In contrast, as explained in sect. 3, here the eWc,0 = |Λc−1|−1

term is the classical volume of cycle c. Not only does this weight not cancel out in the expectation
value formulas, it plays the key role both in classical and semiclassical trace formulas.

In the diagrams sketched above a propagator line connects xa at time a with xb at later time b
by a deterministic trajectory. At time b noise induces a kick whose strength depends on the local
curvature of the flow. A penalty of a factor σ is paid, m − 1 deterministic trajectories originate in
the neighborhood of xb from vertex V (m)(xb), and the process repeats itself, each vertex carrying
a penalty of σ, and higher derivatives of the fb. Summing over all noise kick sequences encoded
by a given diagram, and using the periodicity of the trace integral (9), we obtain expressions such
as [15]

r

2

Λ2r
p − 1

Λ2
p − 1

Λr
p

(Λr
p − 1)3

∑

ab

(

f
′′2
a

f ′2
a

− f
′′′

a

f ′

a

)

a−1
∏

d=b+1

f
′2
d . (17)

This particular sum is the value of the third Feynman diagram σ2 correction to r-th repeat of
prime cycle p in (16). More algebra leads to similar contributions from the remaining diagrams.
But the overall result is surprising; the dependence on the repeat number r factorizes, with each
diagram yielding the same prefactor depending only on Λr

p. This remarkable fact will be explained
in sect. 4.3. The result of the Feynman-diagrammatic calculations is the stochastic trace formula

tr
zL

1 − zL

∣

∣

∣

∣

sc

=
∑

p

∞
∑

k=0

np tp,k

1 − tp,k
, tp,k =

znp

|Λp|Λk
p

e
σ2

2
w

(2)
p,k

+O(σ4) , (18)

where tp,k is the k-th local eigenvalue evaluated on the p cycle. The deterministic, σ = 0 part
of this formula is the stochastic equivalent of the Gutzwiller semiclassical trace formula [5]. The

σ2 correction w
(2)
p,k is the stochastic analogue of Gaspard’s h̄ correction [14]. At the moment the

explicit formula is sufficiently unenlightening that we postpone writing it down to sect. 4.3.
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While the diagrams are standard, the chaotic field theory calculations are considerably more
demanding than is usually the case in field theory. Here there is no translational invariance along the
chain, so the vertex strength depends on the position, and the free propagator is not diagonalized
by a Fourier transform. Furthermore, here one is quantizing neither around a trivial vacuum, nor
a countable infinity of analytically explicit soliton saddles, but around an infinity of nontrivial
unstable hyperbolic saddles, accessible only by highly non-trivial numerical calculations.

Two aspects of the above perturbative results are a priori far from obvious: (a) that the
structure of the periodic orbit theory should survive introduction of noise, and (b) a more subtle
and surprising result, repeats of prime cycles can be re-summed and theory reduced to the dynam-
ical zeta functions and spectral determinants of the same form as for deterministic systems.

Pushing the Feynman-diagrammatic approach to higher orders is laborious, and has not been
attempted for this class of problems. As we shall now see, it is not smart to keep pushing it, either,
as one can compute many more orders of perturbation theory by means of a matrix representation
for L.

4.2 Evolution operator in a matrix representation

An expanding map f(x) takes an initial smooth distribution φ(x) defined on a subinterval, stretches
it out and overlays it over a larger interval. Repetition of this process smoothes the initial distri-
bution φ(x), so it is natural to concentrate on smooth distributions φn(x), and represent them by
their Taylor series. By expanding both φn(x) and φn+1(y) in (6) in Taylor series Rugh [13] derived
a matrix representation of the evolution operator

∫

dxL(y, x)
xm

m!
=
∑

m′

ym′

m′!
Lm′m , m, m′ = 0, 1, 2, . . .

which maps the xm component of the density of trajectories φn(x) in (6) to the ym′

component of
the density φn+1(y) one time step later. The matrix elements follow by differentiating both sides
with ∂m′

/∂ym′

and evaluating the integral

Lm′m =
∂m′

∂ym′

∫

dxL(y, x)
xm

m!

∣

∣

∣

∣

∣

y=0

. (19)

In (7) we have written the evolution operator L in terms of the Dirac delta function in order
to emphasize that in the weak noise limit the stochastic trajectories are concentrated along the
classical trajectory y = f(x). Hence it is natural to expand the kernel in a Taylor series [20] in σ

L(y, x) = δ(y − f(x)) +
∞
∑

n=2

(−σ)n

n!
δ(n)(y − f(x))

∫

ξnP (ξ)dξ , (20)

where δ(n)(y) = ∂n

∂yn δ(y) . This yields a representation of the evolution operator centered along the
classical trajectory, dominated by the deterministic Perron-Frobenius operator δ(y − f(x)), with
corrections given by derivatives of delta functions weighted by moments of the noise distribution
Pn =

∫

P (ξ)ξndξ. We again center the coordinate system on the cycle points as in (11), and
also introduce a notation for the operator (7) centered on the xa → xa+1 segment of the classical
trajectory

La(φa+1, φa) = L(xa+1 + φa+1, xa + φa) .
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The weak noise expansion (20) for the a-th segment operator is given by

La(φa+1, φa) = δ(φa+1 − fa(φa)) +
∞
∑

n=2

(−σ)n

n!
Pnδ(n)(φa+1 − fa(φa)) . (21)

As the evolution operator has a simple δ-function form, the local matrix representation (19) of La

centered on the xa → xa+1 segment of the deterministic trajectory can be evaluated recursively
in terms of derivatives of the map f . The La matrix elements are easily evaluated iteratively by
computer algebra, with finite dimensional truncations to introducing exponentially small errors.

The trace formula (8) takes now a matrix form

tr
zL

1 − zL

∣

∣

∣

∣

sc

=
∑

p

nptr
znpLp

1 − znpLp
, (22)

where Lp = Lnp · · ·L2L1 is the contribution of the p cycle. The subscript sc is a reminder that this
is a saddlepoint, or semiclassical approximation, valid as an asymptotic series in the limit of weak
noise. Vattay [19] interprets the local matrix representation of the evolution operator as follows.
The matrix identity log det = tr log together with the trace formula (22) yields

det(1 − zL)|
sc

=
∏

p

det(1 − znpLp) , (23)

so in the saddlepoint approximation the spectrum of the global evolution operator L is pieced
together from the local spectra computed cycle-by-cycle on neighborhoods of individual prime
cycles with periodic boundary conditions. The meaning of the k-th term in the trace formula (18)
is now clear; it is the k-th eigenvalue of the local evolution operator restricted to the p-th cycle
neighborhood.

Using this matrix representation Dettmann [25] was able to compute corrections to orders 64
(!) in noise strength, a feat simply impossible along the Feynman-diagrammatic line of attack.
In retrospect, the matrix representation method for solving the stochastic evolution is eminently
sensible — after all, that is the way one solves a close relative to stochastic PDEs, the Schrödinger
equation. What is new is that the problem is being solved locally, periodic orbit by periodic orbit,
by translation to coordinates intrinsic to the periodic orbit. It is this natural local basis that makes
the matrix representation so simple.

In ref. [17] we take this observation one step further; as the dynamics is nonlinear, why not
search for a nonlinear coordinate transformation that makes the intrinsic coordinates as simple as
possible?

4.3 Smooth conjugacies

This step injects into field theory a method standard in the construction of normal forms for
bifurcations [21]. The idea is to perform a smooth nonlinear coordinate transformation x = h(y),
f(x) = h(g(h−1(x))) that flattens out the vicinity of a fixed point and makes the map linear in an
open neighborhood, f(x) → g(y) = J · y.

an arbitrary coordinatization
=⇒

intrinsic, flat coordinates

11



The key idea of flattening the neighborhood of a saddlepoint can be traced back to Poincaré’s
celestial mechanics, and is perhaps not something that a field theorist would instinctively hark
to as a method of computing perturbative corrections. This local rectification of a map can be
implemented only for isolated non-degenerate fixed points (otherwise higher terms are required by
the normal form expansion around the point), and only in finite neighborhoods, as the conjugating
functions in general have finite radia of convergence.

We proceed in two steps. First, substitution of the weak noise perturbative expansion of the
evolution operator (21) into the trace centered on cycle c generates products of derivatives of
δ-functions:

trLn|c = · · · +
∫

[dφ]
{

· · · δ(m′)(φ′′ − fa(φ
′)) δ(m)(φ′ − fa−1(φ)) · · ·

}

+ · · · .

The integrals are evaluated as in (19), yielding recursive derivative formulas such as

∫

dx δ(m)(y) =
1

|y′(x)|

(

− d

dx

1

y′(x)

)m∣
∣

∣

∣

y=0

, y = f(x) − x . (24)

or n-point integrals, with derivatives distributed over n different δ-functions.

Next we linearize the neighborhood of the a-th cycle point. For a 1-dimensional map f(x) with
a fixed point f(0) = 0 of stability Λ = f ′(0), |Λ| 6= 1 we search for a smooth conjugation h(x) such
that:

f(x) = h(Λh−1(x)) , h(0) = 0 , h′(0) = 1 . (25)

In higher dimensions Λ is replaced by the Jacobian matrix J. For a periodic orbit each point around
the cycle has a differently distorted neighborhood, with differing second and higher derivatives, so
the conjugation function ha has to be computed point by point,

fa(φ) = ha+1(f
′
ah

−1
a (φ)) .

An explicit expression for ha in terms of f is obtained by iterating around the whole cycle, and
using the chain rule (15) for the cycle stability Λp

fnp
a (φ) = ha(Λph

−1
a (φ)) , (26)

so each ha is given by some combination of fa derivatives along the cycle. Expand f(x) and h(x)

f(x) = Λx + x2f2 + x3f3 + . . . , h(y) = y + y2h2 + y3h3 + . . . ,

and equate recursively coefficients in the functional equation h(Λy) = f(h(y)) expansion

h(Λu) − Λh(u) =
∞
∑

n=2

fm (h(u))m . (27)

This yields the expansion for the conjugation function h in terms of the mapping f

h2 =
f2

Λ(Λ − 1)
, h3 =

2f2
2 + Λ(Λ − 1)f3

Λ2(Λ − 1)(Λ2 − 1)
, · · · . (28)
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The periodic orbit conjugating functions ha are obtained in the same way from (26), with proviso
that the cycle stability is not marginal, |Λp| 6= 1.

What is gained by replacing the perturbation expansion in terms of f (m) by a perturbation
expansion for the conjugacy function h? Once the neighborhood of a fixed point is linearized, the
conjugation formula for the repeats of the map

f r(x) = h(Λrh−1(x))

can be used to compute derivatives of a function composed with itself r times. The expansion
for arbitrary number of repeats depends on the conjugacy function h(x) computed for a single
repeat, and all the dependence on the repeat number is carried by polynomials in Λr, a result that
emerged as a surprise in the Feynman diagrammatic approach of sect. 4.1. The integrals such as
(24) evaluated on the r-th repeat of prime cycle p

y(x) = fnpr(x) − x (29)

have a simple dependence on the conjugating function h

1

3!

∂2

∂y2

1

y′(0)
=

Λr (1 + Λr)

(Λr − 1)
3

(

2h2

2
− h3

)

(30)

The evaluation of n-point integrals is more subtle [17]. The final result of all these calculations
is that expressions of form (30) depend on the conjugation function determined from the iterated
map, with the saddlepoint approximation to the spectral determinant given by

det(1 − zLσ)|
sc

=
∏

p

∞
∏

k=0

(1 − tp,k)

in terms of local p-cycle eigenvalues

tp,k =
znp

|Λp|Λk
p

e
σ2

2
P2w

(2)
p,k

+σ3

3!
P3w

(3)
p,k

+σ4

4!
P4w

(4)
p,k

+O(σ6)

w
(2)
p,k = (k + 1)2

∑

a

(2h2
a,2 − ha,3) , w

(3)
p,k = · · · , · · · .

accurate up to order σ4. w(3), w(4) are computed in ref. [17]. What is remarkable about these
results is their simplicity when expressed in terms of the conjugation function h, as opposed to
the Feynman diagram sums, in which each diagram contributes a sum like the one in (17), or
worse. Furthermore, both the conjugation and the matrix approaches are easily automatized,
as they require only recursive evaluation of derivatives, as opposed to the handcrafted Feynman
diagrammar.

Simple minded as they might seem, discrete stochastic processes are a great laboratory for test-
ing ideas that would otherwise be hard to test. Dettmann, Palla, Vattay, Voros and Søndergaard [22,
23, 24] have used a 1-dimensional repeller of bounded nonlinearity and complete binary symbolic
dynamics to check numerically the above results, and computed the leading eigenvalue of L by no
less than five different methods; Dettmann [25] has carried this calculation to the first 64 orders(!)
in noise strength. As anticipated by Rugh [13], the evolution operator eigenvalues converge super-
exponentially with the cycle length; addition of cycles of period (n+1) to the set of all cycles up
to length n doubles the number of significant digits in the perturbative prediction. However, as
the series is asymptotic, for realistic values of the noise strength summations beyond all orders are
needed [24, 25].
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5 Proposed research

The periodic orbit theory approach to strongly nonlinear field theories is to visualize turbulence as a
sequence of near recurrences in a repertoire of unstable spatio-temporal patterns. The investigations
discussed above are first steps in the direction of implementing this program. If funded, this project
would focus on three goals, attainable within the proposed 3-year framework.

1. Systems of infinite spatial extent: The dynamics over large space and time scales
should be built up from small, computable patches of periodic solutions. So far, existence of a
hierarchy of spatio-temporally periodic solutions of a nonlinear field theory resticted to a small
finite spatial intervals has been demonstrated, and the periodic orbit theory has been tested in
evaluation of global averages for such system. But there is a big conceptual gap to bridge between
what has been achieved, and what needs to be done: The system has been probed in its weakest
turbulence regime. Numerical simulations demonstrate that as the viscosity decreases (or the size
of the system increases), the “flame front” becomes increasingly unstable and turbulent. The
task of the theory is to describe this spatio-temporal turbulence and yield quantitative predictions
for its measurable consequences. It is an open question to what extent the approach remains
implementable as the system goes more turbulent. A preliminary exploration (with C.P. Dettmann,
unpublished) of equilibria of the infinite extent Kuramoto-Sivashinsky system gives us confidence
that a hierarchy of spatio-temporally periodic solutions can also be determined for systems of infinite
spatial extent, and new, variational methods for determining recurrent patterns are currently under
development [26, 27].

2. A trace formula quantization of infinite dimensional systems: The Cvitanović-
Eckhardt [10] classical trace formula (4) has been successfully applied to dissipative extended
systems. However, even though we are emboldened by other successes of the periodic orbit theory
for low-dimensional Hamiltonian systems, we do not know whether it will work for a Hamiltonian
field theory. And even if it works for classical Hamiltonian field theories, we do not know whether
it will give us the quantum “chaotic field theory” sketched above. As a key part of this proposal,
a new semiclassical trace formula needs to be derived, a trace formula that combines Gutzwiller
approach to unstable expanding directions with the Bohr-Sommerfeld quantization of the (infinity
of) elliptically stable degrees of freedom of a Hamiltonian field theory. A preliminary exploration
(with my student R. Paskauskas, unpublished) inspired by the work of my colleague T. Uzer and
collaborators [28], suggests that such a formula exists for finite-dimensional Hamiltonian problems.

3. Beyond Feynman-diagrammatic expansions: We have formulated a semiclassical per-
turbation theory for stochastic trace formulas with support on infinitely many chaotic saddles. The
central object of the periodic orbit theory, the trace of the evolution operator, is a discrete path
integral, like those found in field theory and statistical mechanics. The weak noise perturbation the-
ory, likewise, resembles perturbative field theory, and can be cast into the standard field-theoretic
language of Feynman diagrams. However, we found out that both the matrix and the nonlinear
conjugacy perturbative methods are superior to the standard approach. In contrast to previous
perturbative expansions around vacua and instanton solutions, the location and local properties of
each saddlepoint must be found numerically.

The key idea in the new formulation of perturbation theory is this: Instead of separating the
action into quadratic and “interaction” parts, one first performs a nonlinear field transformation
which turns the saddle point into an exact quadratic form. The price one pays for this is the
Jacobian of the nonlinear field transformation — but it turns out that the perturbation expansion
of this Jacobian in terms of the conjugating function is order-by-order more compact than the
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Feynman-diagrammatic expansion.

Broader impact: A modern education in the tools and methods of nonlinear science requires
training that bridges traditional discipline boundaries. Students will acquire both the mathematical
tools and develop physical intuition needed to tackle complex nonlinear problems arising in many
different scientific fields. The CNS environment will complement the research component with a
broad range of activities: interdepartmental research seminars, student-run seminars, an active
visiting scientist program, and close interactions with Georgia Tech groups working on related
problems [29, 30, 31], such as pattern formation and control, high-dimensional dynamics, coherent
structures in turbulent flows. Collaborative visits to project partners (C.P. Dettmann - Bristol,
G. Vattay - Budapest, and others) will provide additional training experience and opportunities,
both domestic and abroad.

The outreach initiatives will include undergraduate research participation and an advanced
nonlinear dynamics course. Currently under development by the ChaosBook cross-disciplinary team
(particle physicists, nuclear physicists, condensed matter experimentalists and mathematicians),
this novel hyper-linked web-based advanced graduate course [11] is already reaching students across
the globe.

6 Prior, current and pending support

PI is currently Glen Robinson Chair in Nonlinear Sciences and director of the newly created Georgia
Tech Center for Nonlinear Science (CNS). As a recent arrival to US, he has no NSF support.
However, in the period 1997-2000, prior to moving to GT, P. Cvitanović led the initiative to
create a Center for Complex Systems at the Northwestern University, and was the original PI
on the IGERT #9987577: Complex Systems in Science and Engineering program, awarded to
Northwestern for the period 2000-2004.

Prior to moving to US, Cvitanović founded and directed in the period 1993-1998 Center for
Chaos and Turbulence Studies (CATS) at the Niels Bohr Institute, Copenhagen, a cross-disciplinary
effort which became one of Europe’s leading centers for nonlinear science, housing and in part
funding approximately 15 faculty, 8 post-docs, 45 graduate students, 15 long term visitors, 40 short
term visitors, and 5 workshops/conferences in any given year.
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