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Abstract. We construct a series of-unimodal approximations to maps of theehbn type

and utilize the associated symbolic dynamics to describe the possible bifurcation structures
for such maps. We construct the bifurcation surfaces of the short periodic orbits in the
topological parameter space and check numerically that @r@hl map parameter plage, b) is
topologically equivalent to a two-dimensional section through the infinite-dimensional parameter
space characterizing a generic map of tHEnbh type.

PACS numbers: 03201, 0545B

1. Introduction

While the topological dynamics of unimodal and multimodal one-dimensional mappings is
well understood [30, 28], a classification of all possible topologically distinct dynamical
systems in two or more dimensions remains an open problem. The goal of this paper is
to develop a theory of bifurcation diagrams which classify and order topologically distinct
bifurcation sequences for two-dimensional invertible maps of tkadd type [20]. We
consider maps which stretch and fold the phase space once under one mapping, exemplified
by a Smale horseshoe [33]. We study here the maps wiieclnot have a complete
binary Cantor set repeller such as a complete horseshoe map has, but assume that the
admissible orbits can still be uniquely identified by a subset of the binary symbolic dynamics
itineraries [12, 13, 7]. This assumption has not been proved for #@ofl map, but is
supported by all of our numerical results.

The Henon map [20] is an invertible mapping of a two-dimensional plane into itself:

2
X1 =1—ax’ +y

Yiy1 = bx;.
Equivalently, the lnon map can be defined by the 2-step recurrence relation
Xp1=1— axl2 + bx;_1. Q)

The Henon map is one of the simplest models of a Poimgaap of a three-dimensional
invertible flow. Our description of the bifurcation diagram for all maps of tl@éh type
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(once-folding maps) will be generic in the sense that it will be valid for all flows which
fold the phase space at most once between subsequent Rosecions.

Detailed numerical investigations of such structures for tfendth map have been
carried out by Mira and co-workers [8, 29, 5], as well as many other authors [1,2-
4,12,13,15,20,27,29,32], to cite but a few. Our approach is different in so far that
instead of studying the bifurcation structure of thértldn map or the Lozi map [22], we
offer here a topological characterization of the parameter space and the admissible orbits
for all maps of the Bnon type. The approach is closely related to the pruning front
conjecture [7, 6]. There the phase space stable—unstable manifolds foliations are replaced
by a straightened-out symbol plane ‘street map’ applicable to any map oféherttype.

The totality of all turning points of the unstable manifold of the map delineates the ‘pruning
front’ in the symbol plane, the border between the admissible and inadmissible orbits. For
unimodal one-dimensional mappings the pruning front is specified by a single parameter, the
‘kneading invariant’ [30, 28], but for two-dimensional mappings infinitely many parameters
are required to specify the pruning front, that is to say the infinity of the turning points of
the unstable manifold.

However, one striking feature of smooth dissipative once-folding maps is their hierarchic
foliation; for small values of the modulus éfin coarsest resolution they look like unimodal
maps, under somewhat finer resolution two primary folds are discernible, and so forth. This
observation is the basis for a systematic approximation to two-dimensional once-folding
maps by sequences afunimodal one-dimensional maps that we shall develop here; we
shall construct nested sequences of parameter topological ‘street maps’ of all admissible
(but strongly hierarchically ordered) parametrizations of once-folding maps. A symbol
plane together with a pruning front specifies symbolic dynamics givan once-folding
map; ourn-unimodal approximation to describeli admissible once-folding maps, with a
point in the topological parameter space corresponding to a particular topological parameter.

The bifurcation theory presented here is based on [16], and the bifurcation structures in
multi-unimodal one-dimensional maps are discussed in the spirit of the work in [18].

2. Unimodal approximation

In the b — 0 limit the unstable manifold of the &hon map shrinks to a one-dimensional
arc, folds of the stable manifold stretch off to infinity, and théndn map (1) reduces to
the one-dimensional quadratic map

X1 =1- ax,2 (2

with one critical pointx, = 0.
The symbolic description for a unimodal map with a critical poiptis defined by

_ 1 if x;, > x, 3
= 0 if x; < x,.

The infinite symbol sequenc&(x) = si1s2s3... is the (future) itinerary of the point
x = xo. The dynamics acts on this sequence as a shift:

S(f'(x)) =0"'S(x) = 514152445341 - - - - 4)

SymbolsL and R are often used [26] instead of 0 and 1, indicating that the pgint
lies either to the left or right of the critical point. The critical pomt may be denoted by
S, == C
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To any given itinerarys we associate the point(S) € [0, 1] constructed as follows

Wy if St41 = 0

Wiyl = w1 = 81

1— w; if s;00=1

" 5)
y(S) = 0wiwows ... = Z w, /2.
=1

The numbetry (S) is independent of details of a particular unimodal map and preserves the
ordering ofx in the sense that it > x theny (S(x)) > y(S(x)) for any unimodal map. We
shall refer toy (S) as the(future) topological coordinater the (future) symbolic coordinate.

2.1. Kneading values

If the parameter in the quadratic map (2)is> 2 then the iterates of the critical point

diverge fort — oco. As long asa > 2, any sequencéd composed of letters; = {0, 1}

is admissible, and any value of § y < 1 corresponds to an admissible orbit in the

non-wandering set of the map. The corresponding repeller is a complete binary Cantor set.
Fora < 2 only a subset of the points in the interyak [0, 1] corresponds to admissible

orbits. The forbidden symbolic values are determined by observing that the largedtie

in an orbitx; — x, — x3 — ... has to be smaller than or equal to the image of the critical

point, the critical value f (x.). Let K = S(x.) be the itinerary of the critical pointy = x.,

denoting thekneading sequencef the map. The corresponding topological coordinate is

called thekneading valug28]

K =y(K)=y(Sx)). (6)

If y(S) > y(K), the pointx whose itinerary isS would havex > f(x.) and cannot be an
admissible orbit. Let

7 (S) = supy (c™(S)) (7

be themaximal valuethe highest topological coordinate reached by the orbit> x; —
X3 —> ...

Theorem 1 ([31, 26, 14, 30, 28])Letk be the kneading value of the critical point, apds)
be the maximal value of the orlft Then the orbitS is admissible if and only if (S) < «.

We shall call the intervalk, 1] the primary pruned interval The orbitS is inadmissible
if y of any shifted sequence ¢ffalls into this interval.

While a unimodal map may depend on many arbitrarily chosen parameters, its dynamics
determines and is determined by a unique kneading valuEhere exists a map from the
parameter of a specific unimodal map to theline, and thus we can useto parametrize
any unimodal map. We shall cadl the topological parameterof the map. The jumps in
x as a function otz correspond to inadmissible values of the topological parameter. Each
jump in « corresponds to a stability window associated with a stable cycle of a smooth
unimodal map. For the quadratic map )ncreases monotonically with the parameter
but in general such monotonicity need not be the case.

2.2. Periodic orbits

A periodic point (or acycle point) x; belonging to a cycle of period is a real solution of
() = x;, i=01,...,n—-1, fr(x) # x; for r < n. (8)
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Table 1. The maximal values of unimodal map cycles up to length 5.
N 7(S)

0 00=0

1

010= 2
10 01100= ¢

101 olio=$

100  0111000= §
1011  011010010= 15
1001  o11l0= 3
1000  0I1110000= 18
10111  011010= 2
10110  011011001006= 2
10010  011100= 2
10011  0111010001C= ¥
10001  011110=
10000  011111000006= 32

The nth iterate of a unimodal map crosses the diagonal at mbsings. Similarly, the

backward and forward Smale horseshoes intersect at mdigh@s, and therefore there will
be 2 or fewer periodic points of length. A cycle of lengthn corresponds to an infinite
repetition of a lengtlh symbol string, customarily indicated by a line over the string:

o -
S = (515253...5,)" = 515253...5,.

If 5152...s, is the symbol string associated withg, its cyclic permutation
SkSk+l---S.51...8x_1 corresponds to the poing_; in the same cycle. A cycle is called
prime if its itinerary S cannot be written as a repetition of a shorter blstk

A cycle of a differentiable one-dimensional map is stable if

fre)| =1 ) [l - f () f ()] < L

d
=
A cycle is superstableif the above product vanishes, i.e. if the orbit includes a critical
point. The interval of parameter values for which a cyplés stable is called the stability
window of p.
Each cycle yields: rational values of/. It follows from (5) that if the repeating string
s1, $2, ... 8, contains an odd number of 1's, the string of well-ordered symbets, . .. w,
has to be of the double length before it repeats itself. The valige a geometrical sum
which we can write as the finite sum

22)1 2n
Y (5152 .. . 8) = 1 Xlzw,/Z’.
=

Using this we can calculate th&(S) for all short cycles. For orbits up to length 5 this is
done in table 1.

2.3. Bifurcations

Periodic orbits in smooth unimodal maps are generically created either as a pair with
one stable and one unstable lengthorbit in a saddle-node bifurcation point, or as a
period 2: orbit in a period-doubling bifurcation where a periadorbit becomes unstable.
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Figure 1. Bifurcation points from table 1 plotted as a function of the topological parameter
k. Grey areas are inadmissible intervals«oftorresponding to stable windows in a smooth
unimodal map. As a shorthand notation for pairs of orbits we use the tettedenote either a

0 or a 1. The line over the symbol strings is omitted.

Immediately after a saddle-node bifurcation the two created orbits both have the same
itinerary 5157 - .. s, with an even number of 1's and with the topological parameter value
k(5152...5,) = y(5152...5,). Orbits with this itinerary exist for all unimodal maps with
kK > y(5152...5,). As the parameter in the smooth unimodal map increases the stable orbit
passes a superstable point and changes its symbolic dynamics. If we now assume that the
symbol stringsisz ... s, is the cyclic permutation giving the maximupn value, then the
itinerary of the stable orbit after the superstable pointss...s,_1(1 —s,), since the point
closest to the critical point passes through the critical point. The topological parameter value
of the map is them (s1s2...5,_1(1 — s,)). The inadmissible topological parameter interval
(k (5152 .. 8p), k(s152...5,_1(1 — s5,))) is then uniquely related to the parameter interval in
a between the saddle-point bifurcation and the superstable point, or more loosely speaking;
to thea interval where the orbitys, . ..s,_1(1 —s,) is stable.

In the same way there will be an interval

(k(s152...8p—1(1 — 8,)), k(5152 . . . Sy—1(L — 5,)8182. .. 5,))

corresponding to the interval infrom where the orbitys, . ..s,_1(1 —s,) is superstable to

the point where the orbis, . .. s, 1(1 — s,)s152. .., iS superstable. This interval includes

the period-doubling bifurcation where the Brbit s1s5...5,_1(1 — s,)s152. . .5, IS created.
From table 1 we can find some of the largest intervals aorresponding to the stability

windows in a smooth unimodal map. The stable period 3 orbit window on the parameter

a-axis corresponds to the interv@, g) on thek line and so on, see figure 1.

3. Bi-unimodal approximation

The unimodal approximation is an exact description for tleéh map forib| — 0, but

not very accurate fob # 0. We therefore continue to the next order of refinement and
approximate the unstable manifold in figureavith two unimodal maps, one above the
other, as sketched in figurel®(

It is important to note that the points in the orbit are forced to be on one of the two
functions in figure 2§) depending on one symbol in the past itinerary: if an orbit has a
point on the right-hand side of the horseshoe (symbol 1) then its image is on the upper
function and if an orbit has a point on the left-hand side of the horseshoe (symbol 0) then
its image is on the lower function. This is illustrated in figure 2 where we have drawn the
unstable manifold of the &hon map(a = 1.4, » = 0.3) and one period 7 orbit. For each
point in the orbit we have written the future itinerary of the point (omitting the line over the
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Figure 2. (a) The strange attractor (unstable manifold) and a period 7 orbit in #meohl map
(a =14,b=0.3). (b) A sketch of a bi-unimodal approximation with the same periodic orbit.

symbols). The choice between the upper and lower half of the unstable manifold depends
on the preceding point in the orbit, and hence on the next to last symbol in the symbol
string labelling the point.

We stress that this map, constructed from two unimodal mapseptisa multivalued
map, since each point is assigned a unique value. We denote this one-dimensional map ‘bi-
unimodal’ instead of bimodal not to confuse it with other bimodal maps frequently studied
in the literature, such as the cubic map.

A point in an orbit with itineraryS = ...s,_25,_15; - S;415:42... IS mapped in the
bi-unimodal approximation by the one-dimensional map

Solxs) if ,_1=0

fl(-xt) if Si—1 = 1. (9)

Xt+1 = fs,,l (x;) =

The two critical points of the functiong and f; yield the two kneading sequenc&g
and K, with the corresponding topological parameter valdg®ndx;. The bi-unimodal
map f; is described by the pointc, «1) in the two-dimensional topological parameter
plane. For an order-reversing two-dimensional map which flips, stretches, and folds the
phase space, the critical value #f is larger than that offy, k1 > «o. This is the case for
the Henon map withb > 0. For an order-preserving mapping which stretches and folds
without flipping the critical value off; is smaller thanfy and«; < xo. This is the case for
the HEnon map withb < 0. The lineb = 0 is mapped into the line; = «q, the unimodal
map discussed above.

We shall now trace out some of the characteristic bifurcation structures for the bi-
unimodal approximation in this two-dimensional topological parameter plane.

Each orbit (except the two fixed poinBsand1) has two maximal valueg, and y;
defined as for the unimodal map (7), but with the restriction that the symhglis equal
to the index ofy. If the orbit is given by the itineran = ...s_,s_150 - s152... we have

¥s(S) = supy (6™ ($)) With 5,1 =5 (10)
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whereo is the shift (4). An orbitS is admissible if and only if

70(S) < ko
n(S) < k1

so the orbitS exists within a rectangle in théco, k1) plane. The parameter point point
ko = 1, k1 = 1 corresponds to a complete Smale horseshoe for which all orbits exist.

In order to have a bi-unimodal map, we have to require that the images of the critical
points are not above the smallest critical point. In terms of kneading sequences this
constrainse, to

(11)

ks =y (Ks) =2 y(0(Ks)) (12)
which is true if
K >010=2. (13)

This requirement is less constraining in higher-order multi-unimodal approximations.

3.1. Maximal values of short cycles

We can now proceed to determine all cycles up to a given length and determine the
topological valuesy (S) of all their cycle points.

The fixed point0 hass_, = 0, with the only maximal valug(0) = 0. This fixed point
exists for

ko = Po(0) = 0.

In other words, if there is anything in the non-wandering set, the fixed @o@mjsts_. The
fixed pointl hass_; = 1, with the corresponding topological coordingtgl) = 0.10. It
exists for topological parameter plane values

k1> 71(D) = 010= 2.

The 2-cycle10 has two cyclic permutations. Cycle poityg with itinerary 5357 = 10
hasso = s» = 0 ands_; = s; = 1 giving the maximal valug,(10) = 0.1100. The second
point in the period 2 orbitxg;, is on map fp sinces_; = 0 and the maximal value is
70(01) = 0.0110. Thus this orbit exists for the topological parameter values

> 70(10) = 0.0110= 2
k1 > 71(10) = 0.1100=

Ko

(14)

I~ ol

S
There are two 3-cyclesl00 and101 with s_; = s, determining the fold to which a
cycle point belongs. Th&00-cycle cycle points have the following topological coordinates:

¥0(100) = 0.111000,y,(010) = 0.011100,)5(001) = 0.001110. The two maximal values
are 7(100) and 71(100), so the region in the topological parameter plane for wHie0
exists is given by

Ko = P0(100) = 0.111000=

k1 > P1(100) = 0.011100=

8

9

4 (15)
-

The topological coordinates of the other 3-cycle cycle points j@@01) = 0.110,
y1(110 = 0.100, ¥1(011) = 0.010, so the cycle exists for

Ko = )}Q(m) =0.110= § (16)
K1 2 );1(1_01) = 0.100= 2. a7

~Nibh I
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Table 2. The maximal values of short cycles of the bi-unimodal map.

s Po(S) N 71(8)
0 00=0
1 010=2
01 00110=2 10 01100=¢

101 0110=$ 110 Q100= %

100 0111000= § 010 0011100= §
1101 010010110= 12 1011  011010010= 13
1001 01110= 0110  00100=
1000 0I1110000= 15 0010 000111100= 1,

11101  010110= £ 10111 011010= 2
10101 01101100100= 2 10110 01101100100= 2
10100  011000= % 10010 011100= 2
11100 01011101000= £ 10011 01110100010= 12
10001 011110= £ 00110 000100= 4

10000 01111100000:% 00010 0000111110G=

&le

1.0
N =
| [k o o
==
of| |o 9| |o
r| [© O] P
10011
10010
10110
K
1 10111
0. 65

Figure 3. Bifurcation lines of the period 5 cycles
0. 65 K 1.0 yielding a bi-unimodal swallowtail (‘crossroad area’
[29, 5]) in the topological parameter plagey, «1).

We can continue these calculations for longer cycles; jthealues for cycles up to
length 5 are summarized in table 2. These values yield the bifurcation lines for the cycles
in the topological parameter plane spdgg, «1).

3.2. Bifurcation lines in the parameter plane

The bifurcation lines given by table 2 are easier to understand if we draw the lines in the
(ko, k1) plane. The period 1, 2, 3, and 4 cycles yield single stable cycle bands. For each
cycle only one maximum value is larger thn We note that thé, 10, and1011 cycles
bifurcate along constamt; values, while10c and 10C yield windows along constan.
We can find a similar structure for theéHon map close to thie = 0 line.

However, the bi-unimodal approximation describes also more interesting higher
codimension structures. The simplest example is given by the four period 5 dfelds,,
€; € {0, 1}. The bifurcation lines for these cycles are drawn in figure 3. Each cycle exists
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1.0 H
7
0.95 —
6
- 1
¥ 0.9 ‘
71 5 |7
0.85 —

0.6 0.7 0.8 0.9 1.0 Figure 4. The topological parameter
K plane (ko, k1) bifurcation lines of the
0 period 5, 6 and 7 swallowtails.

in a rectangle in the topological parameter plane. The inaccessible topological parameter
values are shaded grey. Thg = «; line necessarily crosses the same stable windows
101% and 100 as the unimodal map, figure 1, but along the= 1 line the cycles pair
differently, as111G and101C:=. We find in the(xo, x1) plane a topological structure which

we shall refer to as a ‘swallowtail’, a parameter region within which the two pairs of cycles
exchange partners. This structure is denoted a ‘crossroad area’ in [29, 5]. This swallowtail
crossing is the distinctive feature of bi-unimodal maps; we shall illustrate it by finding all
swallowtails for the short cycles up to length 9. fif and f; are smooth functions then the
function £®(x) — x will have the normal formg = x° + ux + v. Solvingg = 0 for x, u,

andv close to zero will depend on the two parameterand v, and the dimensionality of

the normal form parameter spae, v) is called the codimension of the bifurcation [11].
Hence, the swallowtail such as the one illustrated in figure 3 is a codimension-2 bifurcation
structure.

The bifurcation diagram for the period 6 cycles yields one swallowtail similar to the
period 5 swallowtail with the symbolic dynamics given B90yle;. In the bi-unimodal
approximation the other period 6 cycles yield simple windows with stable cycles. The
period 7 cycles vyield three different swallowtails in the topological parameter plane. The
swallowtails for period 5, 6, and 7 cycles are drawn together in figure 4.

Longer cycles combine into increasing numbers of swallowtails. In figussasd @)
we display all swallowtail crossings for cycles of periods 8 and 9. The swallowtails are
given by the following itineraries.

Period 5;10¢01¢;.

Period 6;1001¢;.

Period 7;100Qq1eq, 10e9111e; and 10eg101e;.

Period 8; 1000Qgleq, 100:9101e1, 1000111eq, 10601011y and 100%ep10e¢q, where
the last swallowtail lies below the diagonal and occurs for the orientation-preserving maps
(b < 0 for the HeEnon map).

Period 9;10000@q1e¢;, 100Q:0101¢7, 100:9100%7, 100:9101%1, 10691110%;,,

10601011%;, 10691010%, 10¢p1111%,, 1001%(10¢; and1000%y10e; where the last two
swallowtails exist for orientation-preserving maps.

Note that the figures describe both the number of swallowtails of different lengths and
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1.0 1 I

0.8

0. 65 1.0
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Figure 5. The bifurcation lines of the perioca) 8 and p) 9 swallow tails in the topological
parameter planéxo, «1).

their relative positions in the parameter plane. We observe that a number of swallowtails
are ordered simply by rows and columns. For example, all swallowtails with the symbol
strings10teple; with k € {1, 2, ...} are placed above each other in g, «1) plane, with
each swallowtail nested in between the two tails of the swallowtail of the preceding shorter
cycle, see figure 4.

The symbolic description for a generic swallowtail in the bi-unimodal approximation is
given by the following proposition.

Proposition 1. The four cycles that form a bi-unimodal swallowtail of an once-folding map
have following itineraries:

S = 5152+ 5, 0€0813Sm 44 - - . Su_21€q (18)

with the kneading values

P1(S) = y(s152- - - $mO0€0Smi3Sm+a - . . Su—2l€1) (19)

P0(S) = ¥ (Sma3Smaia- - - Sn_21€15152 - - - 5, 0€0).
The swallowtail crossing belongs to the orientation-reversing niap-(0 for the Hénon
map) if y(S) = 71(S), and the orientation-preserving map 0 for the Hénon map) if
7(8) = 70(S).
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1£1001
Kq
1e101
K Figure 6. Bifurcation lines for the homoclinic orbit$ep10e11
0 in the topological parameter plane.

3.3. Aperiodic orbits

The aperiodic orbits have bifurcations structures in the bi-unimodal parameter plane similar
to those discussed above, but the bifurcation structure of aperiodic orbits in one-dimensional
bi-unimodal maps, discussed in [17], is more complicated than the bifurcation of periodic
orbits. We will describe here briefly the bifurcation structures of some homoclinic orbits.
The bifurcation lines of the four homoclinic orbilgo10e;1, with €, €1 € {0, 1} are drawn

in the topological parameter plane in figure 6. All four orbits hsiye= 0.10, the two orbits
160101 havep, = 0.110, and the two orbitdey1001 havep, = 0.1110. As shown in [17],

there exists a complicated web of bifurcations connecting these bifurcation lines to other
bifurcation lines in the parameter plane. The lines of crisis bifurcations and band merging
are of this type.

4. Four-unimodal approximation

The bi-unimodal approximation developed above can explain most but not all of the
bifurcation structures observed in th&hbn map(a, b) parameter plane discussed below.
To explain further observed structures we have to refine the approximation and approximate
the unstable manifold in figure & with four unimodal functions instead of just two as in
figure 2p). This four-unimodal reproduces all bifurcations of the unimodal and bi-unimodal
approximations, and yields in addition more complicated bifurcation structures.

The choice of the branch at each iteration is now determined by the symbols of the two
preceding points in the orhit »s_1, so we label the four functions by the four symbol strings
f10, foo» fo1 and f1;. The relative ordering of the four branches is given by the way the
horseshoe map acts on the phase space, with the functions nestgdagoo < for < f11
for orientation-reversing maps (theeHon map withb > 0) and asfo1 < f11 < fi0 < foo
for the orientation-preserving maps (thé&mbn map withb < 0).

Each map has a critical point with an associated topological parametetetermined
by the kneading sequence of its critical point. The relative ordering, pfis the same as
of the functions themselves. For orientation-reversing maps

K10 < K00 < Ko1 < K11, (20)
and for orientation-preserving maps

ko1 < K11 < K10 < KQO- (21)
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An orbit § now has four maximum values restricted to the four maps
ﬁv’.v(s) = Supy (Um(S)) with Sm—2 = s,v Sm—1 = S. (22)

As in the bi-unimodal approximation, we can easily determine jthe of all the short
cycles, and study all possible bifurcations of orbits in the four-dimensional topological
parameter spac@o, koo, ko1, k11)- Since we lack the ability to visualize three-dimensional
bifurcations hyperplanes in a four-dimensional parameter space, we will draw bifurcation
lines in the different two-dimensional topological parameter sections and some bifurcation
planes in three-dimensional sections of the full parameter space. The six projections of the
four-dimensional space into two-dimensional subspaces«agexoo), (k10, k01), (K10, K11),

(k00 k01), (K00, K11), and (ko1, k<11). These projections will reveal the codimension-2
bifurcation structures possible in a generic once-folding map in the four-unimodal. We
shall recover the unimodal and bi-unimodal structures already discussed above, together
with some new bifurcation structures.

The projections of the four-dimensional topological parameter space into different two-
dimensional spaces are non-trivial because of the ordering constraints (20) and (21). In
simple one-dimensional tri-unimodal and four-unimodal maps [18] we can scan a two-
dimensional topological parameter plage, «;) while we let all the other topological
parameter values have the extremum value that allows a maximum number of orbits. The
two-dimensional planes give us all possible codimension-2 bifurcation structures in the
system. For the four-unimodal maps discussed here we have drawn two-dimensional
planes where the othet,, values are as large as possible but restricted by (20) and (21).
The six planes are:

o (K10, K00) with kor=k11=1 forb >0 and/c01 = K11 = K10 for b < 0,

o (K10, K01) with Koo = ko1, k11 =1 forb >0 andxll = K10, koo = 1 forb < 0,

o (K10, K11) with Koo = K01 = K11 forb >0 andKo]_ = K11, Koo = 1forb <O,

o (K00, K01) with k10 = ko9, k11 = 1 for b > 0 andkq1 = k19 = kgo for b < 0,

o (Koo, K11) with K10 = Koo, ko1 = k11 for b > 0 and/<01 = k11, K10 = kgo for b < 0O,

o (ko1, K11) With k10 = k0o = ko1 for b > 0 andkig = koo =1 for b < 0.

Here the Hnon map parameter is used to indicate whether the map is orientation
reversing or preserving.

Some of the assumed parameter limits, for example= ko1 = «11, are impossible in
any smooth map. This introduces some unacceptable structures (see below), but ensures that
we capture all possible codimension-2 structures existing in the four-dimensional parameter
space. Inequalities (20) and (21) imply that the parameter plangscoo), (ko1, k11) only
consist of the upper trianglego > «10 and k11 > ko1 respectively and we do not know
the sign ofb in these planes. In the other four planes the diagonal corresporids: @ in
the Henon map. The bifurcations lines are not necessarily continuous across the diagonal
because the projections are different for- 0 andb < 0. The four planeskio, ko1),

(k10, K11), (K00, K01), @nd(koo, k11) (€.9. figures 8f)—(e)) can be regarded as eight triangular
planes drawn together for convenience.

4.1. Period 4 orbit cusp bifurcation

The shortest orbits which exhibit a new type of a codimension-2 singularity in the four-
unimodal are the period 4 orbits000, 1001 and1011. In figure 7 the bifurcation lines
for these three orbits are drawn in the topological parameter lagecoo). The unstable
orbit 1001 is common in the two tails and at a point where the two tails meet this orbit
yields a cusp bifurcation. This cusp is similar to the codimension-2 cusp in the centre of
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Table 3. The four symbolic valuesig, koo, k01 @andki1 of the nine period 6 cycles.

K01

K00

7(000010 = 0.000011111100
7(000012 = 0.000010

7(100000 = 0.111111000000
7(100002 = 0.111110

7(100013 = 0.111101000010
7(100010 = 0.111100

7(111000 = 0.101111010000
7(101000 = 0.110000

7(010012 = 0.011101100010
7(1100123 = 0.100010

7(101002 = 0.110001001110
7(111003 = 0.101110

7(110010 = 0.100011011100
7(111012 = 0.101101010010
7(101013 = 0.110010

K10

7(011003 = 0.010001101110

K11

7(000100 = 0.000111111000
7(001100 = 0.001000

7(000110Q = 0.000100

7(011100 = 0.010111101000
7(010100 = 0.011000

7(001110 = 0.001011110100

(110100 = 0.100111011000
(111100 = 0.101000

7(100110 = 0.111011000100
7(100113 = 0.111010

7(100102 = 0.111001000110

7(010110 = 0.011011100100

7(111103 = 0.101001010110
7(110103 = 0.100110

(101113 = 0.110101001010
(101110 = 0.110100

the swallowtails discussed in the bi-unimodal case, but unlike a bi-unimodal swallowtail
there is no connection to two other tails.

4.2. Period 6 swallowtails

It turns out that the period 5 orbits do not yield any new and interesting structures in the
four-unimodal approximation. For the period 6 orbits we find four new codimension-2
structures.

All six topological parameter planes of period 6 orbits are drawn in figuras-8().
The symbolic values (S) used to draw these figures are given in table 3. We now discuss
figure 8 in detalil.

The period 6 swallowtail structure in figuree(s the bi-unimodal swallowtaill00¢; 1€,
already discussed and drawn in figure 4.
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Figure 8. The bifurcation lines of period 6 orbits in the six four-unimodal topological parameter
planes.
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The swallowtail in figure &) is a legal swallowtail of the once-folding map but one
which we did not find in the bi-unimodal topological parameter plane. The symbolic
description of the orbits in this swallowtail E0e;11¢,.

Figure 8@) illustrates some interesting new bifurcation structures. Here we find two
cusp structures involving three orbits each. One cusp bifurcation involves the three orbits
111100,111001, and.11101 while the other cusp involves the three orb$001,101000,
and 110101. The taill110@ bifurcating along thecyg direction in figure 84) is also a
tail bifurcating along theg direction in figure 8¢) starting at the bi-unimodal swallowtail.

We will focus on these structures because, as we shall see below, they are observed in the
Hénon map.

In figure 8¢ ) we find a new cusp bifurcation involving the three orldi0111,100110,
and100101.

Figure 8p) shows the topological parameter plaig, ko1) and yields some unimodal
structures and the cusp bifurcation also drawn in figufg.8(

Figure 8¢l) appears to be slightly more complicated but it contains no structures not
already described above. A discontinuity at the diagep@k= «o1 is clearly visible here. At
the diagonal the different folds switch ordering, so some bifurcation lines are discontinuous
at this line in the symbol plane. This does not imply that there are any discontinuities in the
Hénon map. The part of a swallowtail in the upper triangle here is the same bi-unimodal
swallowtail as in figure &) and not a new structure. The cusp in the lower triangle is the
same cusp as in figuref§(and only a new image of this.

There are in addition some other topological bifurcation structures in figure 8 which
cannot be interpreted as bifurcations. These do not give topological lines in pairs as required
for a bifurcation in a dynamical system.

The interesting bifurcation planes can also be drawn in a three-dimensional parameter
space. It turn out that the structure we get by combining the two swallowtails in figuees 8(
and 8€) and the two cusps in figure & is of the same type as the bifurcation structure
for the period 8 orbits discussed below in section 4.4, see figure 11.

4.3. Cusp bifurcations

The cusp bifurcation discussed above clearly shows the main problem that we face in
defining symbolic dynamics for theéton-type maps. We illustrate this here in some detalil
by discussing one of the cusps. A conjecture of a universally valid definition of symbols in
a Henon map is stated elsewhere [16].

Figure 8@) shows the cusp with the period 6 orbit$1000,111001, andl11101, and
figure 9 shows the stable and the unstable manifolds at the cusp point foétimn thap.
Our four-unimodal map cannot be a good description when one of the folds no longer have
a turning point corresponding to a one-dimensional critical point. Figuag 2¢ems to
justify a four-unimodal approximation, but figure 9 shows that we lose a tangency point
close to the period 6 orbit for these parameter values. Closer examination of figure 9 shows
that actually two of the folds lose their turning points corresponding to the critical points of
the one-dimensional maps at the cusp and a proper approximation is then the bi-unimodal
approximation with two unimodal maps. The problem is how to choose the symbol for a
point on the fold that does not have a primary turning point. Moving in parameter space
such that a turning point is created shows that there is not one unique point yielding the
symbol partition, but the position of the point will depend on the path we choose in the
parameter plane. This implies that orbits may change symbolic dynamics moving around
the cusp in the parameter space as shown in [15] (see also [9]). The bifurcation lines for
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Figure 9. The stable and unstable manifolds at the cusp point for the period 61a®it11.

111000 andl11101 behind the cusp in figuread(should therefore not be understood as
bifurcation lines where an orbit is created in a dynamical system, but an indication of where
the description of the orbit using the four-unimodal symbolic dynamics is correct. The
orbit will also exist between the lines but without the same symbolic description in this
approximation. The short diagonal lines on the cusps in figure 8 indicate the change from
a four-unimodal to a bi-unimodal approximation.

The change of symbolic dynamics at a cusp also has consequences for the method
proposed by Biham and Wenzel [3, 4] to find cycles in thenbh map. As discussed in
[16], there will be a region behind the cusp where the method does not converge.

The change in modality takes place when the critical point on the lower-most unimodal
map iterates directly into the critical point of the second lower-most unimodal map. We
can state this with symbolic dynamics using the kneading sequences of the maps.

Proposition 2. In the four-unimodal there is a bifurcation from a four-unimodal to a bi-
unimodal approximation of the once-folding map at parameter values where the kneading
sequences of the maps satisfy the following condition; for order-reversing magipin®)

Koo = 0(K10), (23)
for order-preserving mapping < 0)
K11 = 0(Ko). (24)

Assumings; = 1 for the kneading sequences we get the conditions on the topological
parameter values for the bifurcation: for> 0

Koo = 2 — k10, (25)
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Figure 10. Bifurcation lines of some period 8 orbits in the two-dimensional projections of the
topological parameter spaca)((«1o, ko0), (P) (koo, k11), (€) (k10, k12)-
and forb < 0

K11 = 2 — 2Ko1. (26)

This requirement is satisfied for all the cusp points of the periodic orbits discussed above.
One example is the cusp in figurea§(with the orbit100111 giving 2— 27,0(100113 =
2—2y(111100 = 2—2-0.101000= 2—1.010001= 0.101110= (111003 = y0(100112.
Depending on whether the number of 1's in the repeating string is odd or even, the stable
orbit is either inside a cusp or it surrounds the cusp point of an unstable orbit.

4.4. Bifurcation of period 8 orbits

Another more complicated example of bifurcations observed in #m@oH map explainable
by the four-unimodal approximation is the bifurcation structure of period 8 orbits. We
therefore investigate the bifurcation structures in the topological parameter plane for the
period 8 orbits.

In the same way as for the period 6 orbits we can construct two-dimensional topological
parameter planes for all period 8 orbits. This will yield a very complicated picture; in
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Figure 11. Bifurcation lines of some period 8 orbits in the three-dimensional topological
parameter(x1o, K00, £11)-

figure 10 the bifurcation lines for some period 8 orbits are sketched in the three planes
(k10, K00), (k00, k11), @and(k10, k11). These drawings show that there are two cusp structures
and two swallowtails in these topological parameter spaces quite similar to the period 6
orbits discussed above. One of the swallowtails is the swallowfk;111e; from the
bi-unimodal approximation (figure (b)), while the other structures appears only in the
four-unimodal approximation.

We can combine the three pictures in figure 10 to draw a three-dimensional projection
of the full four-dimensional topological parameter space. This will describe how the
codimension-2 bifurcation structures are connected with stable windows in the parameter
space. In figure 11 the exact bifurcation planes are drawn in the topological parameter
space(xio, koo, k11)- The ranges of the axes arébd < 319 < 0.69, 067 < kgp < 0.71, and
0.82 < k11 < 0.97. The linexgy = 2 — 2«39 Yielding cusp structures equation (25) is also
drawn. In this three-dimensional space the bifurcations take place at planes and an orbit exist
inside a three-dimensional box with one corne¢latl, 1). A scan of thea, b) plane of the
Hénon map corresponds to a two-dimensional hypersurface cutting through the bifurcation
planes in this three-dimensional topological parameter space, yielding a bifurcation line
whenever th€a, b) parameter hypersurface intersects the bifurcation plane of an orbit.

4.5. Area-preserving maps

The lines|b| = 1 in the Henon map correspond to area-conserving maps. This limit is not a
special line in the topological parameter space, but we can show that certain codimension-2
bifurcations require that the map is area conserving. To show this we have to use the
symmetry between the stable and unstable manifolds.
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To discuss this symmetry we first have to define a quantity for the stable manifold
equivalent toy (S). This is given in [7, 6] as fob > 0

1—w, if s5-1=0
W1 = w, |f S = 1 wo = o
(27)
o0
§(x) = 0wow_1w_s...= Z wl—t/zt»
=1
and forb <0
Wy If S§i—1 = 0
i [P ifs1=1 o=
(28)

00
§(x) = 0wow_1w_o...= Z wlft/zr-
r=1

From the pruning front conjecture [7, 6] it follows that since for area-preserving maps
this is a symmetry between the unstable and stable manifolds it will also be a symmetry
between the pruning fronts ip and iné. We can use this symmetry to discuss the cusp
bifurcation.

At a cusp point singularity an orbit has two points on the pruning front corresponding
to two cyclic permutations of the periodic symbol strin§;and S’ = o*(S). The area-
preserving map symmetry implies that thevalues of these strings are symmetric to the
8-values of one backward shift of the same symbol string, as the area-preserving pruning
front is symmetric to the backward iteration of the pruning front.

At a cusp in a two-dimensional parameter plarg., ,) the symbol strings yields
the valuex,, and shifted strings’ yields the valuec,,». The cusp can only exist for the
order-reversing area conserving map= 1) line if

y(S) =1-80"1S)
8(S)=1—y(@ (S

y(§) =1-80"1S) 2)
88N =1-y@ (S)
and for the order-preserving area conserving mag- (—1) if
y(S) =380 (SN)
8(S) =y @ () (30)

y(§) =8 1(S))
8(S) =y X(S))

whereo ! is the inverse shift operation of the symbol string, corresponding to an iteration
once backward in time. This implies that the two periodic points on the pruning front in
the symbol plane are symmetric to each other with respect to a symmetry line.

The cyclic permutations of the period 4 orldi001; S = 1001 andS = 1100 yields
koo = ¥ (1001 = 0.1110 andk1p = (1100 = 0.1000, figure 7. Using the definitions (5)
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and (27) we find the following relations between the symbolic values of the symbol string:
y(1001) = 0.1110= 1 — 0.0001= 1 — §(0110 = 1 — §(c ~*(1100)

§(1001) = 0.1011= 1 — 0.0100= 1 — y(0110 = 1 — y (¢ ~1(1100)

y (1100 = 0.1000= 1 — 0.0111= 1 — §(1100 = 1 — §(c ~1(1001))

§(1100 = 0.0111= 1 — 0.1000= 1 — (1100 = 1 — y (o ~1(1001)).

This is the symmetry relation (29) corresponding to tenbh map withb = 1.

The cusp of the period 6 orbits with the orbitf81001,101000, and. 10101 has the orbit
101001 common in the two tails with the cyclic permutatidhs 101001 ands’” = 110100
giving the symbolic valuesgy and 10 at the singular point. Direct calculation using
definitions (5) and (27) yields

y(101002 = 1 — §(o~1(110100)
§(101002 = 1 — y (¢ ~1(110100)
y(110100 = 1 — §(o~1(101002)
§(110100 = 1 — y (o ~1(101002),
the symmetry in (29) which restricts the cusp to the- 1 line.

There is a cusp structure for period 6 orbits involving the three oflfik111,100110,
and 110010. The common orbit in the two tails at80111 and the cyclic permutations
S = 100111 andS’ = 110011 gives the symbolic values; and«o; at the singular point.
Using the definitions (5) and (28) faér < 0 we find

y (100112 = §(c~1(110012)
§(100112 = y (0 ~1(110012)
y (110012 = §(c~1(100112)
§(110012 = y (o0 ~1(100112)

(31)

which is the symmetry equation (30) for theehbn map ab = —1.

5. Hénon map bifurcations

We shall now try to verify the bifurcation structure described above for a generic topological
parameter space in the specific parameter spack) of the Henon map. The different
bifurcation lines and many of the swallowtails in the bi-unimodal approximation can be
found numerically in this(a, b) plane. Many of these bifurcation structures have been
drawn in e.g. [8, 29].

The bifurcation curves for the cycles with period 1, 2, 3 and 4|fdr< 1 give only
simple windows similar to the bifurcation lines obtained in the topological parameter space.

In figure 12 we have drawn the bifurcation lines for the period 4 orbits in the parameter
plane (a, b) close to theb = 1 line. We find here the cusp predicted in the topological
parameter plane. In agreement with the arguments above, we do find that the cusp point is
exactly on theb =1 line.

A scan of the(a, b) plane for the Bnon map, searching for stable period 5 orbits reveals
the swallowtail bifurcation as drawn in figure 13. We notice that in figure 3 the swallowtalil
crossing in the symbol plane takes place fqr > «q, corresponding to an orientation-
reversing horseshoe, thatés> 0 for the Henon map. The period doubling to two period
10 swallowtail crossings, four peridD crossings etc, is found for theeHon map exactly
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Figure 12. The bifurcation curves of the period 4 orbits in théndn map.
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Figure 13. The swallowtail of period 5 orbits in the parameter planeb) for the Henon map:
areas with stable period 5 orbit.

as constructed in the bi-unimodal map symbol plane [16]. This bi-unimodal bifurcation

structure is the same as the well studied one-dimensional bimodal maps in [23-25, 10, 27].
The relative position between two swallowtails in the topological parameter plane is a

topological feature which is valid also in any 2-parameter planeé) for a once-folding

map. If one swallowtail crossing is between two other tails in the topological parameter

plane or if a tail from one swallowtail crosses a tail from a different swallowtail, then this

will be true also in aa, b) parameter plane.
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Figure 14. Swallowtails in the non map: areas in thi, b)) parameter plane corresponding
to stable period 5, 6 or 7 orbit are marked in black.

We now compare the bi-unimodal admissible swallowtails of the short orbits with the
swallowtails realized by the &éhon map. In figure 4 the swallowtails for period 5, 6 and
7 are drawn together in the topological parameter plane. Observe the topological structure;
which tails that cross other tails and which swallowtails are nested within other swallowtails.
There is one horizontal row of period 7, 5 and 7 swallowtails and there is one vertical column
with period 5, 6 and 7 swallowtails. Figure 14 is a scan of tigb) plane of the Enon
map, with the areas corresponding to stable period 5, 6 and 7 orbits are marked in black.
The swallowtails are arranged topologically as in figure 4, with only a few differences in
the structure. One of the tails from the period 6 swallowtail crosses a tail of the period
5 swallowtail; according to the bi-unimodal topological parameter plane this should not
occur. As we will discuss below, this arises from the four-unimodal approximation. Also
the period 7 swallowtail above the period 6 swallowtail has one tail crossing a period 5 tail.
This period 7 swallowtaill00G:1¢; is not a complete swallowtail but is broken up into a
cusp and an isolated tail. The bifurcation lines are correctly described by the bi-unimodal
topological parameter plane but because the tails bifurcate on different folds with a finite
distance the orbit is not stable in the whole region where the bi-unimodal map is stable.

In figure 15 we find that one of the tails from the swallowtdilG:yle; is connected
to a cusp bifurcation. This is the bifurcation predicted by figures) &nd €). In both
figures 84) and @) the tail 1110G bifurcates at aq value. The tail is connected to the
swallowtail 1001¢; in figure 8€) and to the cusp with the orbits11000,111001, and
111101 in figure &). This is the tail connecting the two codimension-2 structures in the
(a, b) plane in figure 15.

Another connection between codimension-2 structures predicted from figurparg]
(e) is the tail1010@ which connect the swallowtall00y1e; with the cusp consisting of the
orbits 101001,101000, andL10101. We have found above that this cusp has the symmetry
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Figure 15. The (a, b) parameter plane regions with a stable period 6 orbit in tBadh map.

restricting it to theb = 1 line. Numerically the cusp is found at~ 2.75,5 = 1.

The third cusp in figure 8) with the orbits100111,100110, andL10010 is predicted
to be connected to the bi-unimodal swallowtail with the 14iD1% and exist at thé = —1
line. Numerically this cusp is found at~ 3.0, b = —1.

The swallowtail in figure &) is not found for the non map. It uses some of the
same orbits as the other codimension-2 structures and it will therefore be difficult to have
this together with the other structures in the safmgb) plane. This cusp is realized by
other once-folding maps; it has been found in the two-dimensional Lozi map [22, 16].

The bifurcations of the period 8 orbits turns out to be the most complicated of the short
cycles. The period 8 swallowtails in figureg§(with symbolic descriptiorl0Cy111e; do
not exist for the non map but can exist for a slightly perturbeérten map. In the four-
unimodal approximation this swallowtail is in figure 11 connected to one other swallowtail
and two cusps. To show that the rather strange-looking bifurcation we find foré&herH
map is described by the bifurcation planes in figure 11 we study a variation ofé&herH
map where we add &* term with a third parameter.

Xp1=1— a)ct2 — cxt4 + bx,_1. (32)

This map is once-folding for > 0. Forc < 0 the map is in principle thrice-folding, but
close toc = 0 the map behaves like a once-folding map for small values. of

Figure 16 shows the parameter values with a stable period 8 orbit for the perturbed
Hénon map (32). For = 0, figure 16€), this is the Hnon map. We find in figure 16 that
the bifurcation structures changes smoothly with the new parameted forc = 0.08 and
for ¢ = —0.06 we find combinations of familiar codimension-2 structures, swallowtails and
cusps, while fore = 0 a more complicated structure emerges.

The (a, b) plane in figure 16{) corresponds to a plane that cuts through the two cusps
on the top and through the swallowtail on the left-hand side of figure 11. This is the structure
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Figure 16. The parameter values giving stable period 8 orbits in the perturléedimap (32)
in the parameter spade, b) with different values of. (&) ¢ = 0.08, ) c =0.02, €) c =0
(the Henon map), d) ¢ = —0.013, €) ¢ = —0.02, ) ¢ = —0.06.

drawn in figures 1&) and €). The (a, b) plane in figure 16() corresponds to a plane that
only cuts through the swallowtail on the right-hand side of figure 11 (figur®)L0(The
Hénon map in figure 16{ is a plane cutting through the structure in the middle of figure 11
where the swallowtails and the cusps merge together. This illustrates a true codimension-3
bifurcation for maps of the &hon type.

The reader is refered to works of Mira [29] and Caréad$] for a detailed study giving
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Figure 17. The bifurcation lines of some homoclinic orbits of thé&mibn map in the parameter
plane(a, b). The labels indicate the parameter values in figure 18.

more examples of bifurcation structures in thértdn map.

We have shown here how the bifurcations in thendn map can be understood if we
extend the map with a third parameter and consider the bifurcations as a structure in a three-
dimensional(a, b, ¢) parameter space. With this procedure we find a complete agreement
between the predictions of the topological parameter space and the numerics. Hence the
proper way to study bifurcations of cycles in thé@mbn map is to extend the investigation
to an infinite-dimensional topological parameter space of adinbh-like’ maps.

5.1. Aperiodic orbits

The bifurcation of homoclinic orbits in a smooth bi-unimodal map would give bifurcation
lines similar to the bifurcation lines in the symbol plane, figure 6, as discussed in [17].

The bifurcation lines in the Bhon map for the homoclinic orbits with symbolic
description1ep10e;1 are drawn in figure 17. The bifurcation link101 is where the
attractor merges from two parts into one connected attractor. This is analogous to the
band-merging bifurcations in a unimodal map. This bifurcation takes place along the curve
1101 (figure 184)) until the cusp area and from the cusp area along thelliie&x1 until
the marker in figure 17. Above this point there is a different homoclinic tangency, the line
1€10001, which is the border between two or one connected chaotic attractor. The other
bifurcation curves are other homoclinic bifurcations as illustrated in figurds)3@(). The
bifurcation curves have similar shapes as in the topological parameter plane (figure 6), but
the bifurcation curve corresponding to the = 0.10 line is split into two curves and one
of the curves has a cusp. The cusp is not as narrow as the homoclinic orbit cusp one finds
in bi-unimodal maps [17]. Numerically it seems to be the same type of cusp as we have
in the centre of the swallowtail where the width of the cusp increases as the distance to
the power%’. The second smooth curve in figure 17 seems to lack the singularity in the
derivative found for bi-unimodal maps [17].

The homoclinic orbits are changing the symbolic description in the neighbourhood of
the cusp point. We find that the homoclinic orfi®1 bifurcates at point (a) and (c) in
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-1.50

(c) (d)

Figure 18. Homoclinic bifurcations in the Bnon map at parameter values indicated in figure 17.
(@) 1e101 fora = 1.2, b = 0.258 38. b) 1c100L fora = 1.2, b = 0.3516. €) 101 fora = 1.2,
b =0.4146037. ) 101C¢1 fora = 1.2, b = 0.418 569 132.

figure 17 but there is no bifurcation curve connecting these two points. The orbits therefore
have to change symbolic dynamics at some point along the bifurcation line.

The bi-unimodal approximation fails to predict the splitting of the bifurcation curve,
ko = 0.10, and only predicts the main structure. To explain this we have to take into
account that the map is two-dimensional with smooth stable and unstable manifolds. This
is a point where the two-dimensionality of the map is important.

In contrast to the periodic orbits, bifurcation lines of homoclinic orbits in the symbol
plane yield bifurcations of an infinite number of different orbits. In a bi-unimodal map this
gives a fractal set of singular bifurcation points on these bifurcation lines and a complicated
web through the parameter space. In the two-dimensional folding map the degenerated
bifurcation line of the one-dimensional map splits into a Cantor set collection of bifurcation
lines, one line for each pair of the infinite number of aperiodic orbits.
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6. Monotonicity

In the four-dimensional topological parameter space of the four-unimodal approximation
discussed here there are many one-dimensional parameter lines along which orbits are only
created and not destroyed. Along all cuné®&) in («19, koo, K01, K11) WheredC /i,y > 0

the non-wandering set will be constant or increasexascreases. Consequently the
topological entropy will not decrease along such curves. From a given point in the
topological parameter space one can construct a four-dimensional cone containing these
curves such that the cone separates the region where all four topological parameter values
are larger from the region where all four topological parameter values are smaller than the
starting point.

A similar statement can be made for the two-dimensional parameter ptang) and
for the 8, 16, 32,...-dimensional parameter spaces for the higher-order approximations.
Our description therefore gives a monotone map in the sense that through any point in the
parameter plane one can find a one-dimensional curve along which the bifurcations only
create orbits. There also exist of course paths along which orbits are both created and
destroyed.

A difficult question is whether this monotonicity property of o, oo, k01, k11) Space
carries over to a given four-dimensional parameter sgace, c, d) describing a specific
map, say the Bnon map. As we have showed above in a number of examples, the
description of bifurcation of periodic orbits and homoclinic orbits seems to be the same
in the two parameter spaces. We also believe that the property of monotonicity is true in
a typical (a, b, ¢, d) parameter space for a once-folding map. This implies that from any
given point in the parameter space there originates a four-dimensional cone within which
all curvesC(a) yield non-wandering sets of increasing topological entropy. In the most
extreme points (cusp bifurcation points) this cone may shrink to a line, but should always
exist. For the ®non map which only has two parameters there may exist points from
where there are no curveS(a, b) along which orbits are only born, but by introducing
more parameters it should be possible to find such a cGweb, ¢, d, ...). One example
is figure 16¢) where we have a region i, ) bounded by a curve creating a stable period
8 orbit. All curves in this(a, b) plane forc = —0.013 have to cut the bifurcation line twice
and are not monotone. However, a line which has figedb) and a varying value of
will be monotone with respect to the period 8 orbit. This codimension-3 structure has the
monotonicity in a cone in théa, b, ¢) parameter space for the extendeéndn map.

In a general 2 approximation it will be a 2-dimensional cone from a point in thé-2
dimensional topological parameter space in which the non-wandering set is increasing. We
believe that in a corresponding-Blimensional parameter spa¢e b, c, ..., z) describing
a particular map, there is also a cone with a monotone increasing non-wandering set.

These arguments are in disagreement with the paper oeKah[21] which claims that
there does not exist any curve in the parameter plane along which orbits are only created,
and none are destroyed. The validity of this theorem has been questioned in [19].

7. Discussion and conclusions

The most crucial question about our description is whether symbolic dynamics is at all
uniquely defined for a system like theRon map. This has been discussed by Grassberger
and Kantz [12, 13] who introduced ‘primary turning points’ in order to partition the non-
wandering set of the &hon map, and by Cvitandviet al [7] whose pruning front is
conjectured to provide such partition. All numerical studies indicate that such symbolic
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dynamics does exist. It has also been claimed that a unique symbolic dynamics for the
Hénon map can be defined for any given parameter values [16]. Biham and Wenzel
[3, 4] introduced a useful method for numerical determination of periodic orbits, which,
when the method converges, also assigns unique symbolic itinerary to each periodic orbit.
Unfortunately, as explained above, this method does not converge in regions (af the

plane behind cusps, where unstable orbits change their symbolic description.

The next question is whether the choice of a bi-unimodal, four-unimodal, etc
approximation is valid, and if valid whether it is useful. An alternative way to present the
method would be to say that we approximated the pruning front [7] by 2 steps, 4 steps, etc.
We find that the geometry of the problem makes the multi-unimodal approximations very
natural, and tracing the bifurcation structures in higher codimension topological parameter
spaces yield a more systematic and powerful approach than what has been done so far, in
studies restricted to two-dimensional parameter hypersurfaces.

The existence of a map to and from the topological parameter space to a parameter plane
(a, b) for the HEnon map remains an unproven conjecture. There are many other aspects
of this problem where deeper understanding is still lacking, but the predictions based on
multi-unimodal approximations agree with the numerics for tleeé&h map in so far as we
have tested them. We believe that the description of bifurcation structures obtained here
contributes to the understanding of thérdn and other maps of this type.
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