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Abstract. We construct a series ofn-unimodal approximations to maps of the Hénon type
and utilize the associated symbolic dynamics to describe the possible bifurcation structures
for such maps. We construct the bifurcation surfaces of the short periodic orbits in the
topological parameter space and check numerically that the Hénon map parameter plane(a, b) is
topologically equivalent to a two-dimensional section through the infinite-dimensional parameter
space characterizing a generic map of the Hénon type.

PACS numbers: 0320I, 0545B

1. Introduction

While the topological dynamics of unimodal and multimodal one-dimensional mappings is
well understood [30, 28], a classification of all possible topologically distinct dynamical
systems in two or more dimensions remains an open problem. The goal of this paper is
to develop a theory of bifurcation diagrams which classify and order topologically distinct
bifurcation sequences for two-dimensional invertible maps of the Hénon type [20]. We
consider maps which stretch and fold the phase space once under one mapping, exemplified
by a Smale horseshoe [33]. We study here the maps whichdo not have a complete
binary Cantor set repeller such as a complete horseshoe map has, but assume that the
admissible orbits can still be uniquely identified by a subset of the binary symbolic dynamics
itineraries [12, 13, 7]. This assumption has not been proved for the Hénon map, but is
supported by all of our numerical results.

The H́enon map [20] is an invertible mapping of a two-dimensional plane into itself:

xt+1 = 1− ax2
t + yt

yt+1 = bxt .
Equivalently, the H́enon map can be defined by the 2-step recurrence relation

xt+1 = 1− ax2
t + bxt−1. (1)

The H́enon map is one of the simplest models of a Poincaré map of a three-dimensional
invertible flow. Our description of the bifurcation diagram for all maps of the Hénon type
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(once-folding maps) will be generic in the sense that it will be valid for all flows which
fold the phase space at most once between subsequent Poincaré sections.

Detailed numerical investigations of such structures for the Hénon map have been
carried out by Mira and co-workers [8, 29, 5], as well as many other authors [1, 2–
4, 12, 13, 15, 20, 27, 29, 32], to cite but a few. Our approach is different in so far that
instead of studying the bifurcation structure of the Hénon map or the Lozi map [22], we
offer here a topological characterization of the parameter space and the admissible orbits
for all maps of the H́enon type. The approach is closely related to the pruning front
conjecture [7, 6]. There the phase space stable–unstable manifolds foliations are replaced
by a straightened-out symbol plane ‘street map’ applicable to any map of the Hénon type.
The totality of all turning points of the unstable manifold of the map delineates the ‘pruning
front’ in the symbol plane, the border between the admissible and inadmissible orbits. For
unimodal one-dimensional mappings the pruning front is specified by a single parameter, the
‘kneading invariant’ [30, 28], but for two-dimensional mappings infinitely many parameters
are required to specify the pruning front, that is to say the infinity of the turning points of
the unstable manifold.

However, one striking feature of smooth dissipative once-folding maps is their hierarchic
foliation; for small values of the modulus ofb in coarsest resolution they look like unimodal
maps, under somewhat finer resolution two primary folds are discernible, and so forth. This
observation is the basis for a systematic approximation to two-dimensional once-folding
maps by sequences ofn-unimodal one-dimensional maps that we shall develop here; we
shall construct nested sequences of parameter topological ‘street maps’ of all admissible
(but strongly hierarchically ordered) parametrizations of once-folding maps. A symbol
plane together with a pruning front specifies symbolic dynamics of agiven once-folding
map; ourn-unimodal approximation to describesall admissible once-folding maps, with a
point in the topological parameter space corresponding to a particular topological parameter.

The bifurcation theory presented here is based on [16], and the bifurcation structures in
multi-unimodal one-dimensional maps are discussed in the spirit of the work in [18].

2. Unimodal approximation

In the b → 0 limit the unstable manifold of the H́enon map shrinks to a one-dimensional
arc, folds of the stable manifold stretch off to infinity, and the Hénon map (1) reduces to
the one-dimensional quadratic map

xt+1 = 1− ax2
t (2)

with one critical pointxc = 0.
The symbolic description for a unimodal map with a critical pointxc is defined by

st =
{

1 if xt > xc

0 if xt < xc.
(3)

The infinite symbol sequenceS(x) = s1s2s3 . . . is the (future) itinerary of the point
x = x0. The dynamics acts on this sequence as a shift:

S(f t (x)) = σ tS(x) = s1+t s2+t s3+t . . . . (4)

SymbolsL andR are often used [26] instead of 0 and 1, indicating that the pointxt
lies either to the left or right of the critical point. The critical pointxc may be denoted by
st = C.
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To any given itineraryS we associate the pointγ (S) ∈ [0, 1] constructed as follows

wt+1 =
{
wt if st+1 = 0

1− wt if st+1 = 1
w1 = s1

γ (S) = 0.w1w2w3 . . . =
∞∑
t=1

wt/2
t .

(5)

The numberγ (S) is independent of details of a particular unimodal map and preserves the
ordering ofx in the sense that if̂x > x thenγ (S(x̂)) > γ (S(x)) for any unimodal map. We
shall refer toγ (S) as the(future) topological coordinateor the (future) symbolic coordinate.

2.1. Kneading values

If the parameter in the quadratic map (2) isa > 2 then the iterates of the critical pointxc
diverge for t → ∞. As long asa > 2, any sequenceS composed of letterssi = {0, 1}
is admissible, and any value of 06 γ < 1 corresponds to an admissible orbit in the
non-wandering set of the map. The corresponding repeller is a complete binary Cantor set.

Fora < 2 only a subset of the points in the intervalγ ∈ [0, 1] corresponds to admissible
orbits. The forbidden symbolic values are determined by observing that the largestxt value
in an orbitx1→ x2→ x3→ . . . has to be smaller than or equal to the image of the critical
point, the critical valuef (xc). LetK = S(xc) be the itinerary of the critical pointx0 = xc,
denoting thekneading sequenceof the map. The corresponding topological coordinate is
called thekneading value[28]

κ = γ (K) = γ (S(xc)). (6)

If γ (S) > γ (K), the pointx whose itinerary isS would havex > f (xc) and cannot be an
admissible orbit. Let

γ̂ (S) = sup
m

γ (σm(S)) (7)

be themaximal value, the highest topological coordinate reached by the orbitx1 → x2 →
x3→ . . . .

Theorem 1 ([31, 26, 14, 30, 28]).Letκ be the kneading value of the critical point, andγ̂ (S)
be the maximal value of the orbitS. Then the orbitS is admissible if and only if̂γ (S) 6 κ.

We shall call the interval(κ, 1] theprimary pruned interval. The orbitS is inadmissible
if γ of any shifted sequence ofS falls into this interval.

While a unimodal map may depend on many arbitrarily chosen parameters, its dynamics
determines and is determined by a unique kneading valueκ. There exists a map from the
parametera of a specific unimodal map to theκ-line, and thus we can useκ to parametrize
any unimodal map. We shall callκ the topological parameterof the map. The jumps in
κ as a function ofa correspond to inadmissible values of the topological parameter. Each
jump in κ corresponds to a stability window associated with a stable cycle of a smooth
unimodal map. For the quadratic map (2)κ increases monotonically with the parametera,
but in general such monotonicity need not be the case.

2.2. Periodic orbits

A periodic point (or a cycle point) xi belonging to a cycle of periodn is a real solution of

f n(xi) = xi, i = 0, 1, . . . , n− 1, f r(xi) 6= xi for r < n. (8)
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Table 1. The maximal values of unimodal map cycles up to length 5.

S γ̂ (S)

0 0.0= 0
1 0.10= 2

3

10 0.1100= 4
5

101 0.110= 6
7

100 0.111000= 8
9

1011 0.11010010= 14
17

1001 0.1110= 14
15

1000 0.11110000= 16
17

10111 0.11010= 26
31

10110 0.1101100100= 28
33

10010 0.11100= 28
31

10011 0.1110100010= 10
11

10001 0.11110= 30
31

10000 0.1111100000= 32
33

The nth iterate of a unimodal map crosses the diagonal at most 2n times. Similarly, the
backward and forward Smale horseshoes intersect at most 2n times, and therefore there will
be 2n or fewer periodic points of lengthn. A cycle of lengthn corresponds to an infinite
repetition of a lengthn symbol string, customarily indicated by a line over the string:

S = (s1s2s3 . . . sn)∞ = s1s2s3 . . . sn.
If s1s2 . . . sn is the symbol string associated withx0, its cyclic permutation
sksk+1 . . . sns1 . . . sk−1 corresponds to the pointxk−1 in the same cycle. A cyclep is called
prime if its itinerary S cannot be written as a repetition of a shorter blockS ′.

A cycle of a differentiable one-dimensional map is stable if∣∣∣∣ d

dx
f n(x1)

∣∣∣∣ = |f ′(xn)f ′(xn−1) . . . f
′(x2)f

′(x1)| < 1.

A cycle is superstableif the above product vanishes, i.e. if the orbit includes a critical
point. The interval of parameter values for which a cyclep is stable is called the stability
window of p.

Each cycle yieldsn rational values ofγ . It follows from (5) that if the repeating string
s1, s2, . . . sn contains an odd number of 1’s, the string of well-ordered symbolsw1w2 . . . wn
has to be of the double length before it repeats itself. The valueγ is a geometrical sum
which we can write as the finite sum

γ (s1s2 . . . sn) = 22n

22n − 1

2n∑
t=1

wt/2
t .

Using this we can calculate thêγ (S) for all short cycles. For orbits up to length 5 this is
done in table 1.

2.3. Bifurcations

Periodic orbits in smooth unimodal maps are generically created either as a pair with
one stable and one unstable lengthn orbit in a saddle-node bifurcation point, or as a
period 2n orbit in a period-doubling bifurcation where a periodn orbit becomes unstable.
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Figure 1. Bifurcation points from table 1 plotted as a function of the topological parameter
κ. Grey areas are inadmissible intervals ofκ corresponding to stable windows in a smooth
unimodal map. As a shorthand notation for pairs of orbits we use the letterε to denote either a
0 or a 1. The line over the symbol strings is omitted.

Immediately after a saddle-node bifurcation the two created orbits both have the same
itinerary s1s2 . . . sn with an even number of 1’s and with the topological parameter value
κ(s1s2 . . . sn) = γ̂ (s1s2 . . . sn). Orbits with this itinerary exist for all unimodal maps with
κ > γ̂ (s1s2 . . . sn). As the parameter in the smooth unimodal map increases the stable orbit
passes a superstable point and changes its symbolic dynamics. If we now assume that the
symbol strings1s2 . . . sn is the cyclic permutation giving the maximumγ value, then the
itinerary of the stable orbit after the superstable point iss1s2 . . . sn−1(1− sn), since the point
closest to the critical point passes through the critical point. The topological parameter value
of the map is thenκ(s1s2 . . . sn−1(1− sn)). The inadmissible topological parameter interval
(κ(s1s2 . . . sn), κ(s1s2 . . . sn−1(1− sn))) is then uniquely related to the parameter interval in
a between the saddle-point bifurcation and the superstable point, or more loosely speaking;
to thea interval where the orbits1s2 . . . sn−1(1− sn) is stable.

In the same way there will be an interval

(κ(s1s2 . . . sn−1(1− sn)), κ(s1s2 . . . sn−1(1− sn)s1s2 . . . sn))
corresponding to the interval ina from where the orbits1s2 . . . sn−1(1− sn) is superstable to
the point where the orbits1s2 . . . sn−1(1− sn)s1s2 . . . sn is superstable. This interval includes
the period-doubling bifurcation where the 2n orbit s1s2 . . . sn−1(1− sn)s1s2 . . . sn is created.

From table 1 we can find some of the largest intervals inκ corresponding to the stability
windows in a smooth unimodal map. The stable period 3 orbit window on the parameter
a-axis corresponds to the interval( 6

7,
8
9) on theκ line and so on, see figure 1.

3. Bi-unimodal approximation

The unimodal approximation is an exact description for the Hénon map for|b| → 0, but
not very accurate forb 6= 0. We therefore continue to the next order of refinement and
approximate the unstable manifold in figure 2(a) with two unimodal maps, one above the
other, as sketched in figure 2(b).

It is important to note that the points in the orbit are forced to be on one of the two
functions in figure 2(b) depending on one symbol in the past itinerary: if an orbit has a
point on the right-hand side of the horseshoe (symbol 1) then its image is on the upper
function and if an orbit has a point on the left-hand side of the horseshoe (symbol 0) then
its image is on the lower function. This is illustrated in figure 2 where we have drawn the
unstable manifold of the H́enon map(a = 1.4, b = 0.3) and one period 7 orbit. For each
point in the orbit we have written the future itinerary of the point (omitting the line over the
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Figure 2. (a) The strange attractor (unstable manifold) and a period 7 orbit in the Hénon map
(a = 1.4, b = 0.3). (b) A sketch of a bi-unimodal approximation with the same periodic orbit.

symbols). The choice between the upper and lower half of the unstable manifold depends
on the preceding point in the orbit, and hence on the next to last symbol in the symbol
string labelling the point.

We stress that this map, constructed from two unimodal maps, isnot a multivalued
map, since each point is assigned a unique value. We denote this one-dimensional map ‘bi-
unimodal’ instead of bimodal not to confuse it with other bimodal maps frequently studied
in the literature, such as the cubic map.

A point in an orbit with itineraryS = . . . st−2st−1st · st+1st+2 . . . is mapped in the
bi-unimodal approximation by the one-dimensional map

xt+1 = fst−1(xt ) =
{
f0(xt ) if st−1 = 0

f1(xt ) if st−1 = 1.
(9)

The two critical points of the functionsf0 andf1 yield the two kneading sequencesK0

andK1, with the corresponding topological parameter valuesκ0 andκ1. The bi-unimodal
map fs is described by the point(κ0, κ1) in the two-dimensional topological parameter
plane. For an order-reversing two-dimensional map which flips, stretches, and folds the
phase space, the critical value off1 is larger than that off0, κ1 > κ0. This is the case for
the H́enon map withb > 0. For an order-preserving mapping which stretches and folds
without flipping the critical value off1 is smaller thanf0 andκ1 < κ0. This is the case for
the H́enon map withb < 0. The lineb = 0 is mapped into the lineκ1 = κ0, the unimodal
map discussed above.

We shall now trace out some of the characteristic bifurcation structures for the bi-
unimodal approximation in this two-dimensional topological parameter plane.

Each orbit (except the two fixed points0 and 1) has two maximal valueŝγ0 and γ̂1

defined as for the unimodal map (7), but with the restriction that the symbolsm−1 is equal
to the index ofγ̂ . If the orbit is given by the itineraryS = . . . s−2s−1s0 · s1s2 . . . we have

γ̂s(S) = sup
m

γ (σm(S)) with sm−1 = s (10)
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whereσ is the shift (4). An orbitS is admissible if and only if

γ̂0(S) 6 κ0

γ̂1(S) 6 κ1
(11)

so the orbitS exists within a rectangle in the(κ0, κ1) plane. The parameter point point
κ0 = 1, κ1 = 1 corresponds to a complete Smale horseshoe for which all orbits exist.

In order to have a bi-unimodal map, we have to require that the images of the critical
points are not above the smallest critical point. In terms of kneading sequences this
constrainsκs to

κs = γ (Ks) > γ (σ (Ks)) (12)

which is true if

κs > 0.10= 2
3. (13)

This requirement is less constraining in higher-order multi-unimodal approximations.

3.1. Maximal values of short cycles

We can now proceed to determine all cycles up to a given length and determine the
topological valueŝγs(S) of all their cycle points.

The fixed point0 hass−1 = 0, with the only maximal valuêγ0(0) = 0. This fixed point
exists for

κ0 > γ̂0(0) = 0.

In other words, if there is anything in the non-wandering set, the fixed point0 exists. The
fixed point 1 hass−1 = 1, with the corresponding topological coordinateγ̂1(1) = 0.10. It
exists for topological parameter plane values

κ1 > γ̂1(1) = 0.10= 2
3.

The 2-cycle10 has two cyclic permutations. Cycle pointx10 with itinerary s1s2 = 10
hass0 = s2 = 0 ands−1 = s1 = 1 giving the maximal valuêγ1(10) = 0.1100. The second
point in the period 2 orbit,x01, is on mapf0 since s−1 = 0 and the maximal value is
γ̂0(01) = 0.0110. Thus this orbit exists for the topological parameter values

κ0 > γ̂0(10) = 0.0110= 2
5

κ1 > γ̂1(10) = 0.1100= 4
5.

(14)

There are two 3-cycles,100 and101 with s−1 = s2 determining the fold to which a
cycle point belongs. The100-cycle cycle points have the following topological coordinates:
γ0(100) = 0.111000,γ1(010) = 0.011100,γ0(001) = 0.001110. The two maximal values
are γ̂0(100) and γ̂1(100), so the region in the topological parameter plane for which100
exists is given by

κ0 > γ̂0(100) = 0.111000= 8
9

κ1 > γ̂1(100) = 0.011100= 4
9.

(15)

The topological coordinates of the other 3-cycle cycle points areγ0(101) = 0.110,
γ1(110) = 0.100,γ1(011) = 0.010, so the cycle exists for

κ0 > γ̂0(101) = 0.110= 6
7 (16)

κ1 > γ̂1(101) = 0.100= 4
7. (17)
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Table 2. The maximal values of short cycles of the bi-unimodal map.

S γ̂0(S) S γ̂1(S)

0 0.0= 0
1 0.10= 2

3
01 0.0110= 2

5 10 0.1100= 4
5

101 0.110= 6
7 110 0.100= 4

7

100 0.111000= 8
9 010 0.011100= 4

9

1101 0.10010110= 10
17 1011 0.11010010= 14

17

1001 0.1110= 14
15 0110 0.0100= 4

15

1000 0.11110000= 16
17 0010 0.00111100= 4

17

11101 0.10110= 22
31 10111 0.11010= 26

31

10101 0.1101100100= 26
33 10110 0.1101100100= 28

33

10100 0.11000= 24
31 10010 0.11100= 28

31

11100 0.1011101000= 8
11 10011 0.1110100010= 10

11

10001 0.11110= 30
31 00110 0.00100= 4

31

10000 0.1111100000= 32
33 00010 0.0001111100= 4

33
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Figure 3. Bifurcation lines of the period 5 cycles
yielding a bi-unimodal swallowtail (‘crossroad area’
[29, 5]) in the topological parameter plane(κ0, κ1).

We can continue these calculations for longer cycles; theγ̂s values for cycles up to
length 5 are summarized in table 2. These values yield the bifurcation lines for the cycles
in the topological parameter plane space(κ0, κ1).

3.2. Bifurcation lines in the parameter plane

The bifurcation lines given by table 2 are easier to understand if we draw the lines in the
(κ0, κ1) plane. The period 1, 2, 3, and 4 cycles yield single stable cycle bands. For each
cycle only one maximum value is larger than2

3. We note that the1, 10, and1011 cycles
bifurcate along constantκ1 values, while10ε and 100ε yield windows along constantκ0.
We can find a similar structure for the Hénon map close to theb = 0 line.

However, the bi-unimodal approximation describes also more interesting higher
codimension structures. The simplest example is given by the four period 5 cycles10ε11ε2,
εi ∈ {0, 1}. The bifurcation lines for these cycles are drawn in figure 3. Each cycle exists
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Figure 4. The topological parameter
plane (κ0, κ1) bifurcation lines of the
period 5, 6 and 7 swallowtails.

in a rectangle in the topological parameter plane. The inaccessible topological parameter
values are shaded grey. Theκ0 = κ1 line necessarily crosses the same stable windows
1011ε and1001ε as the unimodal map, figure 1, but along theκ1 = 1 line the cycles pair
differently, as1110ε and1010ε. We find in the(κ0, κ1) plane a topological structure which
we shall refer to as a ‘swallowtail’, a parameter region within which the two pairs of cycles
exchange partners. This structure is denoted a ‘crossroad area’ in [29, 5]. This swallowtail
crossing is the distinctive feature of bi-unimodal maps; we shall illustrate it by finding all
swallowtails for the short cycles up to length 9. Iff0 andf1 are smooth functions then the
function f (5)(x)− x will have the normal formg = x3 + ux + v. Solvingg = 0 for x, u,
andv close to zero will depend on the two parametersu andv, and the dimensionality of
the normal form parameter space(u, v) is called the codimension of the bifurcation [11].
Hence, the swallowtail such as the one illustrated in figure 3 is a codimension-2 bifurcation
structure.

The bifurcation diagram for the period 6 cycles yields one swallowtail similar to the
period 5 swallowtail with the symbolic dynamics given by100ε01ε1. In the bi-unimodal
approximation the other period 6 cycles yield simple windows with stable cycles. The
period 7 cycles yield three different swallowtails in the topological parameter plane. The
swallowtails for period 5, 6, and 7 cycles are drawn together in figure 4.

Longer cycles combine into increasing numbers of swallowtails. In figures 5(a) and (b)
we display all swallowtail crossings for cycles of periods 8 and 9. The swallowtails are
given by the following itineraries.

Period 5;10ε01ε1.
Period 6;100ε01ε1.
Period 7;1000ε01ε1, 10ε0111ε1 and10ε0101ε1.
Period 8; 10000ε01ε1, 100ε0101ε1, 100ε0111ε1, 10ε01011ε1 and 1001ε010ε1, where

the last swallowtail lies below the diagonal and occurs for the orientation-preserving maps
(b < 0 for the H́enon map).

Period 9;100000ε01ε1, 1000ε0101ε1, 100ε01001ε1, 100ε01011ε1, 10ε011101ε1,
10ε010111ε1, 10ε010101ε1, 10ε011111ε1, 10011ε010ε1 and10001ε010ε1 where the last two
swallowtails exist for orientation-preserving maps.

Note that the figures describe both the number of swallowtails of different lengths and
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Figure 5. The bifurcation lines of the period (a) 8 and (b) 9 swallow tails in the topological
parameter plane(κ0, κ1).

their relative positions in the parameter plane. We observe that a number of swallowtails
are ordered simply by rows and columns. For example, all swallowtails with the symbol
strings10kε01ε1 with k ∈ {1, 2, . . .} are placed above each other in the(κ0, κ1) plane, with
each swallowtail nested in between the two tails of the swallowtail of the preceding shorter
cycle, see figure 4.

The symbolic description for a generic swallowtail in the bi-unimodal approximation is
given by the following proposition.

Proposition 1. The four cycles that form a bi-unimodal swallowtail of an once-folding map
have following itineraries:

S = s1s2 · · · sm0ε0sm+3sm+4 . . . sn−21ε1 (18)

with the kneading values

γ̂1(S) = γ (s1s2 · · · sm0ε0sm+3sm+4 . . . sn−21ε1)

γ̂0(S) = γ (sm+3sm+4 . . . sn−21ε1s1s2 · · · sm0ε0).
(19)

The swallowtail crossing belongs to the orientation-reversing map (b > 0 for the Hénon
map) if γ̂ (S) = γ̂1(S), and the orientation-preserving map (b < 0 for the Hénon map) if
γ̂ (S) = γ̂0(S).
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Figure 6. Bifurcation lines for the homoclinic orbits1ε010ε11
in the topological parameter plane.

3.3. Aperiodic orbits

The aperiodic orbits have bifurcations structures in the bi-unimodal parameter plane similar
to those discussed above, but the bifurcation structure of aperiodic orbits in one-dimensional
bi-unimodal maps, discussed in [17], is more complicated than the bifurcation of periodic
orbits. We will describe here briefly the bifurcation structures of some homoclinic orbits.
The bifurcation lines of the four homoclinic orbits1ε010ε11, with ε0, ε1 ∈ {0, 1} are drawn
in the topological parameter plane in figure 6. All four orbits haveγ̂0 = 0.10, the two orbits
1ε0101 haveγ̂1 = 0.110, and the two orbits1ε01001 haveγ̂1 = 0.1110. As shown in [17],
there exists a complicated web of bifurcations connecting these bifurcation lines to other
bifurcation lines in the parameter plane. The lines of crisis bifurcations and band merging
are of this type.

4. Four-unimodal approximation

The bi-unimodal approximation developed above can explain most but not all of the
bifurcation structures observed in the Hénon map(a, b) parameter plane discussed below.
To explain further observed structures we have to refine the approximation and approximate
the unstable manifold in figure 2(a) with four unimodal functions instead of just two as in
figure 2(b). This four-unimodal reproduces all bifurcations of the unimodal and bi-unimodal
approximations, and yields in addition more complicated bifurcation structures.

The choice of the branch at each iteration is now determined by the symbols of the two
preceding points in the orbits−2s−1, so we label the four functions by the four symbol strings
f10, f00, f01 andf11. The relative ordering of the four branches is given by the way the
horseshoe map acts on the phase space, with the functions nested asf10 < f00 < f01 < f11

for orientation-reversing maps (the Hénon map withb > 0) and asf01 < f11 < f10 < f00

for the orientation-preserving maps (the Hénon map withb < 0).
Each map has a critical point with an associated topological parameterκs ′s determined

by the kneading sequence of its critical point. The relative ordering ofκs ′s is the same as
of the functions themselves. For orientation-reversing maps

κ10 6 κ00 6 κ01 6 κ11, (20)

and for orientation-preserving maps

κ01 6 κ11 6 κ10 6 κ00. (21)
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An orbit S now has four maximum values restricted to the four maps

γ̂s ′s(S) = sup
m

γ (σm(S)) with sm−2 = s ′, sm−1 = s. (22)

As in the bi-unimodal approximation, we can easily determine theγ̂s ′s of all the short
cycles, and study all possible bifurcations of orbits in the four-dimensional topological
parameter space(κ10, κ00, κ01, κ11). Since we lack the ability to visualize three-dimensional
bifurcations hyperplanes in a four-dimensional parameter space, we will draw bifurcation
lines in the different two-dimensional topological parameter sections and some bifurcation
planes in three-dimensional sections of the full parameter space. The six projections of the
four-dimensional space into two-dimensional subspaces are(κ10, κ00), (κ10, κ01), (κ10, κ11),
(κ00, κ01), (κ00, κ11), and (κ01, κ11). These projections will reveal the codimension-2
bifurcation structures possible in a generic once-folding map in the four-unimodal. We
shall recover the unimodal and bi-unimodal structures already discussed above, together
with some new bifurcation structures.

The projections of the four-dimensional topological parameter space into different two-
dimensional spaces are non-trivial because of the ordering constraints (20) and (21). In
simple one-dimensional tri-unimodal and four-unimodal maps [18] we can scan a two-
dimensional topological parameter plane(κi, κj ) while we let all the other topological
parameter values have the extremum value that allows a maximum number of orbits. The
two-dimensional planes give us all possible codimension-2 bifurcation structures in the
system. For the four-unimodal maps discussed here we have drawn two-dimensionalκ-
planes where the otherκs ′s values are as large as possible but restricted by (20) and (21).
The six planes are:
• (κ10, κ00) with κ01 = κ11 = 1 for b > 0 andκ01 = κ11 = κ10 for b < 0,
• (κ10, κ01) with κ00 = κ01, κ11 = 1 for b > 0 andκ11 = κ10, κ00 = 1 for b < 0,
• (κ10, κ11) with κ00 = κ01 = κ11 for b > 0 andκ01 = κ11, κ00 = 1 for b < 0,
• (κ00, κ01) with κ10 = κ00, κ11 = 1 for b > 0 andκ11 = κ10 = κ00 for b < 0,
• (κ00, κ11) with κ10 = κ00, κ01 = κ11 for b > 0 andκ01 = κ11, κ10 = κ00 for b < 0,
• (κ01, κ11) with κ10 = κ00 = κ01 for b > 0 andκ10 = κ00 = 1 for b < 0.
Here the H́enon map parameterb is used to indicate whether the map is orientation

reversing or preserving.
Some of the assumed parameter limits, for exampleκ00 = κ01 = κ11, are impossible in

any smooth map. This introduces some unacceptable structures (see below), but ensures that
we capture all possible codimension-2 structures existing in the four-dimensional parameter
space. Inequalities (20) and (21) imply that the parameter planes(κ10, κ00), (κ01, κ11) only
consist of the upper trianglesκ00 > κ10 and κ11 > κ01 respectively and we do not know
the sign ofb in these planes. In the other four planes the diagonal corresponds tob = 0 in
the H́enon map. The bifurcations lines are not necessarily continuous across the diagonal
because the projections are different forb > 0 and b < 0. The four planes(κ10, κ01),
(κ10, κ11), (κ00, κ01), and(κ00, κ11) (e.g. figures 8(b)–(e)) can be regarded as eight triangular
planes drawn together for convenience.

4.1. Period 4 orbit cusp bifurcation

The shortest orbits which exhibit a new type of a codimension-2 singularity in the four-
unimodal are the period 4 orbits1000, 1001 and1011. In figure 7 the bifurcation lines
for these three orbits are drawn in the topological parameter plane(κ10, κ00). The unstable
orbit 1001 is common in the two tails and at a point where the two tails meet this orbit
yields a cusp bifurcation. This cusp is similar to the codimension-2 cusp in the centre of
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Figure 7. The bifurcation of the orbits1000, 1001 and1011 in
the topological parameter plane(κ10, κ00).

Table 3. The four symbolic valuesκ10, κ00, κ01 andκ11 of the nine period 6 cycles.

κ01 κ00

τ(000010) = 0.000011111100 τ(100000) = 0.111111000000
τ(000011) = 0.000010 τ(100001) = 0.111110
τ(100011) = 0.111101000010 τ(111000) = 0.101111010000
τ(100010) = 0.111100 τ(101000) = 0.110000
τ(010011) = 0.011101100010 τ(101001) = 0.110001001110
τ(110011) = 0.100010 τ(111001) = 0.101110
τ(110010) = 0.100011011100 τ(011001) = 0.010001101110
τ(111011) = 0.101101010010 —
τ(101011) = 0.110010 —

κ10 κ11

τ(000100) = 0.000111111000 —
τ(001100) = 0.001000 τ(000110) = 0.000100
τ(011100) = 0.010111101000 τ(001110) = 0.001011110100
τ(010100) = 0.011000 —
τ(110100) = 0.100111011000 τ(100110) = 0.111011000100
τ(111100) = 0.101000 τ(100111) = 0.111010
τ(100101) = 0.111001000110 τ(010110) = 0.011011100100
τ(111101) = 0.101001010110 τ(101111) = 0.110101001010
τ(110101) = 0.100110 τ(101110) = 0.110100

the swallowtails discussed in the bi-unimodal case, but unlike a bi-unimodal swallowtail
there is no connection to two other tails.

4.2. Period 6 swallowtails

It turns out that the period 5 orbits do not yield any new and interesting structures in the
four-unimodal approximation. For the period 6 orbits we find four new codimension-2
structures.

All six topological parameter planes of period 6 orbits are drawn in figures 8(a)–(f ).
The symbolic valueŝγ (S) used to draw these figures are given in table 3. We now discuss
figure 8 in detail.

The period 6 swallowtail structure in figure 8(e) is the bi-unimodal swallowtail100ε11ε2

already discussed and drawn in figure 4.
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Figure 8. The bifurcation lines of period 6 orbits in the six four-unimodal topological parameter
planes.
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The swallowtail in figure 8(c) is a legal swallowtail of the once-folding map but one
which we did not find in the bi-unimodal topological parameter plane. The symbolic
description of the orbits in this swallowtail is10ε111ε2.

Figure 8(a) illustrates some interesting new bifurcation structures. Here we find two
cusp structures involving three orbits each. One cusp bifurcation involves the three orbits
111100,111001, and111101 while the other cusp involves the three orbits101001,101000,
and 110101. The tail11100ε bifurcating along theκ00 direction in figure 8(a) is also a
tail bifurcating along theκ00 direction in figure 8(e) starting at the bi-unimodal swallowtail.
We will focus on these structures because, as we shall see below, they are observed in the
Hénon map.

In figure 8(f ) we find a new cusp bifurcation involving the three orbits100111,100110,
and100101.

Figure 8(b) shows the topological parameter plane(κ10, κ01) and yields some unimodal
structures and the cusp bifurcation also drawn in figure 8(f ).

Figure 8(d) appears to be slightly more complicated but it contains no structures not
already described above. A discontinuity at the diagonalκ00 = κ01 is clearly visible here. At
the diagonal the different folds switch ordering, so some bifurcation lines are discontinuous
at this line in the symbol plane. This does not imply that there are any discontinuities in the
Hénon map. The part of a swallowtail in the upper triangle here is the same bi-unimodal
swallowtail as in figure 8(e) and not a new structure. The cusp in the lower triangle is the
same cusp as in figure 8(f ) and only a new image of this.

There are in addition some other topological bifurcation structures in figure 8 which
cannot be interpreted as bifurcations. These do not give topological lines in pairs as required
for a bifurcation in a dynamical system.

The interesting bifurcation planes can also be drawn in a three-dimensional parameter
space. It turn out that the structure we get by combining the two swallowtails in figures 8(e)
and 8(c) and the two cusps in figure 8(a) is of the same type as the bifurcation structure
for the period 8 orbits discussed below in section 4.4, see figure 11.

4.3. Cusp bifurcations

The cusp bifurcation discussed above clearly shows the main problem that we face in
defining symbolic dynamics for the Hénon-type maps. We illustrate this here in some detail
by discussing one of the cusps. A conjecture of a universally valid definition of symbols in
a Hénon map is stated elsewhere [16].

Figure 8(a) shows the cusp with the period 6 orbits111000,111001, and111101, and
figure 9 shows the stable and the unstable manifolds at the cusp point for the Hénon map.
Our four-unimodal map cannot be a good description when one of the folds no longer have
a turning point corresponding to a one-dimensional critical point. Figure 2(a) seems to
justify a four-unimodal approximation, but figure 9 shows that we lose a tangency point
close to the period 6 orbit for these parameter values. Closer examination of figure 9 shows
that actually two of the folds lose their turning points corresponding to the critical points of
the one-dimensional maps at the cusp and a proper approximation is then the bi-unimodal
approximation with two unimodal maps. The problem is how to choose the symbol for a
point on the fold that does not have a primary turning point. Moving in parameter space
such that a turning point is created shows that there is not one unique point yielding the
symbol partition, but the position of the point will depend on the path we choose in the
parameter plane. This implies that orbits may change symbolic dynamics moving around
the cusp in the parameter space as shown in [15] (see also [9]). The bifurcation lines for
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Figure 9. The stable and unstable manifolds at the cusp point for the period 6 orbit100111.

111000 and111101 behind the cusp in figure 8(a) should therefore not be understood as
bifurcation lines where an orbit is created in a dynamical system, but an indication of where
the description of the orbit using the four-unimodal symbolic dynamics is correct. The
orbit will also exist between the lines but without the same symbolic description in this
approximation. The short diagonal lines on the cusps in figure 8 indicate the change from
a four-unimodal to a bi-unimodal approximation.

The change of symbolic dynamics at a cusp also has consequences for the method
proposed by Biham and Wenzel [3, 4] to find cycles in the Hénon map. As discussed in
[16], there will be a region behind the cusp where the method does not converge.

The change in modality takes place when the critical point on the lower-most unimodal
map iterates directly into the critical point of the second lower-most unimodal map. We
can state this with symbolic dynamics using the kneading sequences of the maps.

Proposition 2. In the four-unimodal there is a bifurcation from a four-unimodal to a bi-
unimodal approximation of the once-folding map at parameter values where the kneading
sequences of the maps satisfy the following condition; for order-reversing mapping(b > 0)

K00 = σ(K10), (23)

for order-preserving mapping(b < 0)

K11 = σ(K01). (24)

Assumings1 = 1 for the kneading sequences we get the conditions on the topological
parameter values for the bifurcation: forb > 0

κ00 = 2− 2κ10, (25)
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Figure 10. Bifurcation lines of some period 8 orbits in the two-dimensional projections of the
topological parameter space (a) (κ10, κ00), (b) (κ00, κ11), (c) (κ10, κ11).

and forb < 0

κ11 = 2− 2κ01. (26)

This requirement is satisfied for all the cusp points of the periodic orbits discussed above.
One example is the cusp in figure 8(a) with the orbit 100111 giving 2− 2γ̂10(100111) =
2−2γ (111100) = 2−2·0.101000= 2−1.010001= 0.101110= γ (111001) = γ̂00(100111).
Depending on whether the number of 1’s in the repeating string is odd or even, the stable
orbit is either inside a cusp or it surrounds the cusp point of an unstable orbit.

4.4. Bifurcation of period 8 orbits

Another more complicated example of bifurcations observed in the Hénon map explainable
by the four-unimodal approximation is the bifurcation structure of period 8 orbits. We
therefore investigate the bifurcation structures in the topological parameter plane for the
period 8 orbits.

In the same way as for the period 6 orbits we can construct two-dimensional topological
parameter planes for all period 8 orbits. This will yield a very complicated picture; in
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Figure 11. Bifurcation lines of some period 8 orbits in the three-dimensional topological
parameter(κ10, κ00, κ11).

figure 10 the bifurcation lines for some period 8 orbits are sketched in the three planes
(κ10, κ00), (κ00, κ11), and(κ10, κ11). These drawings show that there are two cusp structures
and two swallowtails in these topological parameter spaces quite similar to the period 6
orbits discussed above. One of the swallowtails is the swallowtail100ε0111ε1 from the
bi-unimodal approximation (figure 5(a)), while the other structures appears only in the
four-unimodal approximation.

We can combine the three pictures in figure 10 to draw a three-dimensional projection
of the full four-dimensional topological parameter space. This will describe how the
codimension-2 bifurcation structures are connected with stable windows in the parameter
space. In figure 11 the exact bifurcation planes are drawn in the topological parameter
space(κ10, κ00, κ11). The ranges of the axes are 0.64< κ10 < 0.69, 0.67< κ00 < 0.71, and
0.82< κ11 < 0.97. The lineκ00 = 2− 2κ10 yielding cusp structures equation (25) is also
drawn. In this three-dimensional space the bifurcations take place at planes and an orbit exist
inside a three-dimensional box with one corner at(1, 1, 1). A scan of the(a, b) plane of the
Hénon map corresponds to a two-dimensional hypersurface cutting through the bifurcation
planes in this three-dimensional topological parameter space, yielding a bifurcation line
whenever the(a, b) parameter hypersurface intersects the bifurcation plane of an orbit.

4.5. Area-preserving maps

The lines|b| = 1 in the H́enon map correspond to area-conserving maps. This limit is not a
special line in the topological parameter space, but we can show that certain codimension-2
bifurcations require that the map is area conserving. To show this we have to use the
symmetry between the stable and unstable manifolds.
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To discuss this symmetry we first have to define a quantity for the stable manifold
equivalent toγ (S). This is given in [7, 6] as forb > 0

wt−1 =
{

1− wt if st−1 = 0

wt if st−1 = 1
w0 = s0

δ(x) = 0.w0w−1w−2 . . . =
∞∑
t=1

w1−t /2t ,

(27)

and forb < 0

wt−1 =
{
wt if st−1 = 0

1− wt if st−1 = 1
w0 = s0

δ(x) = 0.w0w−1w−2 . . . =
∞∑
t=1

w1−t /2t .

(28)

From the pruning front conjecture [7, 6] it follows that since for area-preserving maps
this is a symmetry between the unstable and stable manifolds it will also be a symmetry
between the pruning fronts inγ and in δ. We can use this symmetry to discuss the cusp
bifurcation.

At a cusp point singularity an orbit has two points on the pruning front corresponding
to two cyclic permutations of the periodic symbol string;S and S ′ = σ k(S). The area-
preserving map symmetry implies that theγ -values of these strings are symmetric to the
δ-values of one backward shift of the same symbol string, as the area-preserving pruning
front is symmetric to the backward iteration of the pruning front.

At a cusp in a two-dimensional parameter plane(κss ′ , κs ′′s ′′′) the symbol stringS yields
the valueκss ′ and shifted stringS ′ yields the valueκs ′′s ′′′ . The cusp can only exist for the
order-reversing area conserving map (b = 1) line if

γ (S) = 1− δ(σ−1(S ′))

δ(S) = 1− γ (σ−1(S ′))

γ (S ′) = 1− δ(σ−1(S))

δ(S ′) = 1− γ (σ−1(S))

(29)

and for the order-preserving area conserving map (b = −1) if

γ (S) = δ(σ−1(S ′))

δ(S) = γ (σ−1(S ′))

γ (S ′) = δ(σ−1(S))

δ(S ′) = γ (σ−1(S))

(30)

whereσ−1 is the inverse shift operation of the symbol string, corresponding to an iteration
once backward in time. This implies that the two periodic points on the pruning front in
the symbol plane are symmetric to each other with respect to a symmetry line.

The cyclic permutations of the period 4 orbit1001; S = 1001 andS = 1100 yields
κ00 = γ (1001) = 0.1110 andκ10 = γ (1100) = 0.1000, figure 7. Using the definitions (5)
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and (27) we find the following relations between the symbolic values of the symbol string:

γ (1001) = 0.1110= 1− 0.0001= 1− δ(0110) = 1− δ(σ−1(1100))

δ(1001) = 0.1011= 1− 0.0100= 1− γ (0110) = 1− γ (σ−1(1100))

γ (1100) = 0.1000= 1− 0.0111= 1− δ(1100) = 1− δ(σ−1(1001))

δ(1100) = 0.0111= 1− 0.1000= 1− γ (1100) = 1− γ (σ−1(1001)).

(31)

This is the symmetry relation (29) corresponding to the Hénon map withb = 1.
The cusp of the period 6 orbits with the orbits101001,101000, and110101 has the orbit

101001 common in the two tails with the cyclic permutationsS = 101001 andS ′ = 110100
giving the symbolic valuesκ00 and κ10 at the singular point. Direct calculation using
definitions (5) and (27) yields

γ (101001) = 1− δ(σ−1(110100))

δ(101001) = 1− γ (σ−1(110100))

γ (110100) = 1− δ(σ−1(101001))

δ(110100) = 1− γ (σ−1(101001)),

the symmetry in (29) which restricts the cusp to theb = 1 line.
There is a cusp structure for period 6 orbits involving the three orbits100111,100110,

and 110010. The common orbit in the two tails are100111 and the cyclic permutations
S = 100111 andS ′ = 110011 gives the symbolic valuesκ11 andκ01 at the singular point.
Using the definitions (5) and (28) forb < 0 we find

γ (100111) = δ(σ−1(110011))

δ(100111) = γ (σ−1(110011))

γ (110011) = δ(σ−1(100111))

δ(110011) = γ (σ−1(100111))

which is the symmetry equation (30) for the Hénon map atb = −1.

5. Hénon map bifurcations

We shall now try to verify the bifurcation structure described above for a generic topological
parameter space in the specific parameter space(a, b) of the H́enon map. The different
bifurcation lines and many of the swallowtails in the bi-unimodal approximation can be
found numerically in this(a, b) plane. Many of these bifurcation structures have been
drawn in e.g. [8, 29].

The bifurcation curves for the cycles with period 1, 2, 3 and 4 for|b| < 1 give only
simple windows similar to the bifurcation lines obtained in the topological parameter space.

In figure 12 we have drawn the bifurcation lines for the period 4 orbits in the parameter
plane (a, b) close to theb = 1 line. We find here the cusp predicted in the topological
parameter plane. In agreement with the arguments above, we do find that the cusp point is
exactly on theb = 1 line.

A scan of the(a, b) plane for the H́enon map, searching for stable period 5 orbits reveals
the swallowtail bifurcation as drawn in figure 13. We notice that in figure 3 the swallowtail
crossing in the symbol plane takes place forκ1 > κ0, corresponding to an orientation-
reversing horseshoe, that isb > 0 for the H́enon map. The period doubling to two period
10 swallowtail crossings, four period20 crossings etc, is found for the Hénon map exactly



Bifurcation structures in maps of H´enon type 1253

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

b

a

110e

100e

Figure 12. The bifurcation curves of the period 4 orbits in the Hénon map.
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Figure 13. The swallowtail of period 5 orbits in the parameter plane(a, b) for the H́enon map:
areas with stable period 5 orbit.

as constructed in the bi-unimodal map symbol plane [16]. This bi-unimodal bifurcation
structure is the same as the well studied one-dimensional bimodal maps in [23–25, 10, 27].

The relative position between two swallowtails in the topological parameter plane is a
topological feature which is valid also in any 2-parameter plane(a, b) for a once-folding
map. If one swallowtail crossing is between two other tails in the topological parameter
plane or if a tail from one swallowtail crosses a tail from a different swallowtail, then this
will be true also in a(a, b) parameter plane.
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Figure 14. Swallowtails in the H́enon map: areas in the(a, b) parameter plane corresponding
to stable period 5, 6 or 7 orbit are marked in black.

We now compare the bi-unimodal admissible swallowtails of the short orbits with the
swallowtails realized by the H́enon map. In figure 4 the swallowtails for period 5, 6 and
7 are drawn together in the topological parameter plane. Observe the topological structure;
which tails that cross other tails and which swallowtails are nested within other swallowtails.
There is one horizontal row of period 7, 5 and 7 swallowtails and there is one vertical column
with period 5, 6 and 7 swallowtails. Figure 14 is a scan of the(a, b) plane of the H́enon
map, with the areas corresponding to stable period 5, 6 and 7 orbits are marked in black.
The swallowtails are arranged topologically as in figure 4, with only a few differences in
the structure. One of the tails from the period 6 swallowtail crosses a tail of the period
5 swallowtail; according to the bi-unimodal topological parameter plane this should not
occur. As we will discuss below, this arises from the four-unimodal approximation. Also
the period 7 swallowtail above the period 6 swallowtail has one tail crossing a period 5 tail.
This period 7 swallowtail1000ε01ε1 is not a complete swallowtail but is broken up into a
cusp and an isolated tail. The bifurcation lines are correctly described by the bi-unimodal
topological parameter plane but because the tails bifurcate on different folds with a finite
distance the orbit is not stable in the whole region where the bi-unimodal map is stable.

In figure 15 we find that one of the tails from the swallowtail100ε01ε1 is connected
to a cusp bifurcation. This is the bifurcation predicted by figures 8(a) and (e). In both
figures 8(a) and (e) the tail 11100ε bifurcates at aκ00 value. The tail is connected to the
swallowtail 100ε01ε1 in figure 8(e) and to the cusp with the orbits111000,111001, and
111101 in figure 8(a). This is the tail connecting the two codimension-2 structures in the
(a, b) plane in figure 15.

Another connection between codimension-2 structures predicted from figures 8(a) and
(e) is the tail10100ε which connect the swallowtail100ε01ε1 with the cusp consisting of the
orbits 101001,101000, and110101. We have found above that this cusp has the symmetry
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Figure 15. The (a, b) parameter plane regions with a stable period 6 orbit in the Hénon map.

restricting it to theb = 1 line. Numerically the cusp is found ata ≈ 2.75, b = 1.
The third cusp in figure 8(f ) with the orbits100111,100110, and110010 is predicted

to be connected to the bi-unimodal swallowtail with the tail10011ε and exist at theb = −1
line. Numerically this cusp is found ata ≈ 3.0, b = −1.

The swallowtail in figure 8(c) is not found for the H́enon map. It uses some of the
same orbits as the other codimension-2 structures and it will therefore be difficult to have
this together with the other structures in the same(a, b) plane. This cusp is realized by
other once-folding maps; it has been found in the two-dimensional Lozi map [22, 16].

The bifurcations of the period 8 orbits turns out to be the most complicated of the short
cycles. The period 8 swallowtails in figure 5(a) with symbolic description100ε0111ε1 do
not exist for the H́enon map but can exist for a slightly perturbed Hénon map. In the four-
unimodal approximation this swallowtail is in figure 11 connected to one other swallowtail
and two cusps. To show that the rather strange-looking bifurcation we find for the Hénon
map is described by the bifurcation planes in figure 11 we study a variation of the Hénon
map where we add ax4 term with a third parameterc:

xt+1 = 1− ax2
t − cx4

t + bxt−1. (32)

This map is once-folding forc > 0. For c < 0 the map is in principle thrice-folding, but
close toc = 0 the map behaves like a once-folding map for small values ofx.

Figure 16 shows the parameter values with a stable period 8 orbit for the perturbed
Hénon map (32). Forc = 0, figure 16(c), this is the H́enon map. We find in figure 16 that
the bifurcation structures changes smoothly with the new parameterc and forc = 0.08 and
for c = −0.06 we find combinations of familiar codimension-2 structures, swallowtails and
cusps, while forc = 0 a more complicated structure emerges.

The (a, b) plane in figure 16(a) corresponds to a plane that cuts through the two cusps
on the top and through the swallowtail on the left-hand side of figure 11. This is the structure
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 0.90  1.15
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(c) a

b

 0.90  1.15
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 0.54

(d)
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 0.90  1.15

 0.44

 0.54

(e) a

b

 1.00  1.25

 0.44

 0.54

(f)

Figure 16. The parameter values giving stable period 8 orbits in the perturbed Hénon map (32)
in the parameter space(a, b) with different values ofc. (a) c = 0.08, (b) c = 0.02, (c) c = 0
(the H́enon map), (d) c = −0.013, (e) c = −0.02, (f ) c = −0.06.

drawn in figures 10(a) and (c). The (a, b) plane in figure 16(f ) corresponds to a plane that
only cuts through the swallowtail on the right-hand side of figure 11 (figure 10(b)). The
Hénon map in figure 16(c) is a plane cutting through the structure in the middle of figure 11
where the swallowtails and the cusps merge together. This illustrates a true codimension-3
bifurcation for maps of the H́enon type.

The reader is refered to works of Mira [29] and Carcassés [5] for a detailed study giving
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Figure 17. The bifurcation lines of some homoclinic orbits of the Hénon map in the parameter
plane(a, b). The labels indicate the parameter values in figure 18.

more examples of bifurcation structures in the Hénon map.
We have shown here how the bifurcations in the Hénon map can be understood if we

extend the map with a third parameter and consider the bifurcations as a structure in a three-
dimensional(a, b, c) parameter space. With this procedure we find a complete agreement
between the predictions of the topological parameter space and the numerics. Hence the
proper way to study bifurcations of cycles in the Hénon map is to extend the investigation
to an infinite-dimensional topological parameter space of all ‘Hénon-like’ maps.

5.1. Aperiodic orbits

The bifurcation of homoclinic orbits in a smooth bi-unimodal map would give bifurcation
lines similar to the bifurcation lines in the symbol plane, figure 6, as discussed in [17].

The bifurcation lines in the H́enon map for the homoclinic orbits with symbolic
description1ε010ε11 are drawn in figure 17. The bifurcation line1ε101 is where the
attractor merges from two parts into one connected attractor. This is analogous to the
band-merging bifurcations in a unimodal map. This bifurcation takes place along the curve
1ε101 (figure 18(a)) until the cusp area and from the cusp area along the line1010ε1 until
the marker in figure 17. Above this point there is a different homoclinic tangency, the line
1ε10001, which is the border between two or one connected chaotic attractor. The other
bifurcation curves are other homoclinic bifurcations as illustrated in figures 18(b)–(d). The
bifurcation curves have similar shapes as in the topological parameter plane (figure 6), but
the bifurcation curve corresponding to theκ0 = 0.10 line is split into two curves and one
of the curves has a cusp. The cusp is not as narrow as the homoclinic orbit cusp one finds
in bi-unimodal maps [17]. Numerically it seems to be the same type of cusp as we have
in the centre of the swallowtail where the width of the cusp increases as the distance to
the power 3

2. The second smooth curve in figure 17 seems to lack the singularity in the
derivative found for bi-unimodal maps [17].

The homoclinic orbits are changing the symbolic description in the neighbourhood of
the cusp point. We find that the homoclinic orbit101 bifurcates at point (a) and (c) in
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Figure 18. Homoclinic bifurcations in the H́enon map at parameter values indicated in figure 17.
(a) 1ε101 for a = 1.2, b = 0.258 38. (b) 1ε1001 for a = 1.2, b = 0.3516. (c) 10ε1 for a = 1.2,
b = 0.414 6037. (d) 1010ε1 for a = 1.2, b = 0.418 569 132.

figure 17 but there is no bifurcation curve connecting these two points. The orbits therefore
have to change symbolic dynamics at some point along the bifurcation line.

The bi-unimodal approximation fails to predict the splitting of the bifurcation curve,
κ0 = 0.10, and only predicts the main structure. To explain this we have to take into
account that the map is two-dimensional with smooth stable and unstable manifolds. This
is a point where the two-dimensionality of the map is important.

In contrast to the periodic orbits, bifurcation lines of homoclinic orbits in the symbol
plane yield bifurcations of an infinite number of different orbits. In a bi-unimodal map this
gives a fractal set of singular bifurcation points on these bifurcation lines and a complicated
web through the parameter space. In the two-dimensional folding map the degenerated
bifurcation line of the one-dimensional map splits into a Cantor set collection of bifurcation
lines, one line for each pair of the infinite number of aperiodic orbits.
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6. Monotonicity

In the four-dimensional topological parameter space of the four-unimodal approximation
discussed here there are many one-dimensional parameter lines along which orbits are only
created and not destroyed. Along all curvesC(κ) in (κ10, κ00, κ01, κ11) where∂C/∂κss ′ > 0
the non-wandering set will be constant or increase asκ increases. Consequently the
topological entropy will not decrease along such curves. From a given point in the
topological parameter space one can construct a four-dimensional cone containing these
curves such that the cone separates the region where all four topological parameter values
are larger from the region where all four topological parameter values are smaller than the
starting point.

A similar statement can be made for the two-dimensional parameter plane(κ0, κ1) and
for the 8, 16, 32,. . . -dimensional parameter spaces for the higher-order approximations.
Our description therefore gives a monotone map in the sense that through any point in the
parameter plane one can find a one-dimensional curve along which the bifurcations only
create orbits. There also exist of course paths along which orbits are both created and
destroyed.

A difficult question is whether this monotonicity property of the(κ10, κ00, κ01, κ11) space
carries over to a given four-dimensional parameter space(a, b, c, d) describing a specific
map, say the H́enon map. As we have showed above in a number of examples, the
description of bifurcation of periodic orbits and homoclinic orbits seems to be the same
in the two parameter spaces. We also believe that the property of monotonicity is true in
a typical (a, b, c, d) parameter space for a once-folding map. This implies that from any
given point in the parameter space there originates a four-dimensional cone within which
all curvesC̃(a) yield non-wandering sets of increasing topological entropy. In the most
extreme points (cusp bifurcation points) this cone may shrink to a line, but should always
exist. For the H́enon map which only has two parameters there may exist points from
where there are no curves̃C(a, b) along which orbits are only born, but by introducing
more parameters it should be possible to find such a curveC̃(a, b, c, d, . . .). One example
is figure 16(d) where we have a region in(a, b) bounded by a curve creating a stable period
8 orbit. All curves in this(a, b) plane forc = −0.013 have to cut the bifurcation line twice
and are not monotone. However, a line which has fixed(a, b) and a varying value ofc
will be monotone with respect to the period 8 orbit. This codimension-3 structure has the
monotonicity in a cone in the(a, b, c) parameter space for the extended Hénon map.

In a general 2n approximation it will be a 2n-dimensional cone from a point in the 2n-
dimensional topological parameter space in which the non-wandering set is increasing. We
believe that in a corresponding 2n-dimensional parameter space(a, b, c, . . . , z) describing
a particular map, there is also a cone with a monotone increasing non-wandering set.

These arguments are in disagreement with the paper of Kanet al [21] which claims that
there does not exist any curve in the parameter plane along which orbits are only created,
and none are destroyed. The validity of this theorem has been questioned in [19].

7. Discussion and conclusions

The most crucial question about our description is whether symbolic dynamics is at all
uniquely defined for a system like the Hénon map. This has been discussed by Grassberger
and Kantz [12, 13] who introduced ‘primary turning points’ in order to partition the non-
wandering set of the H́enon map, and by Cvitanović et al [7] whose pruning front is
conjectured to provide such partition. All numerical studies indicate that such symbolic
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dynamics does exist. It has also been claimed that a unique symbolic dynamics for the
Hénon map can be defined for any given parameter values [16]. Biham and Wenzel
[3, 4] introduced a useful method for numerical determination of periodic orbits, which,
when the method converges, also assigns unique symbolic itinerary to each periodic orbit.
Unfortunately, as explained above, this method does not converge in regions of the(a, b)

plane behind cusps, where unstable orbits change their symbolic description.
The next question is whether the choice of a bi-unimodal, four-unimodal, etc

approximation is valid, and if valid whether it is useful. An alternative way to present the
method would be to say that we approximated the pruning front [7] by 2 steps, 4 steps, etc.
We find that the geometry of the problem makes the multi-unimodal approximations very
natural, and tracing the bifurcation structures in higher codimension topological parameter
spaces yield a more systematic and powerful approach than what has been done so far, in
studies restricted to two-dimensional parameter hypersurfaces.

The existence of a map to and from the topological parameter space to a parameter plane
(a, b) for the H́enon map remains an unproven conjecture. There are many other aspects
of this problem where deeper understanding is still lacking, but the predictions based on
multi-unimodal approximations agree with the numerics for the Hénon map in so far as we
have tested them. We believe that the description of bifurcation structures obtained here
contributes to the understanding of the Hénon and other maps of this type.
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