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�� Circle Maps� Irrationally Winding

Predrag Cvitanovi�c

In these lectures we shall discuss circle maps as an example of a physically in�
teresting chaotic dynamical system with rich number�theoretic structure� Circle
maps arise in physics in a variety of contexts� One setting is the classical Hamil�

tonian mechanics� a typical island of stability in a Hamiltonian ��d map is an
in�nite sequence of concentric KAM tori and chaotic regions� In the crudest ap�
proximation� the radius can here be treated as an external parameter �� and the
angular motion can be modelled by a map periodic in the angular variable	�� �
�
In holomorphic dynamics circle maps arise from the winding of the complex
phase factors as one moves around the Mandelbrot cacti	�
� In the context of
dissipative dynamical systems one of the most common and experimentally well
explored routes to chaos is the two�frequency mode�locking route� Interaction of
pairs of frequencies is of deep theoretical interest due to the generality of this
phenomenon� as the energy input into a dissipative dynamical system 
for ex�
ample� a Couette �ow� is increased� typically �rst one and then two of intrinsic
modes of the system are excited� After two Hopf bifurcations 
a �xed point with
inward spiralling stability has become unstable and outward spirals to a limit
cycle� a system lives on a two�torus� Such systems tend to mode�lock� the system
adjusts its internal frequencies slightly so that they fall in step and minimize the
internal dissipation� In such case the ratio of the two frequencies is a rational
number� An irrational frequency ratio corresponds to a quasiperiodic motion �
a curve that never quite repeats itself� If the mode�locked states overlap� chaos
sets in� Typical examples	�
 are dynamical systems such as the Du�ng oscilla�
tor and models of the Josephson junction� which possess a natural frequency ��

and are in addition driven by an external frequency ��� Periodicity is in this
case imposed by the driving frequency� and the dissipation con�nes the system
to a low dimensional attractor� as the ratio ����� is varied� the system sweeps
through in�nitely many mode�locked states� The likelyhood that a mode�locking
occurs depends on the strength of the coupling of the internal and the external
frequencies�

By losing all of the �island�within�island� structure of real systems� circle map
models skirt the problems of determining the symbolic dynamics for a realistic
Hamiltonian system� but they do retain some of the essential features of such
systems� such as the golden mean renormalization	�� �
 and non�hyperbolicity
in form of sequences of cycles accumulating toward the borders of stability� In
particular� in such systems there are orbits that stay �glued� arbitrarily close
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to stable regions for arbitrarily long times� As this is a generic phenomenon in
physically interesting dynamical systems� such as the Hamiltonian systems with
coexisting elliptic islands of stability and hyperbolic homoclinic webs� develop�
ment of good computational techniques is here of utmost practical importance�

We shall start by brie�y summarizing the results of the �local� renormaliza�
tion theory for transitions from quasiperiodicity to chaos� In experimental tests
of this theory one adjusts the external frequency to make the frequency ratio as
far as possible from being mode�locked� This is most readily attained by tuning
the ratio to the �golden mean� 


p
������� The choice of the golden mean is dic�

tated by number theory� the golden mean is the irrational number for which it is
hardest to give good rational approximants� As experimental measurments have
limited accuracy� physicists usually do not expect that such number�theoretic
subtleties as how irrational a number is should be of any physical interest� How�
ever� in the dynamical systems theory to chaos the starting point is the enumera�
tion of asymptotic motions of a dynamical system� and through this enumeration
number theory enters and comes to play a central role�

Number theory comes in full strength in the �global� theory of circle maps�
the study of universal properties of the entire irrational winding set � the main
topic of these lectures� We shall concentrate here on the example of a global
property of the irrational winding set discovered by Jensen� Bak� and Bohr	�
�
the set of irrational windings for critical circle maps with cubic in�ection has
the Hausdor� dimension DH � ����� � � �� and the numerical work indicates that
this dimension is universal� The universality 
or even existence� of this dimen�
sion has not yet been rigorously established� We shall o�er here a rather pretty
explanation	�
 of this universality in form of the explicit formula 
��� which ex�
presses this Hausdor� dimension as an average over the Shenker	�� �� ��
 universal
scaling numbers� The renormalization theory of critical circle maps demands at
present rather tedious numerical computations� and our intuition is much facili�
tated by approximating circle maps by number�theoretic models� The model that
we shall use here to illustrate the basic concepts might at �rst glance appear triv�
ial� but we �nd it very instructive� as much that is obscured by numerical work
required by the critical maps is here readily number�theoretically accessible� In�
dicative of the depth of mathematics lurking behind physicists� conjectures is the
fact that the properties that one would like to establish about the renormalization
theory of critical circle maps might turn out to be related to number�theoretic
abysses such as the Riemann conjecture� already in the context of the �trival�
models�

The literature on circle maps is overwhelming� ranging from pristine Bourba�
kese	��� ��
 to palpitating chicken hearts	��
� and attempting a comprehensive
survey would be a hopeless undertaking� the choice of topics covered here is of
necessity only a fragment of what is known about the dipheomorphisms of the
circle�
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���� Mode Locking

The Poincar�e section of a dynamical system evolving on a two�torus is topolog�
ically a circle� A convenient way to study such systems is to neglect the radial
variation of the Poincar�e section� and model the angular variable by a map of a
circle onto itself� Both quantitatively and qualitatively this behavior is often well
described	��� ��
 by ��dimensional circle maps x� x� � f
x�� f
x��� � f
x���
restricted to the circle� such as the sine map

xn�� � xn � � � k

��
sin
��xn� mod � �
��

f
x� is assumed to be continuous� have a continuous �rst derivative� and a contin�
uous second derivative at the in�ection point� For the generic� physically relevant
case 
the only one considered here� the in�ection is cubic� Here k parametrizes the
strength of the mode�mode interaction� and � parametrizes the ����� frequency
ratio� For k � �� the map is a simple rotation 
the shift map�

xn�� � xn � � mod � �
��

and � is the winding number

W 
k��� � lim
n��

xn�n�
��

If the map is monotonically increasing 
k � � in 
���� it is called subcritical�
For subcritical maps much of the asymptotic behavior is given by the trivial

shift map� scalings	��� ��
� For invertible maps and rational winding numbers
W � P�Q the asymptotic iterates of the map converge to a unique Q�cycle
attractor

fQ
xi� � xi � P� i � �� �� �� � � � � Q� � �
For any rational winding number� there is a �nite interval of parameter values for
which the iterates of the circle map are attracted to the P�Q cycle� This interval
is called the P�Q mode�locked 
or stability� interval� and its width is given by

�P�Q � Q���P�Q � �right
P�Q � �left

P�Q �
��

Parametrizing mode lockings by the exponent � rather than the width � will be
convenient for description of the distribution of the mode�locking widths� as the
exponents � turn out to be of bounded variation� The stability of the P�Q cycle
is de�ned as

 P�Q �
	xQ
	x�

� f �
x��f
�
x�� � � �f �
xQ���

For a stable cycle j j lies between � 
the superstable value� the �center� of the
stability interval� and � 
the �right

P�Q � �
left
P�Q ends of the stability interval in 
����

For the shift map� the stability intervals are shrunk to points� As � is varied from
� to �� the iterates of a circle map either mode�lock� with the winding number
given by a rational number P�Q � 
�� ��� or do not mode�lock� in which case the
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winding number is irrational� A plot of the winding number W as a function of
the shift parameter � is a convenient visualization of the mode�locking structure
of circle maps� It yields a monotonic �devil�s staircase� of �g� ���� whose self�
similar structure we are to unravel�

Fig� ����� The critical circle map �k � � in ���� devil�s staircase��	
 the winding number
W as function of the parameter ��

Circle maps with zero slope at the in�ection point xc

f �
xc� � �� f ��
xc� � �


k � �� xc � � in 
��� are called critical� they delineate the borderline of chaos
in this scenario� As the non�linearity parameter k increases� the mode�locked
intervals become wider� and for the critical circle maps 
k � �� they �ll out the
whole interval	�!
� A critical map has a superstable P�Q cycle for any rational
P�Q� as the stability of any cycle that includes the in�ection point equals zero�
If the map is non�invertable 
k 
 ��� it is called supercritical� the bifurcation
structure of this regime is extremely rich and beyond the scope of these 
and
most other such� lectures�

For physicists the interesting case is the critical case� the shift map is �easy�
number theory 
Farey rationals� continued fractions� which one uses as a guide
to organization of the non�trivial critical case� In particular� the problem of orga�
nizing subcritical mode lockings reduces to the problem of organizing rationals
on the unit interval� The self�similar structure of the devil�s staircase suggests
a systematic way of separating the mode lockings into hierarchies of levels� The
set of rationals P�Q clearly possesses rich number�theoretic structure� which we
shall utilize here to formulate three di�erent partitionings of rationals�

�� Farey series

�� Continued fractions of �xed length

�� Farey tree levels
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���� Farey Series Partitioning

Intuitively� the longer the cycle� the �ner the tuning of the parameter � required
to attain it� given �nite time and resolution� we expect to be able to resolve cycles
up to some maximal length Q� This is the physical motivation for partitioning	��

mode lockings into sets of cycle length up to Q� In number theory such set of
rationals is called a Farey series�

������ De�nition� The Farey series	��
 FQ of order Q is the monotonically in�

creasing sequence of all irreducible rationals between � and � whose denominators

do not exceed Q� Thus Pi�Qi belongs to FQ if � � Pi � Qi � Q and 
PijQi� � ��
For example

F� �
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
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�
�
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�
�
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�
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�

�

A Farey sequence can be generated by observing that if Pi���Qi�� and Pi�Qi are
consecutive terms of FQ� then

PiQi�� � Pi��Qi � ��

The number of terms in the Farey series FQ is given by

"
Q� �
QX

n��

�
Q� �
�Q�

��
� O
Q lnQ��
��

Here the Euler function �
Q� is the number of integers not exceeding and rel�
atively prime to Q� For example� �
�� � �� �
�� � �� �
�� � �� � � � � �
��� �
�� �
��� � ��� � � � As �
Q� is a highly irregular function of Q� the asymptotic
limits are not approached smoothly� incrementing Q by � increases "
Q� by
anything from � to Q terms� We refer to this fact as the �Euler noise��

The Euler noise poses a serious obstacle for numerical calculations with the
Farey series partitionings� it blocks smooth extrapolations to Q�� limits from
�nite Q data� While this in practice renders inaccurate most Farey�sequence par�
titioned averages� the �nite Q Hausdor� dimension estimates exhibit 
for reasons
that we do not understand� surprising numerical stability� and the Farey series
partitioning actually yields the best numerical value of the Hausdor� dimension

��� of any methods used so far� for example	��
� the sine map 
�� estimate
based on ��� � Q � ��� Farey series partitions yields DH � ������ � �������
The quoted error refers to the variation ofDH over this range of Q� as the compu�
tation is not asymptotic� such numerical stability can underestimate the actual
error by a large factor�

���� Continued Fraction Partitioning

From a number�theorist�s point of view� the continued fraction partitioning of the
unit interval is the most venerable organization of rationals� preferred already
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by Gauss� The continued fraction partitioning is obtained by deleting succes�
sively mode�locked intervals 
points in the case of the shift map� corresponding
to continued fractions of increasing length� The �rst level is obtained by deleting
����� ����� � � � ���a��� � � � mode�lockings� their complement are the covering inter�
vals ��� ��� � � � � �a� � � � � which contain all windings� rational and irrational� whose
continued fraction expansion starts with 	a�� � � �
 and is of length at least �� The
second level is obtained by deleting ������� ����	�� ������� ����	�� � � � ���n�m�� � � � and
so on� as illustrated in �g� �����

Fig� ����� Continued fraction partitioning of the irrational winding set�
�	� At level
n�� all mode locking intervals ��a� with winding numbers ���� ��
� ���� � � �� ��a� � � �
are deleted� and the cover consists of the complement intervals la� At level n�
 the
mode locking intervals ��a���� ��a�	�� � � � are deleted from each cover la� and so on�

������ De�nition� The nth level continued fraction partition Sn � fa�a� � � �ang
is the monotonically increasing sequence of all rationals Pi�Qi between � and �

whose continued fraction expansion is of length n�

Pi

Qi
� 	a�� a�� � � � � an
 � �

a� �
�

a� � � � �
�

an

The object of interest� the set of the irrational winding numbers� is in this parti�
tioning labeled by S� � fa�a�a	 � � �g� ak � Z�� ie�� the set of winding numbers
with in�nite continued fraction expansions� The continued fraction labeling is
particularly appealing in the present context because of the close connection of
the Gauss shift to the renormalization transformation R� discussed below� The
Gauss shift	��


T 
x� �
�

x
�
�
�

x

�
x 	� �

� � x � �
!�


	� � �
 denotes the integer part� acts as a shift on the continued fraction represen�
tation of numbers on the unit interval
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x � 	a�� a�� a	� � � �
 � T 
x� � 	a�� a	� � � �
 �
��

and maps �daughter� intervals �a�a�a���� into the �mother� interval �a�a�����
However natural the continued fractions partitioning might seem to a number

theorist� it is problematic for an experimentalist� as it requires measuring in�nity
of mode�lockings even at the �rst step of the partitioning� This problem can
be overcome both numerically and experimentally by some understanding of
the asymptotics of mode�lockings with large continued fraction entries	��� �
�
Alternatively� a �nite partition can be generated by the partitioning scheme to
be described next�

���� Farey Tree Partitioning

The Farey tree partitioning is a systematic bisection of rationals� it is based on
the observation that roughly halfways between any two large stability intervals

such as ��� and ���� in the devil�s staircase of �g� ���� there is the next largest
stability interval 
such as ����� The winding number of this interval is given by
the Farey mediant	��
 
P � P ���
Q�Q�� of the parent mode�lockings P�Q and
P ��Q�� This kind of cycle �gluing� is rather general and by no means restricted
to circle maps� it can be attained whenever it is possible to arrange that the Qth
iterate deviation caused by shifting a parameter from the correct value for the
Q�cycle is exactly compensated by the Q�th iterate deviation from closing the
Q��cycle� in this way the two near cycles can be glued together into an exact cycle
of length Q�Q�� The Farey tree is obtained by starting with the ends of the unit
interval written as �#� and �#�� and then recursively bisecting intervals by means
of Farey mediants� This kind of hierarchy of rationals is rather new	�!
� and� as
far as we are aware� not previously studied by number theorists� It is appealing
both from the experimental and from the the golden�mean renormalization	��

point of view� but it has a serious drawback of lumping together mode�locking
intervals of wildly di�erent sizes on the same level of the Farey tree�

������ De�nition� The nth Farey tree level Tn is the monotonically increasing

sequence of those continued fractions 	a�� a�� � � � � ak
 whose entries ai 
 �� i �
�� �� � � � � k � �� ak 
 �� add up to

Pk
i�� ai � n � �� For example

T� � f	�
� 	�� �
� 	�� �� �
� 	�� �
g �
�
�

�
�
�

�
�
�

�
�
�

�

�
�

The number of terms in Tn is �
n� Each rational in Tn�� has two �daughters� in

Tn� given by

	� � � � a

	� � � � a� �� �
 	� � � � a� �


Iteration of this rule places all rationals on a binary tree� labelling each by a
unique binary label	��
� The transcription from the binary Farey labels to the
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continued fraction labels follows from the mother�daughter relation above� each
block � � � �� 
��� followed by a� � zeros� corresponds to entry 	� � � � a� � � �
 in the
continued fraction label� The Farey tree has a variety of interesting symmetries

such as ��ipping heads and tails� relations obtained by reversing the order
of the continued�fraction entries� with as yet unexploited implications for the
renormalization theory� some of these are discussed in ref� 	��
�

Fig� ����� The Farey tree in the continued fraction representation �from ref� ��	��

The smallest and the largest denominator in Tn are respectively given by

	n� �
 � �

n� � � 	�� �� � � � � �� �
 �
Fn��

Fn��

� 
n �
��

where the Fibonacci numbers Fn are de�ned by Fn�� � Fn�Fn��� F� � �� F� �
�� and 
 is the golden mean ratio


 �
� �

p
�

�
� ��!���� � � �
��

Note the enormous spread in the cycle lengths on the same level of the Farey
tree� n � Q � 
n� The cycles whose length grows only as a power of the Farey
tree level will cause strong non�hyperbolic e�ects in the evaluation of various
averages�

The Farey tree rationals can be generated by backward iterates of �#� by the
Farey presentation function	��
�

f�
x� � x�
�� x� � � x � ���

f�
x� � 
�� x��x ��� � x � � �

���


the utility of the presentation function is discussed at length in ref� 	��
�� The
Gauss shift 
!� corresponds to replacing the binary Farey presentation function
branch f� in 
��� by an in�nity of branches
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fa
x� � f� � f 
a���
� 
x� �

�

x
� a�

�

a� � � x � �

a
�

fab���c
x� � fc � � � fb � fa
x� �
���

A rational x � 	a�� a�� � � � � ak
 is �annihilated� by the kth iterate of the Gauss
shift� fa�a����ak
x� � �� The above maps look innocent enough� but note that what
is being partitioned is not the dynamical space� but the parameter space� The �ow
described by 
��� and by its non�trivial circle�map generalizations will turn out
to be a renormalization group �ow in the function space of dynamical systems�
not an ordinary �ow in the phase space of a particular dynamical system�

Having de�ned the three partitioning schemes� we now brie�y summarize the
results of the circle�map renormalization theory�

���� Local Theory� 	Golden Mean
 Renormalization

Possible trajectories of a dynamical system are of three qualitatively distinct
types� they are either asymptotically unstable 
positive Lyapunov exponent��
asymptotically marginal 
vanishing Lyapunov� or asymptotically stable 
nega�
tive Lyapunov�� The asymptotically stable orbits can be treated by the tradi�
tional integrable system methods� The asymptotically unstable orbits build up
chaos� and can be dealt with using the machinery of the hyperbolic� �Axiom A�
dynamical systems theory	��
� Here we shall concentrate on the third class of
orbits� the asymptotically marginal ones� I call them the �border of order�� they
lie between order and chaos� and remain on that border to all times�

The way to pinpoint a point on the border of order is to recursively adjust
the parameters so that at the recurrence times t � n�� n�� n	� � � � the trajectory
passes through a region of contraction su�ciently strong to compensate for the
accumulated expansion of the preceding ni steps� but not so strong as to force the
trajectory into a stable attracting orbit� The renormalization operation R imple�
ments this procedure by recursively magnifying the neighborhood of a point on
the border in the dynamical space 
by rescaling by a factor ��� in the parameter
space 
by shifting the parameter origin onto the border and rescaling by a factor
��� and by replacing the initial map f by the nth iterate fn restricted to the
magni�ed neighboorhood

fp
x�� Rfp
x� � �fnp��
x���

There are by now many examples of such renormalizations in which the new
function� framed in a smaller box� is a rescaling of the original function� ie�
the �x�point function of the renormalization operator R� The best known is the
period doubling renormalization� with the recurrence times ni � �i� The simplest
circle map example is the golden mean renormalization	�
� with recurrence times
ni � Fi given by the Fibonacci numbers 
��� Intuitively� in this context a metric
self�similarity arises because iterates of critical maps are themselves critical� ie�
they also have cubic in�ection points with vanishing derivatives�

The renormalization operator appropriate to circle maps	�� ��
 acts as a gen�
eralization of the Gauss shift 
���� it maps a circle map 
represented as a pair of
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functions 
g� f�� see �g� ����� of winding number 	a� b� c� � � �
 into a rescaled map
of winding number 	b� c� � � �
�

Ra

�
g

f

�
�

�
�ga�� � f � ���

�ga�� � f � g � ���

�
�
���

Acting on a map with winding number 	a� a� a� � � �
� Ra returns a map with the
same winding number 	a� a� � � �
� so the �xed point of Ra has a quadratic irrational
winding number W � 	a� a� a� � � �
� This �xed point has a single expanding eigen�
value �a� Similarly� the renormalization transformation Rap � � � Ra�Ra� 
 Ra�a����ap

has a �xed point of winding number Wp � 	a�� a�� � � � � anp� a�� a�� � � �
� with a
single	�� ��� ��
 expanding eigenvalue �p�

Fig� ����� The golden�mean winding number �xed�point function pair �f� g� for critical
circle maps with cubic in�ection point� The symbolic dynamics dictates a unique fram�
ing such that the functions �f� g� are de�ned on intervals ��x � x � �x��� �x�� � x � �x���
�x � f������ in this framing� the circle map �f� g� has continuous derivatives across the
f�g junctions �from ref� ��
	��

For short repeating blocks� � can be estimated numerically by comparing
succesive continued fraction approximants to W � Consider the Pr�Qr rational
approximation to a quadratic irrational winding number Wp whose continued
fraction expansion consists of r repeats of a block p� Let �r be the parameter
for which the map 
�� has a superstable cycle of rotation number Pr�Qr �
	p� p� � � � � p
� The �p can then be estimated by extrapolating from	�


�r � �r�� � ��rp �
���

What this means is that the �devil�s staircase� of �g� ���� is self�similar under
magni�cation by factor �p around any quadratic irrational Wp�

The fundamental result of the renormalization theory 
and the reason why all
this is so interesting� is that the ratios of successsive Pr�Qr mode�locked inter�
vals converge to universal limits� The simplest example of 
��� is the sequence of
Fibonacci number continued fraction approximants to the golden mean winding
number W � 	�� �� �� ���
 � 


p
�� ����� For critical circle maps with a cubic in�

�ection point �� � ������!�� � � �� a list of values of �p�s for the shortest continued
fraction blocks p is given in ref� 	�
�
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When the repeated block is not large� the rate of increase of denominators
Qr is not large� and 
��� is a viable scheme for estimating ��s� However� for
long repeating blocks� the rapid increase of Qr�s makes the periodic orbits hard
to determine and better methods are required� such as the unstable manifold
method employed in ref� 	�
� This topic would take us beyond the space allotted
here� so we merely record the golden�mean unstable manifold equation	��� �!� ��


gp
x� � �g��p��

	
�g������p���
x��

��




���

and leave the reader contemplating methods of solving such equations� We con�
tent ourself here with stating what the extremal values of �p are�

For a given cycle lengthQ� the narrowest interval shrinks with a power law	���
�� ��


���Q � Q�	
���

This leading behavior is derived by methods akin to those used in describing
intermittency	��
� ��Q cycles accumulate toward the edge of ��� mode�locked
interval� and as the successive mode�locked intervals ��Q� ��
Q � �� lie on a
parabola� their di�erences are of order Q�	� This should be compared to the
subcritical circle maps in the number�theoretic limit 
��� where the interval be�
tween ��Q and ��
Q � �� winding number value of the parameter � shrinks as
��Q�� For the critical circle maps the ���Q interval is narrower than in the k��
case� because it is squeezed by the nearby broad ���� mode�locked interval�

For �xed Q the widest interval is bounded by P�Q � Fn���Fn� the nth
continued fraction approximant to the golden mean� The intuitive reason is that
the golden mean winding sits as far as possible from any short cycle mode�locking�
Herein lies the suprising importance of the golden mean number for dynamics�
it corresponds to extremal scaling in physical problems characterized by winding
numbers� such as the KAM tori of classical mechanics	�� �
� The golden mean
interval shrinks with a universal exponent

�P�Q � Q����
�!�

where P � Fn��� Q � Fn and �� is related to the universal Shenker number ��

��� and the golden mean 
�� by

�� �
ln j��j
� ln


� ������� � � �
���

The closeness of �� to � indicates that the golden mean approximant mode�
lockings barely feel the fact that the map is critical 
in the k�� limit this exponent
is � � ���

To summarize� for critical maps the spectrum of exponents arising from the
circle maps renormalization theory is bounded from above by the harmonic scal�
ing� and from below by the geometric golden�mean scaling�

��� 
 �m�n 
 ������� � � � �
���
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���� Global Theory� Ergodic Averaging

So far we have discussed the results of the renormalization theory for iso�
lated irrational winding numbers� Though the local theory has been tested
experimentally	��� ��
� the golden�mean universality utilizes only a few of the
available mode�locked intervals� and from the experimental point of view it would
be preferable to test universal properties which are global in the sense of pertain�
ing to a range of winding numbers� We �rst brie�y review some of the attempts
to derive such predictions using ideas from the ergodic number theory� and then
turn to the predictions based on the thermodynamic foramlism�

The ergodic number theory	��� ��
 is rich in 
so far unful�lled� promise for the
mode�locking problem� For example� while the Gauss shift 
!� invariant measure

�
x� �
�

ln �

�

� � x

���

was known already to Gauss� the corresponding invariant measure for the critical
circle maps renormalization operator R has so far eluded description� It lies on a
fractal set � computer sketches are given in refs� 	��� ��
 � and a general picture
of what the �strange repeller� 
in the space of limit functions for the renormal�
ization operator 
���� might look like is given in refs� 	��
� Rand et al�	��
 have
advocated ergodic explorations of this attractor� by sequences of renormalizations
Rak corresponding to the digits of the continued fraction expansion of a �nor�
mal� winding number W � 	a�� a�� a	� � � �
� A numerical implementation of this
proposal 	��� ��
 by Monte Carlo generated strings a�� a�� a	� � � � yields estimates
of �mean� scalings $� � ����� �� and $� � ���� ��� $�n is the estimate of the mean
width of an �average� mode�locked interval �Pn�Qn � where Pn�Qn is the nth con�
tinued fraction approximation to a normal winding number W � 	a�� a�� a	� � � �
�
In this connection the following beautiful result of the ergodic number theory is
suggestive�

������ Theorem 
Khinchin� Kuzmin� Levy	��
� For almost all W � 	�� �
 the
denominator Qn of the n�th continued fraction approximant W � Pn�Qn � �n�
Pn�Qn � 	a�� a�� a	� � � � � an
 converges asymptotically to

lim
n��

�

n
lnQn �

��

�� ln �
�
���

In physics this theorem pops up in various guises� for example� ���! ln � can be
interpreted as the Kolmogorov entropy of �mixmaster� cosmologies	�!
� In the
present context this theorem has been used	��
 to connect the ergodic estimate of
$� to %� estimated	�
 by averaging over all available mode�lockings up to given cycle
length Q� but it is hard to tell what to make out of such results� The numerical
convergence of ergodic averages is slow� if not outright hopeless� so we abandon
henceforth the ergodic �time� averages 
here the �time� is the length of a con�
tinued fraction� and turn instead to the �thermodynamic� averages 
averages
over all �con�gurations�� here all mode lockings on a given level of a resolution
hierarchy��
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���� Global Theory� Thermodynamic Averaging

Consider the following average over mode�locking intervals 
���

�
�� �
�X

Q��

X

P jQ���

���
P�Q�
���

The sum is over all irreducible rationals P�Q� P � Q� and �P�Q is the width of
the parameter interval for which the iterates of a critical circle map lock onto a
cycle of length Q� with winding number P�Q�

The qualitative behavior of 
��� is easy to pin down� For su�ciently negative
� � the sum is convergent� in particular� for � � ��� �
��� � �� as for the critical
circle maps the mode�lockings �ll the entire � range	��
� However� as � increases�
the contributions of the narrow 
large Q� mode�locked intervals �P�Q get blown
up to ����

P�Q� and at some critical value of � the sum diverges� This occurs for

� � �� as �
�� equals the number of all rationals and is clearly divergent�
The sum 
��� is in�nite� but in practice the experimental or numerical mode�

locked intervals are available only for small �nite Q� Hence it is necessary to
split up the sum into subsets Sn � fig of rational winding numbers Pi�Qi on
the �level� n� and present the set of mode�lockings hierarchically� with resolution
increasing with the level�

$Zn
�� �
X
i�Sn

���
i �
���

The original sum 
��� can now be recovered as the z � � value of a �generating�
function �
z� �� �

P
n z

n $Zn
��� As z is anyway a formal parameter� and n is
a rather arbitrary �level� in some ad hoc partitioning of rational numbers� we
bravely introduce a still more general� P�Q weighted generating function for 
����

�
q� �� �
�X

Q��

X

P jQ���

e��P�QqQ��P�Q� �
���

The sum 
��� corresponds to q � �� Exponents �P�Q will re�ect the importance
we assign to the P�Q mode�locking� ie� the measure used in the averaging over
all mode�lockings� Three choices of of the �P�Q hierarchy that we consider here
correspond respectively to the Farey series partitioning 
de�nition 
������

�
q� �� �
�X

Q��

"
Q��q
X


P jQ���

Q��P�Q� �
���

the continued fraction partitioning 
de�nition 
������

�
q� �� �
�X
n��

e�qn
X

�a������an�

Q���a������an�� �
���

and the Farey tree partitioning 
de�nition 
������
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�
q� �� �
�X
k�n

��qn
�nX
i��

Q��i
i � Qi�Pi � Tn �
�!�

Other measures can be found in the literature� but the above three su�ce for
our purposes�

Sum 
��� is an example of a �thermodynamic� average� In the thermodynamic
formalism	��� ��
 a function �
q� is de�ned by the requirement that the n��
limit of generalized sums

Zn
�� q� �
X
i�Sn

pqi
��i


���

is �nite� Thermodynamic formalism was originally introduced to describe mea�
sures generated by strongly mixing ergodic systems� and for most practitioners
pi in 
��� is the probability of �nding the system in the partition i� given by the
�natural� measure� What we are using here in the Farey series and the Farey
tree cases are the �equipartition� measures pi � ��Nn� where Nn is the number
of mode�locking intervals on the nth level of resolution� In the continued fraction
partitioning this does not work� as Nn is in�nite � in this case we assign all terms
of equal continued fraction length equal weigth� It is important to note that as
the Cantor set under consideration is generated by scanning the parameter space�
not by dynamical stretching and kneading� there is no �natural� measure� and a
variety of equally credible measures can be constructed	�� ��� ��� ��
� Each dis�
tinct hierarchical presentation of the irrational winding set 
distinct partitioning
of rationals on the unit interval� yields a di	erent thermodynamics� As far as I
can tell� no thermodynamic function q
�� considered here 
nor any of the q
��
or f
�� functions studied in the literature in other contexts� has physical signif�
icance� but their qualitative properties are interesting� in particular� all versions
of mode�locking thermodynamics studied so far exhibit phase transitions�

We summarize by succintly stating what our problem is in a way suggestive
to a number theorist� by changing the notation slightly and rephrasing 
��� this
way�

����	� De�nition
 The mode�locking problem� Develop a theory of the fol�

lowing 
zeta� function�

%�
s� �
�X
n��

X

mjn���

n���m�ns �
���

where � is de�ned as in 
���
For the shift map 
��� �m�n � �� and this sum is a ratio of two Riemann zeta

functions
%�
s� �

�
�s� ��
�
�s�

�

For critical maps the spectrum of exponents arising from the circle maps renor�
malization theory is non�trivial� according to 
��� it is bounded from above by
the harmonic scaling� and from below by the geometric golden�mean scaling�
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Our understanding of the %�
s� function for the critical circle maps is rudi�
mentary � almost nothing that is the backbone of the theory of number�theoretic
zeta functions has been accompished here� no good integral representations of

��� are known� no functional equations 
analogous to re�ection formulas for the
classical zeta functions� have been constructed� no Riemann�Siegel formulas� etc��
We summarize basically all that is known in the remainder of this lecture� and
that is not much�

���
 The Hausdor� Dimension of Irrational Windings

A �nite cover of the set irrational windings at the �nth level of resolution� is
obtained by deleting the parameter values corresponding to the mode�lockings in
the subset Sn� left behind is the set of complement covering intervals of widths

�i � �min
Pr�Qr

� �max
Pl�Ql

�
���

Here �min
Pr�Qr


�max
Pl�Ql

� are respectively the lower 
upper� edges of the mode�locking

intervals �Pr�Qr 
�Pl�Ql
� bounding �i and i is a symbolic dynamics label� for

example the entries of the continued fraction representation P�Q � 	a�� a�� ���� an

of one of the boundary mode�lockings� i � a�a� � � �an� �i provide a �nite cover
for the irrational winding set� so one may consider the sum

Zn
�� �
X
i�Sn

���i
���

The value of �� for which the n � � limit of the sum 
��� is �nite is the
Hausdor	 dimension	��
 DH of the irrational winding set� Strictly speaking� this
is the Hausdor� dimension only if the choice of covering intervals �i is optimal�
otherwise it provides an upper bound to DH � As by construction the �i intervals
cover the set of irrational winding with no slack� we expect that this limit yields
the Hausdor� dimension� This is supported by all numerical evidence� but a proof
that would satisfy mathematicians is lacking�

Jensen et al�	�
 have provided numerical evidence that this Hausdor� dimen�
sion is approximately DH � ���� � � � and that it is universal� It is not at all clear
whether this is the optimal global quantity to test � a careful investigation	��

shows that DH is surprisingly hard to pin down numerically� At least the Haus�
dor� dimension has the virtue of being independent of how one partitions mode�
lockings and should thus be the same for the variety of thermodynamic averages
in the literature	��
�

���� A Bound on the Hausdor� Dimension

We start by giving an elementary argument that the Hausdor� dimension of
irrational windings for critical circle maps is less than one� The argument depends
on the reasonable� but so far unproven assumption that the golden mean scaling

��� is the extremal scaling�
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In the crudest approximation� one can replace �P�Q in 
��� by a �mean� value
%�� in that case the sum is given explicitely by a ratio of the Riemann ��functions�

�
�� �
�X

Q��

�
Q�Q�� �� �
�
��� %�� ��
�
��� %��
���

As the sum diverges at �� � Hausdor� dimension� the �mean� scaling exponent
%� and DH are related by the � function pole at �
���

DH %� � ��
���

While this does not enable us to compute DH � it does immediately establish that
DH for critical maps exists and is smaller than �� as the � bounds 
��� yield

�

�
� DH � ����� � � �
���

To obtain sharper estimates of DH � we need to describe the distribution of
�P�Q within the bounds 
���� This we shall now attempt using several variants
of the thermodynamic formalism�

����� The Hausdor� Dimension in Terms of Cycles

Estimating the n � � limit of 
��� from �nite numbers of covering intervals
�i is a rather unilluminating chore� Fortunately� there exist considerably more
elegant ways of extracting DH � We have noted that in the case of the �trivial�
mode�locking problem 
��� the covering intervals are generated by iterations of
the Farey map 
��� or the Gauss shift 
���� The nth level sum 
��� can be
approximated by Ln� where L
y� x� � �
x � f��
y��jf �
y�j� � this amounts to
approximating each cover width �i by jdfn�dxj evaluated on the ith interval� By
nothing much deeper than use of the identity log det 
 tr log� the spectrum of L
can be expressed	��
 in terms of stabilities of the prime 
non�repeating� periodic
orbits p of f
x��

det
�� zL� � exp

�
�X

p

�X
r��

zrnp

r

j r
pj�

�� �� r
p

�

�
Y
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�Y
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���

In the �trivial� Gauss shift 
��� renormalization model� the Fredholm determi�
nant and the dynamical zeta functions have been introduced and studied by
Mayer	��
 who has shown that the eigenvalues of the transfer operator are expo�
nentially spaced� just as for the dynamical zeta functions	��
 for the �Axiom A�
hyperbolic systems�

The sum 
��� is dominated by the leading eigenvalue of L� the Hausdor�
dimension condition Zn
�DH� � O
�� means that � � �DH should be such
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that the leading eigenvalue is z � �� The leading eigenvalue is determined by the
k � � part of 
���� putting all these pieces together� we obtain a pretty formula
relating the Hausdor� dimension to the prime cycles of the map f
x��

� �
Y
p

	
�� ��j pjDH



�
���

For the Gauss shift 
��� the stabilities of periodic cycles are available analytical�
ly	��� ��
� as roots of quadratic equations� For example� the xa �xed points

quadratic irrationals with xa � 	a� a� a � � �
 in�nitely repeating continued fraction
expansion� are given by

xa �
�a �pa� � �

�
�  a � �

�
a�

p
a� � �

�

��


�!�

and the xab � 	a� b� a� b� a� b� � � �
 ��cycles are given by

xab �
�ab �

q

ab�� � �ab

�b

���

 ab � 
xabxba�
�� �

�
�ab � � �

q
ab
ab � ��

�



A

�

We happen to know beforehand that DH � � 
the irrationals take the full
measure on the unit interval� the continuous Gauss measure 
��� is invariant un�
der the Gauss shift 
!�� the P�erron�Frobenius theorem�� so is the in�nite product

��� merely a very convoluted way to compute the number �& Possibly so� but
availability of this exact result provides a useful testing ground for trashing out
the optimal methods for determining zeros of Fredholm determinants in presence
of nonhyperbolicities� The Farey map 
��� has one marginal stability �xed point
x� � � which is excluded from the cycle expansion of 
���� but its ghost haunts
us as a nonhyperbolic �intermittency� ripple in the cycle expansion� One has to
sum	��
 in�nities of cycles of nearly same stability

Y
p


�� j pj� � � ��
�X
a��

j aj� � 
curvatures�
���

in order to attain the exponential convergence expected on the basis of the
hyperbolicity	��
 of this dynamical � function� We know from 
�!� that j nj � n��
so the stability falls o� only as a opower of the cycle length n� and these in�nite
sums pose a serious numerical headache for which we 
as yet� know of no satis�
factory cure� The sum 
��� behaves essentially as the Riemann �
����� and the
analytic number theory techniques might still rescue us�

Once the meaning of 
��� has been grasped� the corresponding formula	�
 for
the critical circle maps follows immediately�

� �
Y
p

	
�� ��j�pjDH



�
���
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This formula relates the Jensen et al� dimension of irrational windings to the
universal Shenker parameter scaling ratios �p� its beauty lies in relating DH to
the universal scalings �p� thus rendering the universality of the Jensen et al�

dimension manifest� As a practical formula for evaluating this dimension� 
���
has so far yielded estimates of DH of modest accuracy� but that can surely be
improved� In particular� computations based on the 
��� in�nite products should
be considerably more convergent	��� ��
� but have not been carried out so far�

The derivation of 
��� relies only on the following aspects of the �hyperbolicity
conjecture� of refs� 	��� ��� ��� ��
�

�� limits for Shenker ��s exist and are universal� This should follow from the
renormalization theory developed in refs� 	�� ��� ��
� though a general proof is
still lacking�
�� �p grow exponentially with np� the length of the continued fraction block p�
�� �p for p � a�a� � � � n with a large continued fraction entry n grows as a power

of n� According to 
���� limn�� �p � n	� In the calculation of ref� 	�
 the ex�
plicit values of the asymptotic exponents and prefactors were not used� only the
assumption that the growth of �p with n is not slower than a power of n�

Explicit evaluation of the spectrum was �rst attempted in ref� 	��
 � pre�
requsite for attaining the exponential 
or faster	��� ��
� convergence of the cycle
expansions are e�ective methods for summation of in�nite families of mode�
lockings� At present� those are lacking � none of the tricks from the Riemann�
zeta function theory 
integral representations� saddle�point expansions� Poisson
resummations� etc� have not worked for us� so we have been forced to rely on the
rather trecherous logarithmic convergence acceleration algorithms	�!
�

����� Farey Series and the Riemann Hypothesis

The Farey series thermodynamics 
��� is obtained by deleting all mode�locked
intervals �P ��Q� of cycle lengths � � Q� � Q� What remains are the irrational
winding set covering intervals 
����

The thermodynamics of the Farey series in the number�theory limit 
�� has
been studied by Hall and others	��� ��
� their analytic results are instructive and
are reviewed in ref� 	��
�

The main result is that q
�� consists of two straight sections

q
�� �

��
�
��� � � ��
� � � � 
 ��

�
���

and the Farey arc thermodynamics undergoes a �rst order phase transition at
� � ��� What that means is that almost all covering intervals scale as Q��


the q � � � � phase�� however� for � � ��� the thermodynamics average is
dominated by the handful of fat intervals which scale as Q��� The number�
theoretic investigations	��� ��
 also establish the rate of convergence as Q���
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at the phase transition point it is very slow� logarithmic	��
� In practice� the
Euler noise is such numerical nuisance that we skip here the discussion of the
q
�� convergence althogether�

For the critical circle maps the spectrum of scales is much richer� The ��Q
mode�locked intervals which lie on a parabolic devil staircase	��� �� ��
 yield the
broadest covering interval �
�� Q� � kQ��� with the minimum scaling exponent
�min � �� and the narrowest covering interval �
Q�Q � �� � kQ�	� with the
exponent �max � ����

The Farey series thermodynamics is of a number theoretical interest� because
the Farey series provide uniform coverings of the unit interval with rationals�
and because they are closely related to the deepest problems in number theory�
such as the Riemann hypothesis	!�� !�
 � The distribution of the Farey series
rationals across the unit interval is suprisingly uniform � indeed� so uniform that
in the pre�computer days it has motivated a compilation of an entire handbook of
Farey series	!�
� A quantitive measure of the non�uniformity of the distribution
of Farey rationals is given by displacements of Farey rationals for Pi�Qi � FQ

from uniform spacing�

�i �
i

"
Q�
� Pi

Qi

� i � �� �� � � � �"
Q�

The Riemann hypothesis states that the zeros of the Riemann zeta function
lie on the s � ��� � i� line in the complex s plane� and would seem to have
nothing to do with physicists� real mode�locking widths that we are interested
in here� However� there is a real�line version of the Riemann hypothesis that lies
very close to the mode�locking problem� According to the theorem of Franel and
Landau	��� !�� !�
� the Riemann hypothesis is equivalent to the statement that

X
Qi�Q

j�ij � o
Q
�
�
�	�

for all � as Q��� The mode�lockings �P�Q contain the necessary information
for constructing the partition of the unit interval into the �i covers� and therefore
implicitely contain the �i information� The implications of this for the circle�
map scaling theory have not been worked out� and is not known whether some
conjecture about the thermodynamics of irrational windings is equivalent to 
or
harder than� the Riemann hypothesis� but the danger lurks�

����� Farey Tree Thermodynamics

The narrowest mode�locked interval 
�!� at the n�th level of the Farey tree par�
tition sum 
�!� is the golden mean interval

�Fn���Fn � j��j�n�
���

It shrinks exponentially� and for � positive and large it dominates q
�� and
bounds dq
���d� �
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q�max �
ln j��j
ln �

� �����!�� � � �
���

However� for � large and negative� q
�� is dominated by the interval 
��� which
shrinks only harmonically� and q
�� approaches � as

q
��

�
�
� lnn

n ln �
� ��
���

So for �nite n� qn
�� crosses the � axis at �� � Dn� but in the n � � limit�
the q
�� function exhibits a phase transition� q
�� � � for � � �DH � but is a
non�trivial function of � for �DH � � � This non�analyticity is rather severe �
to get a clearer picture� we illustrate it by a few number�theoretic models 
the
critical circle maps case is qualitatively the same��

An cute version of the �trivial� Farey level thermodynamics is given by the
�Farey model�	��
� in which the intervals �P�Q are replaced by Q���

Zn
�� �
�nX
i��

Q��
i �
���

Here Qi is the denominator of the ith Farey rational Pi�Qi� For example 
see

de�nition 
�������

Z�
���� � � � � � � � ��

Though it might seem to have been pulled out of a hat� the Farey model
is as sensible description of the distribution of rationals as the periodic orbit
expansion 
���� By the �anihilation� property of the Gauss shift 
���� the nth
Farey level sum Zn
��� can be written as the integral

Zn
��� �
Z
dx�
fn
x�� �

X
��jf �a����ak
��j �
���

with the sum restricted to the Farey level
Pa������ak�n��� It is easily checked

that f �a����ak
�� � 
���kQ�
�a������ak�

� so the Farey model sum is a partition generated
by the Gauss map preimages of x � �� ie� by rationals� rather than by the
quadratic irrationals as in 
���� The sums are generated by the same transfer
operator� so the eigenvalue spectrum should be the same as for the periodic orbit
expansion� but in this variant of the �nite level sums we can can evaluate q
��
exactly for � � k��� k a nonnegative integer� First one observes that Zn
�� � �n�
It is also easy to check that	��
 Zn
���� �

P
iQi � � � �n� More surprisingly�

Zn
���� �
P

iQ
	 � �� � �n��� Such �sum rules�� listed in the table ����� are

consequence of the fact that the denominators on a given level are Farey sums
of denominators on preceding levels	!�� ��
� Regretably� we have not been able
to extend this method to evaluating q
������ or to real � �

A bound on DH can be obtained by approximating 
��� by

Zn
�� � n�� � �n
�n� �
�!�

In this approximation we have replaced all �P�Q� except the widest interval ���n�
by the narrowest interval �Fn���Fn 
see 
�!��� The crossover from the harmonic
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dominated to the golden mean dominated behavior occurs at the � value for
which the two terms in 
�!� contribute equally�

Dn � %D � O

�
lnn

n

�
� %D �

ln �

� ln

� ��� � � �
���

For negative � the sum 
�!� is the lower bound on the sum 
��� � so %D is a
lower bound onDH � The size of the level�dependent correction in 
��� is ominous�
the �nite n estimates converge to the asymptotic value logarithmically�What this
means is that the convergence is excruciatingly slow and cannot be overcome by
any amount of brute computation�

� �q
�� Zn
�� �

� � �Zn��

�#� � �Zn��

� 
� �
p
����� �Zn�� � �Zn��

�#� � �Zn��

� 
�� �
p
������ ��Zn�� � �Zn�� � �Zn�	

�#� � � �
p
! ��Zn�� � ��Zn��

� �!������ � � � ��Zn�� � �!�Zn�� � ��Zn�	 � Zn�


�#� ������� � � � ��Zn�� � ���Zn�� � ���Zn�	

n#� 
n 
� golden mean

Table ���� Recursion relations for the Farey model partition sums ���� for � �

�� ��
� �� � � � � ��

 they relate the 
q
�� � limn�� Zn������Zn��� to roots of polyno�

mial equations�

����� Artuso Model

The Farey model 
��� is di�cult to control at the phase transition� but consider�
able insight into the nature of this non�analyticity can be gained by the following
factorization approximation� Speaking very roughly� the stability  � 
���nQ�

of a P�Q � 	a�� � � � � an
 cycle gains a hyperbolic golden�mean factor �
� for each
bounce in the central part of the Farey map 
���� and a power�law factor for
every ak bounces in the neighborhood of the marginal �xed point x� � �� This
leads to an estimate of Q in P�Q � 	a�� � � � � an
 as a product of the continued
fraction entries	��


Q � 
na�a� � � �an
In this approximation the cycle weights factorize�  a�a����an �  a� a� � � � an � and
the curvature corrections in the cycle expansion 
��� vanish exactly�
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���
q� �� � ��
�X
a��



a���za� z � ��q

The q � q
�� condition ���
q� �� � � yields


��� � "
���� z�
���

where " is the Jonqui'ere function	!�


"
s� x� �
�X
n��

xn

ns
�

�

(
s�

Z �

�
dt

ts��x

et � x

The sum 
��� diverges for z 
 �� so q 
 �� The interesting aspect of this model�
easy to check	��
� is that the q
�� curve goes to zero at � � �DH � with all
derivatives dnq�d�n continuous at DH � so the phase transition is of in�nite order�
We believe this to be the case also for the exact trivial and critical circle maps
thermodynamics� but the matter is subtle and explored to more depth in ref� 	��
�

There is one sobering lesson in this� the numerical convergence acceleration
methods of ref� 	�!
 consistently yield �nite gaps at the phase transition point� for
example� they indicate that for the Farey model evaluated at � � �DH � �� the
�rst derivative converges to dq�d� � �!� � ���� However� the phase transition
is not of a �rst order� but logarithmic of in�nite order	��
� and the failure of
numerical and heuristic arguments serves as a warning of how delicate such phase
transitions can be�

����� Summary and Conclusions

The fractal set discussed here� the set of all parameter values corresponding
to irrational windings� has no �natural� measure� We have discussed three dis�
tinct thermodynamic formulations� the Farey series 
all mode�lockings with cycle
lengths up to Q�� the Farey levels 
�n mode�lockings on the binary Farey tree��
and the Gauss partitioning 
all mode�lockings with continued fraction expansion
up to a given length�� The thermodynamic functions are di	erent for each distinct
partitioning� The only point they have in common is the Hausdor� dimension�
which does not depend on the choice of measure� What makes the description
of the set of irrational windings considerably trickier than the usual �Axiom A�
strange sets is the fact that here the range of scales spans from the marginal

harmonic� power�law� scalings to the the hyperbolic 
geometric� exponential�
scalings� with a generic mode�locking being any mixture of harmonic and ex�
ponential scalings� One consequence is that all versions of the thermodynamic
formalism that we have examined here exhibit phase transitions� For example�
for the continued fraction partitioning choice of weights tp� the cycle expansions
of ref� 	��� ��
 behave as hyperbolic averages only for su�ciently negative values
of � � hyperbolicity fails at the �phase transition�	��� ��
 value � � ����� due to
the power law divergence of the harmonic tails ����n � n	�

The universality of the critical irrational winding Hausdor� dimension fol�
lows from the universality of quadratic irrational scalings� The formulas used are
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formally identical to those used for description of dynamical strange sets	��
� the
deep di�erence being that here the cycles are not dynamical trajectories in the
coordinate space� but renormalization group �ows in the function spaces rep�
resenting families of dynamical systems� The �cycle eigenvalues� are in present
context the universal quadratic irrational scaling numbers�

In the above investigations we were greatly helped by the availability of the
number theory models� in the k � � limit of 
�� the renormalization �ow is given
by the Gauss map 
!�� for which the universal scaling �p reduce to quadratic
irrationals� In retrospect� even this �trival� case seems not so trivial� and for the
critical circle maps we are a long way from having a satisfactory theory� Symp�
tomatic of the situation is the fact that while for the period doubling repeller
DH is known to �� signi�cant digits	��
� here we can barely trust the �rst three
digits�

The quasiperiodic route to chaos has been explored experimentaly in systems
ranging from convective hydrodynamic �ows	��
 to semiconductor physics	��
�
Such experiments illustrate the high precision with which the experimentalists
now test the theory of transitions to chaos� It is fascinating that not only that
the number�theoretic aspects of dynamics can be measured with such precision
in physical systems� but that these systems are studied by physicists for reasons
other than merely testing the renormalization theory or number theory� But� in
all fairness� chaos via circle�map criticality is not nature�s preferred way of de�
stroying invariant tori� and the critical circle map renormalization theory remains
a theoretical physicist�s toy�
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