10 Circle Maps: Irrationally Winding

Predrag Cvitanovi¢

In these lectures we shall discuss circle maps as an example of a physically in-
teresting chaotic dynamical system with rich number-theoretic structure. Circle
maps arise in physics in a variety of contexts. One setting is the classical Hamil-
tonian mechanics; a typical island of stability in a Hamiltonian 2-d map is an
infinite sequence of concentric KAM tori and chaotic regions. In the crudest ap-
proximation, the radius can here be treated as an external parameter €2, and the
angular motion can be modelled by a map periodic in the angular variable|[1, 2].
In holomorphic dynamics circle maps arise from the winding of the complex
phase factors as one moves around the Mandelbrot cacti[3]. In the context of
dissipative dynamical systems one of the most common and experimentally well
explored routes to chaos is the two-frequency mode-locking route. Interaction of
pairs of frequencies is of deep theoretical interest due to the generality of this
phenomenon; as the energy input into a dissipative dynamical system (for ex-
ample, a Couette flow) is increased, typically first one and then two of intrinsic
modes of the system are excited. After two Hopf bifurcations (a fixed point with
inward spiralling stability has become unstable and outward spirals to a limit
cycle) a system lives on a two-torus. Such systems tend to mode-lock: the system
adjusts its internal frequencies slightly so that they fall in step and minimize the
internal dissipation. In such case the ratio of the two frequencies is a rational
number. An irrational frequency ratio corresponds to a quasiperiodic motion -
a curve that never quite repeats itself. If the mode-locked states overlap, chaos
sets in. Typical examples[4] are dynamical systems such as the Duffing oscilla-
tor and models of the Josephson junction, which possess a natural frequency w;
and are in addition driven by an external frequency w,. Periodicity is in this
case imposed by the driving frequency, and the dissipation confines the system
to a low dimensional attractor; as the ratio w;/wy is varied, the system sweeps
through infinitely many mode-locked states. The likelyhood that a mode-locking
occurs depends on the strength of the coupling of the internal and the external
frequencies.

By losing all of the “island-within-island” structure of real systems, circle map
models skirt the problems of determining the symbolic dynamics for a realistic
Hamiltonian system, but they do retain some of the essential features of such
systems, such as the golden mean renormalization[7, 1] and non-hyperbolicity
in form of sequences of cycles accumulating toward the borders of stability. In
particular, in such systems there are orbits that stay “glued” arbitrarily close
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to stable regions for arbitrarily long times. As this is a generic phenomenon in
physically interesting dynamical systems, such as the Hamiltonian systems with
coexisting elliptic islands of stability and hyperbolic homoclinic webs, develop-
ment of good computational techniques is here of utmost practical importance.

We shall start by briefly summarizing the results of the “local” renormaliza-
tion theory for transitions from quasiperiodicity to chaos. In experimental tests
of this theory one adjusts the external frequency to make the frequency ratio as
far as possible from being mode-locked. This is most readily attained by tuning
the ratio to the “golden mean” (v/5—1)/2. The choice of the golden mean is dic-
tated by number theory: the golden mean is the irrational number for which it is
hardest to give good rational approximants. As experimental measurments have
limited accuracy, physicists usually do not expect that such number-theoretic
subtleties as how irrational a number is should be of any physical interest. How-
ever, in the dynamical systems theory to chaos the starting point is the enumera-
tion of asymptotic motions of a dynamical system, and through this enumeration
number theory enters and comes to play a central role.

Number theory comes in full strength in the “global” theory of circle maps,
the study of universal properties of the entire irrational winding set — the main
topic of these lectures. We shall concentrate here on the example of a global
property of the irrational winding set discovered by Jensen, Bak, and Bohr[5]:
the set of irrational windings for critical circle maps with cubic inflection has
the Hausdorff dimension Dy = 0.870. .., and the numerical work indicates that
this dimension is universal. The universality (or even existence) of this dimen-
sion has not yet been rigorously established. We shall offer here a rather pretty
explanation|[8] of this universality in form of the explicit formula (39) which ex-
presses this Hausdorff dimension as an average over the Shenker[2, 9, 10] universal
scaling numbers. The renormalization theory of critical circle maps demands at
present rather tedious numerical computations, and our intuition is much facili-
tated by approximating circle maps by number-theoretic models. The model that
we shall use here to illustrate the basic concepts might at first glance appear triv-
ial, but we find it very instructive, as much that is obscured by numerical work
required by the critical maps is here readily number-theoretically accessible. In-
dicative of the depth of mathematics lurking behind physicists’ conjectures is the
fact that the properties that one would like to establish about the renormalization
theory of critical circle maps might turn out to be related to number-theoretic
abysses such as the Riemann conjecture, already in the context of the “trival”
models.

The literature on circle maps is overwhelming, ranging from pristine Bourba-
kese[11, 12] to palpitating chicken hearts[13], and attempting a comprehensive
survey would be a hopeless undertaking; the choice of topics covered here is of
necessity only a fragment of what is known about the dipheomorphisms of the
circle.
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10.1 Mode Locking

The Poincaré section of a dynamical system evolving on a two-torus is topolog-
ically a circle. A convenient way to study such systems is to neglect the radial
variation of the Poincaré section, and model the angular variable by a map of a
circle onto itself. Both quantitatively and qualitatively this behavior is often well
described[14, 15] by 1-dimensional circle maps ¢ — o’ = f(x), f(z+1) = f(x)+1
restricted to the circle, such as the sine map

(1) Tpt1 = Tp + O — %sin(Qﬂxn) mod 1 .
f(z) is assumed to be continuous, have a continuous first derivative, and a contin-
uous second derivative at the inflection point. For the generic, physically relevant
case (the only one considered here) the inflection is cubic. Here k parametrizes the
strength of the mode-mode interaction, and 2 parametrizes the w; /w, frequency
ratio. For k = 0, the map is a simple rotation (the shift map)

(2) Tpt1 = Ty + €2 mod 1 ,
and €2 is the winding number

(3) W(k,Q) = lim ,/n.

If the map is monotonically increasing (k < 1 in (1)), it is called subcritical.
For subcritical maps much of the asymptotic behavior is given by the trivial
(shift map) scalings[11, 12]. For invertible maps and rational winding numbers
W = P/Q the asymptotic iterates of the map converge to a unique Q-cycle
attractor

fQ(xz):xz+Pa 22071727762_1

For any rational winding number, there is a finite interval of parameter values for
which the iterates of the circle map are attracted to the P/@Q cycle. This interval
is called the P/Q) mode-locked (or stability) interval, and its width is given by
_ N2 __ (Oright left

(4) Apjg=Q ™7/ =Qply — Dpjg -

Parametrizing mode lockings by the exponent y rather than the width A will be
convenient for description of the distribution of the mode-locking widths, as the
exponents y turn out to be of bounded variation. The stability of the P/Q cycle

is defined as 9
x ! ! !
AP/Q = 8—3522 =f (xo)f (951) e f (xQ—l)

For a stable cycle |A| lies between 0 (the superstable value, the “center” of the
stability interval) and 1 (the Q’;ﬁg, Qiﬁfé ends of the stability interval in (4)).
For the shift map, the stability intervals are shrunk to points. As € is varied from
0 to 1, the iterates of a circle map either mode-lock, with the winding number

given by a rational number P/Q) € (0, 1), or do not mode-lock, in which case the
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winding number is irrational. A plot of the winding number W as a function of
the shift parameter €2 is a convenient visualization of the mode-locking structure
of circle maps. It yields a monotonic “devil’s staircase” of fig. 10.1 whose self-
similar structure we are to unravel.

Fig. 10.1. The critical circle map (k = 1 in (1)) devil’s staircase[5]; the winding number
W as function of the parameter 2.

Circle maps with zero slope at the inflection point z.

(k =1, z.=01n (1)) are called critical: they delineate the borderline of chaos
in this scenario. As the non-linearity parameter k£ increases, the mode-locked
intervals become wider, and for the critical circle maps (k = 1) they fill out the
whole interval[16]. A critical map has a superstable P/Q cycle for any rational
P/Q), as the stability of any cycle that includes the inflection point equals zero.
If the map is non-invertable (k > 1), it is called supercritical; the bifurcation
structure of this regime is extremely rich and beyond the scope of these (and
most other such) lectures.

For physicists the interesting case is the critical case; the shift map is “easy”
number theory (Farey rationals, continued fractions) which one uses as a guide
to organization of the non-trivial critical case. In particular, the problem of orga-
nizing subcritical mode lockings reduces to the problem of organizing rationals
on the unit interval. The self-similar structure of the devil’s staircase suggests
a systematic way of separating the mode lockings into hierarchies of levels. The
set of rationals P/Q) clearly possesses rich number-theoretic structure, which we
shall utilize here to formulate three different partitionings of rationals:

1. Farey series
2. Continued fractions of fixed length

3. Farey tree levels
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10.2 Farey Series Partitioning

Intuitively, the longer the cycle, the finer the tuning of the parameter €2 required
to attain it; given finite time and resolution, we expect to be able to resolve cycles
up to some maximal length (). This is the physical motivation for partitioning[19]
mode lockings into sets of cycle length up to (). In number theory such set of
rationals is called a Farey series.

(10.1) Definition. The Farey series[21] F¢ of order Q is the monotonically in-
creasing sequence of all irreducible rationals between 0 and 1 whose denominators
do not exceed Q. Thus P;/Q); belongs to Fq if 0 < P, < Q; < Q and (P;|Q;) = 1.
For example

P35 Y551
A Farey sequence can be generated by observing that if P;_;/Q;_; and P;/Q); are
consecutive terms of Fg, then

1112132341
- |

PQi-1 — P_1Q; = 1.

The number of terms in the Farey series Fy is given by

Q 3Q2
(5 Q) = X 4(Q) = =5 + 0(QWQ).

Here the Euler function ¢(Q) is the number of integers not exceeding and rel-
atively prime to (). For example, ¢(1) = 1, ¢(2) = 1, ¢(3) = 2, ...,9(12) =
4,(13) = 12,... As ¢(Q) is a highly irregular function of @, the asymptotic
limits are not approached smoothly: incrementing () by 1 increases ®(Q) by
anything from 2 to () terms. We refer to this fact as the “Euler noise”.

The Euler noise poses a serious obstacle for numerical calculations with the
Farey series partitionings; it blocks smooth extrapolations to () — oo limits from
finite () data. While this in practice renders inaccurate most Farey-sequence par-
titioned averages, the finite Q Hausdorff dimension estimates exhibit (for reasons
that we do not understand) surprising numerical stability, and the Farey series
partitioning actually yields the best numerical value of the Hausdorff dimension
(30) of any methods used so far; for example[19], the sine map (1) estimate
based on 240 < ) < 250 Farey series partitions yields Dy = .87012 £ .00001.
The quoted error refers to the variation of Dy over this range of (); as the compu-
tation is not asymptotic, such numerical stability can underestimate the actual
error by a large factor.

10.3 Continued Fraction Partitioning

From a number-theorist’s point of view, the continued fraction partitioning of the
unit interval is the most venerable organization of rationals, preferred already
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by Gauss. The continued fraction partitioning is obtained by deleting succes-
sively mode-locked intervals (points in the case of the shift map) corresponding
to continued fractions of increasing length. The first level is obtained by deleting

Apnp, Apgy -+, Ajgy), - - - mode-lockings; their complement are the covering inter-
vals 01,05,...,4,,,... which contain all windings, rational and irrational, whose
continued fraction expansion starts with [aq,...] and is of length at least 2. The

second level is obtained by deleting Ay o, Apjz), Apgy Ay Apym), - -+ and
so on, as illustrated in fig. 10.2.

Fig. 10.2. Continued fraction partitioning of the irrational winding set[23]. At level
n=1 all mode locking intervals A, with winding numbers 1/1, 1/2, 1/3, ..., 1/a, ...
are deleted, and the cover consists of the complement intervals [,. At level n=2 the
mode locking intervals Ay, 9), Afg3], - - . are deleted from each cover [, and so on.

(10.2) Definition. The nth level continued fraction partition S, = {ajas---a,}
is the monotonically increasing sequence of all rationals P;/Q; between 0 and 1
whose continued fraction expansion is of length n:
P;
- = [al,GQ,"',an] —
i 1
a; +
1

a2+...—
Qp,

The object of interest, the set of the irrational winding numbers, is in this parti-
tioning labeled by Sy, = {ajasas -}, ax € ZT, ie., the set of winding numbers
with infinite continued fraction expansions. The continued fraction labeling is
particularly appealing in the present context because of the close connection of
the Gauss shift to the renormalization transformation R, discussed below. The
Gauss shift[24]

o - 1-[l) o
(6) 0, z=0

([- - -] denotes the integer part) acts as a shift on the continued fraction represen-
tation of numbers on the unit interval
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(7) xr =[ay,ag,as,...] = T(x) =lag,a3,...],

and maps “daughter” intervals £, 4,4,... into the “mother” interval ¢, ...

However natural the continued fractions partitioning might seem to a number
theorist, it is problematic for an experimentalist, as it requires measuring infinity
of mode-lockings even at the first step of the partitioning. This problem can
be overcome both numerically and experimentally by some understanding of
the asymptotics of mode-lockings with large continued fraction entries[23, 8].
Alternatively, a finite partition can be generated by the partitioning scheme to
be described next.

10.4 Farey Tree Partitioning

The Farey tree partitioning is a systematic bisection of rationals: it is based on
the observation that roughly halfways between any two large stability intervals
(such as 1/2 and 1/3) in the devil’s staircase of fig. 10.1 there is the next largest
stability interval (such as 2/5). The winding number of this interval is given by
the Farey mediant[21] (P + P')/(Q + Q') of the parent mode-lockings P/Q and
P'/@Q'. This kind of cycle “gluing” is rather general and by no means restricted
to circle maps; it can be attained whenever it is possible to arrange that the Qth
iterate deviation caused by shifting a parameter from the correct value for the
Q-cycle is exactly compensated by the (Q'th iterate deviation from closing the
Q'-cycle; in this way the two near cycles can be glued together into an exact cycle
of length Q+@Q)'. The Farey tree is obtained by starting with the ends of the unit
interval written as 0/1 and 1/1, and then recursively bisecting intervals by means
of Farey mediants. This kind of hierarchy of rationals is rather new[26], and, as
far as we are aware, not previously studied by number theorists. It is appealing
both from the experimental and from the the golden-mean renormalization[30]
point of view, but it has a serious drawback of lumping together mode-locking
intervals of wildly different sizes on the same level of the Farey tree.

(10.3) Definition. The nth Farey tree level T,, is the monotonically increasing

sequence of those continued fractions |ay,as,. .., ax] whose entries a; > 1,1 =
1,2,...,k—1, ar > 2, add up to Zle a; = n + 2. For example
1133
T, = {4],12,2],[1,1,2],[1,3]} = (—,—,—,—).
= ([, 2,211,213 = (35,5,

The number of terms in 7, is 2”. Each rational in 7,, ; has two “daughters” in
T,, given by

[+, ]

[ a—1,2] [y a+1]

Iteration of this rule places all rationals on a binary tree, labelling each by a
unique binary label[29]. The transcription from the binary Farey labels to the
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continued fraction labels follows from the mother-daughter relation above; each
block 1---0 (“1” followed by a — 1 zeros) corresponds to entry [---,a,-- | in the
continued fraction label. The Farey tree has a variety of interesting symmetries
(such as “flipping heads and tails” relations obtained by reversing the order
of the continued-fraction entries) with as yet unexploited implications for the
renormalization theory: some of these are discussed in ref. [29].

Fig. 10.3. The Farey tree in the continued fraction representation (from ref. [3]).

The smallest and the largest denominator in 7,, are respectively given by

1 F,
Co,1,..,1,2) = M
n— 2 Fn+2

(®) n—2] =

where the Fibonacci numbers F, are defined by F,,.1 = F,,+F,_1; Fy =0, F} =
1, and p is the golden mean ratio

1+5
(9) p = +2f — 1.61803...

Note the enormous spread in the cycle lengths on the same level of the Farey
tree: n < Q) < p". The cycles whose length grows only as a power of the Farey
tree level will cause strong non-hyperbolic effects in the evaluation of various
averages.

The Farey tree rationals can be generated by backward iterates of 1/2 by the
Farey presentation function[30]:

(10) foz) = z/(1—2) 0<x<1/2
filr) = 1—2a)/x 1/2<x<1.

(the utility of the presentation function is discussed at length in ref. [30]). The

Gauss shift (6) corresponds to replacing the binary Farey presentation function

branch fy in (10) by an infinity of branches
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<xr< -
a—1 ~a’

fule) = froff V@ =1-a
(11) fabmc(x) = fco'ofbofa(x)'

A rational z = [a1,as,...,a;] is “annihilated” by the kth iterate of the Gauss
shift, fu,45-a, () = 0. The above maps look innocent enough, but note that what
is being partitioned is not the dynamical space, but the parameter space. The flow
described by (10) and by its non-trivial circle-map generalizations will turn out
to be a renormalization group flow in the function space of dynamical systems,
not an ordinary flow in the phase space of a particular dynamical system.

Having defined the three partitioning schemes, we now briefly summarize the
results of the circle-map renormalization theory.

10.5 Local Theory: “Golden Mean” Renormalization

Possible trajectories of a dynamical system are of three qualitatively distinct
types: they are either asymptotically unstable (positive Lyapunov exponent),
asymptotically marginal (vanishing Lyapunov) or asymptotically stable (nega-
tive Lyapunov). The asymptotically stable orbits can be treated by the tradi-
tional integrable system methods. The asymptotically unstable orbits build up
chaos, and can be dealt with using the machinery of the hyperbolic, “Axiom A”
dynamical systems theory[31]. Here we shall concentrate on the third class of
orbits, the asymptotically marginal ones. I call them the “border of order”; they
lie between order and chaos, and remain on that border to all times.

The way to pinpoint a point on the border of order is to recursively adjust
the parameters so that at the recurrence times t = ny, no, ns, - - the trajectory
passes through a region of contraction sufficiently strong to compensate for the
accumulated expansion of the preceding n; steps, but not so strong as to force the
trajectory into a stable attracting orbit. The renormalization operation R imple-
ments this procedure by recursively magnifying the neighborhood of a point on
the border in the dynamical space (by rescaling by a factor «), in the parameter
space (by shifting the parameter origin onto the border and rescaling by a factor
), and by replacing the initial map f by the nth iterate f™ restricted to the
magnified neighboorhood

fo(x) = Rfp(x) = afys(v/a)

There are by now many examples of such renormalizations in which the new
function, framed in a smaller box, is a rescaling of the original function, e.
the fix-point function of the renormalization operator R. The best known is the
period doubling renormalization, with the recurrence times n; = 2¢. The simplest
circle map example is the golden mean renormalization[2], with recurrence times
n; = F; given by the Fibonacci numbers (8). Intuitively, in this context a metric
self-similarity arises because iterates of critical maps are themselves critical, ie.
they also have cubic inflection points with vanishing derivatives.

The renormalization operator appropriate to circle maps[9, 10] acts as a gen-
eralization of the Gauss shift (11); it maps a circle map (represented as a pair of
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functions (g, f), see fig. 10.4) of winding number [a, b, c, . ..] into a rescaled map
of winding number [b, ¢, .. .:

a—1 —1
(12) R(1) = (o5 ).
f ag*~lofogoa!
Acting on a map with winding number [a,a,a,...], R, returns a map with the
same winding number [a, a, . . .], so the fixed point of R, has a quadratic irrational
winding number W = [a, a, a, . . .]. This fixed point has a single expanding eigen-
value d,. Similarly, the renormalization transformation R, ... R4, Re, = Rayay..a,

has a fixed point of winding number W), = [a1,as,...,ay,, a1, a2, ...], With a
single[9, 10, 33] expanding eigenvalue d,.

Fig. 10.4. The golden-mean winding number fixed-point function pair (f, g) for critical
circle maps with cubic inflection point. The symbolic dynamics dictates a unique fram-
ing such that the functions (f, g) are defined on intervals (Z < z < z/a,Z/a < z < Ta),

z = f~1(0): in this framing, the circle map (f, g) has continuous derivatives across the
f—g junctions (from ref. [32]).

For short repeating blocks,  can be estimated numerically by comparing
succesive continued fraction approximants to W. Consider the P,/@Q), rational
approximation to a quadratic irrational winding number W, whose continued
fraction expansion consists of r repeats of a block p. Let €, be the parameter
for which the map (1) has a superstable cycle of rotation number P./Q, =
[p,p,...,p]. The &, can then be estimated by extrapolating from|[2]

(]_3) Q,« - Q,«+1 X 6p—7‘

What this means is that the “devil’s staircase” of fig. 10.4 is self-similar under
magnification by factor ¢, around any quadratic irrational W,.

The fundamental result of the renormalization theory (and the reason why all
this is so interesting) is that the ratios of successsive P,/@Q, mode-locked inter-
vals converge to universal limits. The simplest example of (13) is the sequence of
Fibonacci number continued fraction approximants to the golden mean winding
number W = [1,1,1,...] = (v/5 — 1)/2. For critical circle maps with a cubic in-
flection point 6; = —2.833612.. .; a list of values of ¢,’s for the shortest continued
fraction blocks p is given in ref. [8].



10. Circle Maps 11

When the repeated block is not large, the rate of increase of denominators
Q. is not large, and (13) is a viable scheme for estimating d’s. However, for
long repeating blocks, the rapid increase of (),’s makes the periodic orbits hard
to determine and better methods are required, such as the unstable manifold
method employed in ref. [8]. This topic would take us beyond the space allotted
here, so we merely record the golden-mean unstable manifold equation[35, 36, 37]

(14) 9p(T) = Gi4p/s (agl+1/6+p/62 (x/CVQ))

and leave the reader contemplating methods of solving such equations. We con-
tent ourself here with stating what the extremal values of §, are.

For a given cycle length @, the narrowest interval shrinks with a power law[38,
5, 29]
(15) Ao x Q

This leading behavior is derived by methods akin to those used in describing
intermittency[39]: 1/Q) cycles accumulate toward the edge of 0/1 mode-locked
interval, and as the successive mode-locked intervals 1/Q, 1/(Q — 1) lie on a
parabola, their differences are of order Q=2. This should be compared to the
subcritical circle maps in the number-theoretic limit (2), where the interval be-
tween 1/@Q and 1/(Q — 1) winding number value of the parameter € shrinks as
1/Q?. For the critical circle maps the {1/ interval is narrower than in the k=0
case, because it is squeezed by the nearby broad Aj/; mode-locked interval.

For fixed @) the widest interval is bounded by P/Q = F, ,/F,, the nth
continued fraction approximant to the golden mean. The intuitive reason is that
the golden mean winding sits as far as possible from any short cycle mode-locking.
Herein lies the suprising importance of the golden mean number for dynamics;
it corresponds to extremal scaling in physical problems characterized by winding
numbers, such as the KAM tori of classical mechanics[7, 1]. The golden mean
interval shrinks with a universal exponent

(16) Apjg o Q2

where P = F,, |, Q = F,, and p is related to the universal Shenker number 9§,
(13) and the golden mean (9) by

1H|(51|
17 = —— = 1.08218...
(17) i 2lnp

The closeness of p; to 1 indicates that the golden mean approximant mode-
lockings barely feel the fact that the map is critical (in the k=0 limit this exponent
is p = 1).

To summarize: for critical maps the spectrum of exponents arising from the
circle maps renormalization theory is bounded from above by the harmonic scal-
ing, and from below by the geometric golden-mean scaling:

(18) 3/2 > fiynyn > 1.08218 - - -
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10.6 Global Theory: Ergodic Averaging

So far we have discussed the results of the renormalization theory for iso-
lated irrational winding numbers. Though the local theory has been tested
experimentally[40, 41], the golden-mean universality utilizes only a few of the
available mode-locked intervals, and from the experimental point of view it would
be preferable to test universal properties which are global in the sense of pertain-
ing to a range of winding numbers. We first briefly review some of the attempts
to derive such predictions using ideas from the ergodic number theory, and then
turn to the predictions based on the thermodynamic foramlism.

The ergodic number theory[25, 42] is rich in (so far unfulfilled) promise for the
mode-locking problem. For example, while the Gauss shift (6) invariant measure

(19) ) = ——

21+

was known already to Gauss, the corresponding invariant measure for the critical
circle maps renormalization operator R has so far eluded description. It lies on a
fractal set - computer sketches are given in refs. [43, 44] - and a general picture
of what the “strange repeller” (in the space of limit functions for the renormal-
ization operator (12)) might look like is given in refs. [45]. Rand et al.[10] have
advocated ergodic explorations of this attractor, by sequences of renormalizations
R,, corresponding to the digits of the continued fraction expansion of a “nor-
mal” winding number W' = [ay, as, a3, ...]. A numerical implementation of this
proposal [43, 44] by Monte Carlo generated strings ay, as, as, . . . yields estimates
of “mean” scalings 6 = 15.54 .5 and & = 1.8 4 .1. 6" is the estimate of the mean
width of an “average” mode-locked interval Ap, g, , where P, /@, is the nth con-
tinued fraction approximation to a normal winding number W = [ay, as, as, . . ..
In this connection the following beautiful result of the ergodic number theory is
suggestive:

(10.1) Theorem (Khinchin, Kuzmin, Levy[42]) For almost all W € [0,1] the
denominator @Q,, of the n-th continued fraction approzimant W = P, /Q, + €,,

P,/Q, = |a1,a9,a3, . ..,a,] converges asymptotically to
1 2

20 lim —In@), = .

(20) @ =50

In physics this theorem pops up in various guises; for example, 72/61n2 can be
interpreted as the Kolmogorov entropy of “mixmaster” cosmologies[46]. In the
present context this theorem has been used[44] to connect the ergodic estimate of
5tod estimated[5] by averaging over all available mode-lockings up to given cycle
length @, but it is hard to tell what to make out of such results. The numerical
convergence of ergodic averages is slow, if not outright hopeless, so we abandon
henceforth the ergodic “time” averages (here the “time” is the length of a con-
tinued fraction) and turn instead to the “thermodynamic” averages (averages
over all “configurations”, here all mode lockings on a given level of a resolution
hierarchy).
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10.7 Global Theory: Thermodynamic Averaging

Consider the following average over mode-locking intervals (4):

(21) o =Y Y Are

Q=1 (PlQ)=1

The sum is over all irreducible rationals P/Q, P < @, and Ap/q is the width of
the parameter interval for which the iterates of a critical circle map lock onto a
cycle of length @, with winding number P/Q.

The qualitative behavior of (21) is easy to pin down. For sufficiently negative
7, the sum is convergent; in particular, for 7 = —1, Q(—1) = 1, as for the critical
circle maps the mode-lockings fill the entire {2 range[18]. However, as 7 increases,
the contributions of the narrow (large @) mode-locked intervals Ap/q get blown
up to l/A}/Q, and at some critical value of 7 the sum diverges. This occurs for
7 < 0, as 2(0) equals the number of all rationals and is clearly divergent.

The sum (21) is infinite, but in practice the experimental or numerical mode-
locked intervals are available only for small finite ). Hence it is necessary to
split up the sum into subsets S, = {i} of rational winding numbers P;/Q; on
the “level” n, and present the set of mode-lockings hierarchically, with resolution
increasing with the level:

(22) Zn(r) = 20 AT

i€Sn
The original sum (21) can now be recovered as the z = 1 value of a “generating”
function Q(z,7) = ¥, 2"Z,(7). As z is anyway a formal parameter, and n is
a rather arbitrary “level” in some ad hoc partitioning of rational numbers, we
bravely introduce a still more general, P/(@) weighted generating function for (21):

(23) Qg,r) =Y > erreiQieer,
Q=1 (PIQ)=1

The sum (21) corresponds to ¢ = 0. Exponents vp/o will reflect the importance
we assign to the P/ mode-locking, ie. the measure used in the averaging over
all mode-lockings. Three choices of of the vp,qg hierarchy that we consider here
correspond respectively to the Farey series partitioning (definition (10.1))

(24) g, 7) = 2Q) 7" > Q¥reT,
Q=1 (Pla)=1

the continued fraction partitioning (definition (10.2))

00
(25) Qq, 1) = Z e I Z QZ#[al ..... anl”
n=1 [a1,....an]

and the Farey tree partitioning (definition (10.3))
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(26) Qg,7)=> 27"y Q" , Qi/PieT,.
k=n i=1

Other measures can be found in the literature, but the above three suffice for
Our purposes.

Sum (23) is an example of a “thermodynamic” average. In the thermodynamic
formalism[31, 47] a function 7(q) is defined by the requirement that the n — oo
limit of generalized sums

(27) Zn(T,q) =

IES)

p

4

is finite. Thermodynamic formalism was originally introduced to describe mea-
sures generated by strongly mixing ergodic systems, and for most practitioners
pi in (27) is the probability of finding the system in the partition i, given by the
“natural” measure. What we are using here in the Farey series and the Farey
tree cases are the “equipartition” measures p; = 1/N,,, where N, is the number
of mode-locking intervals on the nth level of resolution. In the continued fraction
partitioning this does not work, as NNV, is infinite - in this case we assign all terms
of equal continued fraction length equal weigth. It is important to note that as
the Cantor set under consideration is generated by scanning the parameter space,
not by dynamical stretching and kneading, there is no “natural” measure, and a
variety of equally credible measures can be constructed[5, 19, 47, 48]. Each dis-
tinct hierarchical presentation of the irrational winding set (distinct partitioning
of rationals on the unit interval) yields a different thermodynamics. As far as I
can tell, no thermodynamic function ¢(7) considered here (nor any of the ¢(7)
or f(a) functions studied in the literature in other contexts) has physical signif-
icance, but their qualitative properties are interesting; in particular, all versions
of mode-locking thermodynamics studied so far exhibit phase transitions.

We summarize by succintly stating what our problem is in a way suggestive
to a number theorist, by changing the notation slightly and rephrasing (21) this
way;

(10.4) Definition: The mode-locking problem. Develop a theory of the fol-
lowing “zeta” function:

(28) (s)=3 3 n et

n=1 (m|n)=1

where 1 is defined as in (4).
For the shift map (2), ftp/n = 1, and this sum is a ratio of two Riemann zeta
functions
(25— 1)

¢(2s)
For critical maps the spectrum of exponents arising from the circle maps renor-

malization theory is non-trivial; according to (18) it is bounded from above by
the harmonic scaling, and from below by the geometric golden-mean scaling.

C(s) =
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Our understanding of the ((s) function for the critical circle maps is rudi-
mentary — almost nothing that is the backbone of the theory of number-theoretic
zeta functions has been accompished here: no good integral representations of
(28) are known, no functional equations (analogous to reflection formulas for the
classical zeta functions) have been constructed, no Riemann-Siegel formulas, etc..
We summarize basically all that is known in the remainder of this lecture, and
that is not much.

10.8 The Hausdorff Dimension of Irrational Windings

A finite cover of the set irrational windings at the “nth level of resolution” is
obtained by deleting the parameter values corresponding to the mode-lockings in
the subset S, ; left behind is the set of complement covering intervals of widths

(29) b= OB, — U,

Here g%r (2576,) are respectively the lower (upper) edges of the mode-locking
intervals Ap, /g, (Apjg,) bounding ¢; and 7 is a symbolic dynamics label, for
example the entries of the continued fraction representation P/Q = [aq, as, ..., a,]
of one of the boundary mode-lockings, i = ajas - --a,. ¢; provide a finite cover
for the irrational winding set, so one may consider the sum

(30) Zn(m) = Y 47

IES)

The value of —7 for which the n — oo limit of the sum (30) is finite is the
Hausdorff dimension[49] Dy of the irrational winding set. Strictly speaking, this
is the Hausdorff dimension only if the choice of covering intervals /; is optimal;
otherwise it provides an upper bound to Dy. As by construction the ¢; intervals
cover the set of irrational winding with no slack, we expect that this limit yields
the Hausdorff dimension. This is supported by all numerical evidence, but a proof
that would satisfy mathematicians is lacking.

Jensen et al.[5] have provided numerical evidence that this Hausdorff dimen-
sion is approximately Dy = .870... and that it is universal. It is not at all clear
whether this is the optimal global quantity to test - a careful investigation[19]
shows that Dy is surprisingly hard to pin down numerically. At least the Haus-
dorff dimension has the virtue of being independent of how one partitions mode-
lockings and should thus be the same for the variety of thermodynamic averages
in the literature[50].

10.9 A Bound on the Hausdorff Dimension

We start by giving an elementary argument that the Hausdorff dimension of
irrational windings for critical circle maps is less than one. The argument depends
on the reasonable, but so far unproven assumption that the golden mean scaling
(17) is the extremal scaling.
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In the crudest approximation, one can replace jip/g in (28) by a “mean” value
f1; in that case the sum is given explicitely by a ratio of the Riemann (-functions:

_ v orp _ C(Z2700—1)
(31) a) = 5 0@ = S

As the sum diverges at —7 = Hausdorff dimension, the “mean” scaling exponent
fi and Dy are related by the ¢ function pole at ((1):

(32) Dyt = 1.

While this does not enable us to compute Dy, it does immediately establish that
Dy for critical maps exists and is smaller than 1, as the g bounds (18) yield

2
(33) 3 < Dy < .9240...
To obtain sharper estimates of Dy, we need to describe the distribution of
ftpjq within the bounds (18). This we shall now attempt using several variants
of the thermodynamic formalism.

10.10 The Hausdorff Dimension in Terms of Cycles

Estimating the n — oo limit of (30) from finite numbers of covering intervals
/; is a rather unilluminating chore. Fortunately, there exist considerably more
elegant ways of extracting Dy. We have noted that in the case of the “trivial”
mode-locking problem (2), the covering intervals are generated by iterations of
the Farey map (10) or the Gauss shift (11). The nth level sum (30) can be
approximated by L£", where L(y,z) = d(x — f~'(y))|f'(y)|"; this amounts to
approximating each cover width ¢; by |df™/dz| evaluated on the 7th interval. By
nothing much deeper than use of the identity log det = tr log, the spectrum of £
can be expressed[31] in terms of stabilities of the prime (non-repeating) periodic
orbits p of f(z):

T Ar T
det(1 —2L) = exp( %:2:1 i | 1|/A’“>
(34) = TLTL(1— "I 07/A%) -

P k=0

In the “trivial” Gauss shift (11) renormalization model, the Fredholm determi-
nant and the dynamical zeta functions have been introduced and studied by
Mayer[51] who has shown that the eigenvalues of the transfer operator are expo-
nentially spaced, just as for the dynamical zeta functions[52] for the “Axiom A”
hyperbolic systems.

The sum (30) is dominated by the leading eigenvalue of L£; the Hausdorff
dimension condition Z,(—Dg) = O(1) means that 7 = —Dpy should be such
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that the leading eigenvalue is z = 1. The leading eigenvalue is determined by the
k = 0 part of (34); putting all these pieces together, we obtain a pretty formula
relating the Hausdorff dimension to the prime cycles of the map f(z):

(35) 0=TL(1-1/1n,/"7) -

For the Gauss shift (11) the stabilities of periodic cycles are available analytical-
ly[51, 23], as roots of quadratic equations: For example, the z, fixed points
(quadratic irrationals with z, = [a, a,a . ..] infinitely repeating continued fraction
expansion) are given by

—a+ Va2 +14 a+vVaZ i\
(36) Tg=——-—, N=—|——
2 2
and the z, = [a,b,a,b,a,b,...] 2-cycles are given by
—ab + 1/ (ab)? + 4ab
(37) Lab = 2%
2
L ab+ 2+ y/ab(ab + 4)
Aab — (xabxba) — 2

We happen to know beforehand that Dy = 1 (the irrationals take the full
measure on the unit interval; the continuous Gauss measure (19) is invariant un-
der the Gauss shift (6); the Pérron-Frobenius theorem), so is the infinite product
(35) merely a very convoluted way to compute the number 1?7 Possibly so, but
availability of this exact result provides a useful testing ground for trashing out
the optimal methods for determining zeros of Fredholm determinants in presence
of nonhyperbolicities. The Farey map (10) has one marginal stability fixed point
xo = 0 which is excluded from the cycle expansion of (35), but its ghost haunts
us as a nonhyperbolic “intermittency” ripple in the cycle expansion. One has to
sum|23] infinities of cycles of nearly same stability

(38) [T =1]A7) =1—=> |As|™ + (curvatures)
a=1

p

in order to attain the exponential convergence expected on the basis of the
hyperbolicity[51] of this dynamical ¢ function. We know from (36) that |A,| oc n?,
so the stability falls off only as a opower of the cycle length n, and these infinite
sums pose a serious numerical headache for which we (as yet) know of no satis-
factory cure. The sum (38) behaves essentially as the Riemann ((—27), and the
analytic number theory techniques might still rescue us.

Once the meaning of (35) has been grasped, the corresponding formula[8] for
the critical circle maps follows immediately:

(39) 0=TI(1-1/15I"") -

p
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This formula relates the Jensen et al. dimension of irrational windings to the
universal Shenker parameter scaling ratios d,; its beauty lies in relating Dy to
the universal scalings ¢,, thus rendering the universality of the Jensen et al.
dimension manifest. As a practical formula for evaluating this dimension, (39)
has so far yielded estimates of Dy of modest accuracy, but that can surely be
improved. In particular, computations based on the (34) infinite products should
be considerably more convergent[53, 54|, but have not been carried out so far.

The derivation of (39) relies only on the following aspects of the “hyperbolicity
conjecture” of refs. [29, 45, 55, 32]:

1) limits for Shenker 0’s exist and are universal. This should follow from the
renormalization theory developed in refs. [9, 10, 33|, though a general proof is
still lacking.

2) 6, grow exponentially with n,, the length of the continued fraction block p.
3) 0, for p = ayay...n with a large continued fraction entry n grows as a power
of n. According to (15), lim,_,» 3, o< n?. In the calculation of ref. [8] the ex-
plicit values of the asymptotic exponents and prefactors were not used, only the
assumption that the growth of ¢, with n is not slower than a power of n.

Explicit evaluation of the spectrum was first attempted in ref. [23] — pre-
requsite for attaining the exponential (or faster[53, 54]) convergence of the cycle
expansions are effective methods for summation of infinite families of mode-
lockings. At present, those are lacking - none of the tricks from the Riemann-
zeta function theory (integral representations, saddle-point expansions, Poisson
resummations, etc. have not worked for us) so we have been forced to rely on the
rather trecherous logarithmic convergence acceleration algorithms[56].

10.11 Farey Series and the Riemann Hypothesis

The Farey series thermodynamics (24) is obtained by deleting all mode-locked
intervals Ap/ g of cycle lengths 1 < @' < (. What remains are the irrational
winding set covering intervals (29).

The thermodynamics of the Farey series in the number-theory limit (2) has
been studied by Hall and others[57, 58]; their analytic results are instructive and
are reviewed in ref. [19].

The main result is that ¢(7) consists of two straight sections

T/2 T
(40) q(7) :{ /

1471 7>-2

—2

IN

and the Farey arc thermodynamics undergoes a first order phase transition at
7 = —2. What that means is that almost all covering intervals scale as Q2
(the ¢ = 1 + 7 phase); however, for 7 < —2, the thermodynamics average is
dominated by the handful of fat intervals which scale as @ !. The number-
theoretic investigations[57, 58] also establish the rate of convergence as @) — o0;
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at the phase transition point it is very slow, logarithmic[19]. In practice, the
Euler noise is such numerical nuisance that we skip here the discussion of the
q(7) convergence althogether.

For the critical circle maps the spectrum of scales is much richer. The 1/Q
mode-locked intervals which lie on a parabolic devil staircase[38, 5, 29] yield the
broadest covering interval £(1,Q) ~ kQ~2, with the minimum scaling exponent
fmin = 1. and the narrowest covering interval £(Q,Q — 1) ~ kQ™3, with the
exponent fimq = 3/2.

The Farey series thermodynamics is of a number theoretical interest, because
the Farey series provide uniform coverings of the unit interval with rationals,
and because they are closely related to the deepest problems in number theory,
such as the Riemann hypothesis[60, 61] . The distribution of the Farey series
rationals across the unit interval is suprisingly uniform - indeed, so uniform that
in the pre-computer days it has motivated a compilation of an entire handbook of
Farey series[62]. A quantitive measure of the non-uniformity of the distribution
of Farey rationals is given by displacements of Farey rationals for P;/Q; € Fq
from uniform spacing:

U P
"Tag oo ThEt@
The Riemann hypothesis states that the zeros of the Riemann zeta function
lie on the s = 1/2 + 47 line in the complex s plane, and would seem to have
nothing to do with physicists’ real mode-locking widths that we are interested
in here. However, there is a real-line version of the Riemann hypothesis that lies
very close to the mode-locking problem. According to the theorem of Franel and
Landau[59, 60, 61], the Riemann hypothesis is equivalent to the statement that

> 16 = o(Q7)

Q:<Q

for all € as @ — oo. The mode-lockings Ap/g contain the necessary information
for constructing the partition of the unit interval into the ¢; covers, and therefore
implicitely contain the ¢; information. The implications of this for the circle-
map scaling theory have not been worked out, and is not known whether some
conjecture about the thermodynamics of irrational windings is equivalent to (or
harder than) the Riemann hypothesis, but the danger lurks.

10.12 Farey Tree Thermodynamics

The narrowest mode-locked interval (16) at the n-th level of the Farey tree par-
tition sum (26) is the golden mean interval

(41) Ap, y/p, o 017"

It shrinks exponentially, and for 7 positive and large it dominates ¢(7) and
bounds dg(7)/dr:
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(12) s =

maxr ~ lIl 2

= 1.502642. ..

However, for 7 large and negative, ¢(7) is dominated by the interval (15) which
shrinks only harmonically, and ¢(7) approaches 0 as

(43) q(r) _ 3lnn

7 nln?2

— 0.

So for finite n, ¢,(7) crosses the 7 axis at —7 = D, but in the n — oo limit,
the ¢(7) function exhibits a phase transition; ¢(7) = 0 for 7 < —Dy, but is a
non-trivial function of 7 for —Dpy < 7. This non-analyticity is rather severe -
to get a clearer picture, we illustrate it by a few number-theoretic models (the
critical circle maps case is qualitatively the same).

An cute version of the “trivial” Farey level thermodynamics is given by the
“Farey model”[19], in which the intervals ¢p,g are replaced by Q%

on

(44) Z(r) = Y Q.

=1

Here @); is the denominator of the ith Farey rational P;/Q);. For example (see
(definition (10.3)),
Zy(1/2) =4+ 5+ 5 + 4.

Though it might seem to have been pulled out of a hat, the Farey model
is as sensible description of the distribution of rationals as the periodic orbit
expansion (34). By the “anihilation” property of the Gauss shift (11), the nth
Farey level sum Z,(—1) can be written as the integral

(45) Za(=1) = [ dwo (" (@) = S 1/1fpy..0 O]

with the sum restricted to the Farey level 1%~ +@%=n+2 Tt ig easily checked
that f; , (0) = (=1)F tir. o> S0 the Farey model sum is a partition generated
by the Gauss map preimages of x = 0, ie. by rationals, rather than by the
quadratic irrationals as in (34). The sums are generated by the same transfer
operator, so the eigenvalue spectrum should be the same as for the periodic orbit
expansion, but in this variant of the finite level sums we can can evaluate ¢(7)
ezactly for T = k/2, k a nonnegative integer. First one observes that Z,(0) = 2".
It is also easy to check that[27] Z,(1/2) = >; Q; = 2 - 3". More surprisingly,
Z,(3/2) = ¥, Q% = 54 - 7", Such “sum rules”, listed in the table 10.1, are
consequence of the fact that the denominators on a given level are Farey sums
of denominators on preceding levels[63, 19]. Regretably, we have not been able
to extend this method to evaluating ¢(—1/2), or to real 7.
A bound on Dy can be obtained by approximating (44) by

(46) Zn(T) = 0T + 2"p*"7.

In this approximation we have replaced all £p/q, except the widest interval ¢, ,,
by the narrowest interval ¢p,_ /r, (see (16)). The crossover from the harmonic
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dominated to the golden mean dominated behavior occurs at the 7 value for
which the two terms in (46) contribute equally:

. 1 . In2
(47) D,=D+o0(22), p =22 _ 179 .
n 2Inp

For negative 7 the sum (46) is the lower bound on the sum (30) , so D is a
lower bound on Dy . The size of the level-dependent correction in (47) is ominous;
the finite n estimates converge to the asymptotic value logarithmically. What this
means is that the convergence is excruciatingly slow and cannot be overcome by
any amount of brute computation.

- 24(7) Zy(1) =

0 2 2 Zn_y

1/2 3 37,

1 (5+V17)/2 571 — 27y
3/2 7 T Zn

2 (11 4+ /113)/2 1021 + 920 5 — 27,3
5/2 7+4V6 147, 1 + 472,

3 26.20249 . .. 207, 1 + 1617, 5 + 407y 5 — Zn 4
7/2 41.0183 ... 29Z,_1 + 485Z,_y + 327Z,_3
n/2 " p= golden mean

Table 10.1 Recursion relations for the Farey model partition sums (44) for 7 =
1,1/2,1,...,7/2; they relate the 29(7) = lim, oo Zn11(7)/Zn(7) to roots of polyno-
mial equations.

10.13 Artuso Model

The Farey model (30) is difficult to control at the phase transition, but consider-
able insight into the nature of this non-analyticity can be gained by the following
factorization approximation. Speaking very roughly, the stability A ~ (—1)"Q?
of a P/Q = [ay,...,ay] cycle gains a hyperbolic golden-mean factor —p? for each
bounce in the central part of the Farey map (10), and a power-law factor for
every aj bounces in the neighborhood of the marginal fixed point xy = 0. This
leads to an estimate of @ in P/Q = [ay,...,a,] as a product of the continued
fraction entries[48]

Q =~ paas---ay

In this approximation the cycle weights factorize, Ay 4,0, = Ao Ao, -+ Ay, , and
the curvature corrections in the cycle expansion (38) vanish ezactly:
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o0

g m) = 1= Y (pa)?2", z=27"

a=1
The ¢ = ¢(7) condition 1/{(q,7) = 0 yields
(48) p = ®(-21,2)
where @ is the Jonquiere function[64]

51y

et —x

o0 pm 1 00
b , = — = —/ dt
(5,2) ;::1 n®  T'(s)Jo

The sum (48) diverges for z > 1, so ¢ > 0. The interesting aspect of this model,
easy to check[48], is that the ¢(7) curve goes to zero at 7 = —Dp, with all
derivatives d"q/dt" continuous at Dy, so the phase transition is of infinite order.
We believe this to be the case also for the exact trivial and critical circle maps
thermodynamics, but the matter is subtle and explored to more depth in ref. [30].

There is one sobering lesson in this: the numerical convergence acceleration
methods of ref. [56] consistently yield finite gaps at the phase transition point; for
example, they indicate that for the Farey model evaluated at 7 = —Dpy + ¢, the
first derivative converges to dq/dr — .64 + .03. However, the phase transition
is not of a first order, but logarithmic of infinite order[20], and the failure of
numerical and heuristic arguments serves as a warning of how delicate such phase
transitions can be.

10.14 Summary and Conclusions

The fractal set discussed here, the set of all parameter values corresponding
to irrational windings, has no “natural” measure. We have discussed three dis-
tinct thermodynamic formulations: the Farey series (all mode-lockings with cycle
lengths up to @), the Farey levels (2" mode-lockings on the binary Farey tree),
and the Gauss partitioning (all mode-lockings with continued fraction expansion
up to a given length). The thermodynamic functions are different for each distinct
partitioning. The only point they have in common is the Hausdorff dimension,
which does not depend on the choice of measure. What makes the description
of the set of irrational windings considerably trickier than the usual “Axiom A”
strange sets is the fact that here the range of scales spans from the marginal
(harmonic, power-law) scalings to the the hyperbolic (geometric, exponential)
scalings, with a generic mode-locking being any mixture of harmonic and ex-
ponential scalings. One consequence is that all versions of the thermodynamic
formalism that we have examined here exhibit phase transitions. For example,
for the continued fraction partitioning choice of weights ¢,, the cycle expansions
of ref. [22, 23] behave as hyperbolic averages only for sufficiently negative values
of 7; hyperbolicity fails at the “phase transition”[19, 48] value 7 = —1/3, due to
the power law divergence of the harmonic tails §._, ~ n®.

The universality of the critical irrational winding Hausdorff dimension fol-
lows from the universality of quadratic irrational scalings. The formulas used are
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formally identical to those used for description of dynamical strange sets[22], the
deep difference being that here the cycles are not dynamical trajectories in the
coordinate space, but renormalization group flows in the function spaces rep-
resenting families of dynamical systems. The “cycle eigenvalues” are in present
context the universal quadratic irrational scaling numbers.

In the above investigations we were greatly helped by the availability of the
number theory models: in the & = 0 limit of (1) the renormalization flow is given
by the Gauss map (6), for which the universal scaling 0, reduce to quadratic
irrationals. In retrospect, even this ”trival” case seems not so trivial; and for the
critical circle maps we are a long way from having a satisfactory theory. Symp-
tomatic of the situation is the fact that while for the period doubling repeller
Dy is known to 25 significant digits[54], here we can barely trust the first three
digits.

The quasiperiodic route to chaos has been explored experimentaly in systems
ranging from convective hydrodynamic flows[40] to semiconductor physics[41].
Such experiments illustrate the high precision with which the experimentalists
now test the theory of transitions to chaos. It is fascinating that not only that
the number-theoretic aspects of dynamics can be measured with such precision
in physical systems, but that these systems are studied by physicists for reasons
other than merely testing the renormalization theory or number theory. But, in
all fairness, chaos via circle-map criticality is not nature’s preferred way of de-
stroying invariant tori, and the critical circle map renormalization theory remains
a theoretical physicist’s toy.
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