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The theory of period doublings for real iterative mappings is generalized to period n-tupling for complex iterative 
mappings. We find an infinity of universal functions associated with different sequences of period n-tuplings. 

There is much experimental,  numerical and theo- 
retical evidence that infinite sequences of  period 
doublings occur commonly in dissipative dynamical 
systems. In the universality theory for one-dimen- 
sional iterative mappings developed by Feigenbaum 
[ 1], variation of  a single parameter  drives the sys- 
tem through a bifurcation sequence. In this letter 
we extend this theory to the period n-tuplings 
found in iterations of  complex analytic functions 
[ 2 - 6 ]  parameterized by pairs of  (real) parameters. 
A complex function can be viewed as a two-dimen- 
sional mapping. Iterative two-dimensional mappings 
are important  in studies of  dynamical systems [7,8],  
and the scaling numbers that we predict  might be 

observable. Period n-tuplings are common in hamil- 
tonian systems [9] and are also seen in nonlinear 
oscillator simulations [10,11] ,  but  it is not  known 
whether realistic dynamical systems which can be 
modelled by complex iterations exist. Even if that 
is not the case, we find the complex universality 
rewarding for the insight it gives into the standard 
universality theory.  

The first important  difference between the real 
and complex cases is that the latter allows infinite 
sequences of period n-tuplings, rather than just period 
doublings. We give the corresponding universality equa- 
tions and universal scaling numbers. Mandelbrot [6] 
has conjectured that Feigenbaum's [ 12,13] 6 is one 
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Fig. 1. A region in the complex h plane where the Julia mapping, eq. (1), has stable cycles. Inside the big semicircle (left open for 
clarity) iterations converge to a fixed point. The full region has two symmetry axes, Re h = 1 and Im h = 0, so only one quarter is 
shown. The usual bifurcation sequence is on the real axis. See Mandelbrot [6] for detailed scans of this region. 

0 031-9163/83 /0000-0000/$  03.00 © 1983 North-Holland 329 



Volume 94A, number 8 PHYSICS LETTERS 28 March 1983 

.2 

- .2 

- . 4  
- °  

I m (z) 

. Lr- 

Re (z) 
.' .'3 '5 .'7 . ~ 1' 1 . ~ . 1  

Fig. 2. The basin of attraction for the superstable 9 cycle arising from two successive 2]3 trifurcations (superstability means that 
the extremum z = 1/2 is a cycle point). In each successive trifurcation the central region is scaled down and rotated by the univer- 
sal scaling number -c~. In this plot the scaled down basin of attraction for the superstable 3 cycle is visible in the center. See ref. 
[6] for many beautiful plots of basins of attraction. 

of  the infinity of  possible 6s, and that their existence 
and universality are consequences of  the self-similar- 
ity of  the region plotted in fig. 1. Our results fully 
support Mandelbrot's conjecture. 

The second important difference between the 
two cases is in the nature of  the basins of  attraction. 
For the real case the basin is trivial: the unit interval 
is always mapped into itself. In the complex case the 
basin of  attraction for a stable cycle is an area with a 
fractal boundary [6] (fig. 2), and our generalization 
of  Feigenbaum's c~ plays two roles: it describes the 
trajectory splitting, just as in the real case, but it also 
characterizes the size of  the basin of attraction. The 
difference between the real and the complex cases is 
especially dramatic for the chaotic bands [13]. In the 
real case their basin of attraction is again the unit in- 
terval, and the reverse bifurcations [13] are as easy 
to observe as the period doublings. We find that in the 
complex case the basin of  attraction is shrunk to a frac- 
tal line (fig. 3), so that the chaotic bands have little 
chance of being observed experimentally. 

Our starting point is iterations of  the Jul ia-Fatou 
[2 -6 ]  type 

Zk+ 1 = L~k(1 --Zk)  , (1) 

with complex Z k and complex parameter X. By the usu- 
al universality-theory arguments we expect that the re- 
suits will be the same for any function with a quadra- 
tic maximum. A k cycle satisfies z k = Zo, and it is 
stable if 

IdZk/dZ 0 I <  1. (2) 

Whenever 

dzk/dZ 0 = exp(27rim/n) (3) 

(m and n relatively prime integers) the k cycle becomes 
unstable and branches into an nk cycle, which then be- 
comes stable. The main region in the complex X plane 
for which stable cycles exist is plotted in fig. 1. This 
cactus-like region is self-reproducing because a stable 
cycle of  any length gets unstable in the same fashion. 
If X/are the successive critical parameter values for 
m/n period n-tuplings, the limit 

6m/n = .lira (~j -- ~]_ 1)/(X]+I -- ~j) 
] --~ oo 

exists. The magnitude of 5m/n gives the relative size 
of  two successive "cactii" while the phase gives their 
relative angle. I~rnlnl--~ Craft2 asymptotically as 
n ~ 0% where (at least for small m) C m is a number 
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Fig. 3. The "basin of attraction" for a ~ value such that eq. (1) maps the extremum z = 1/2 into the unstable fixed point z = 0 in 
3 steps. This is a trifurcation sequence analogue of the last chaotic band for the real case. 

close to 1. This n 2 behaviour was first observed by 

Mandelbrot  [6].  1.2 

Fur thermore ,  any infinite sequence o f  rn/n branch- 

ings defines a universal func t ion  g(z )  = gm/n(Z) and a I. 1 

universal scaling number  a -- O~m/n satisfying a univer- 

sal equa t ion  ,1 1 

g(z )  = -o~g(n)( -z /a)  = -~g(g( . . .g ( -z /o~) . . . ) )  . (4) 
. g  

Other  i teneraries o f  per iod n-tuplings define still o ther  

universal funct ions.  We have compu ted  po lynomia l  

approximat ions  to g(z ) ,  with up to 20 terms,  in a way 

,1 For n = 2 this is the universal equation of the bifurcation 
theory, derived by Cvitanovi( and t:eigenbaum [ 1 ]. 

Table 1 
Magnitude of 6 and a, and phase of - a  in units of 2~r, for 
some sequences of m/n branchings. See also figs. 4 and 5. 

mln la I lal X 

1/2 4.6692 2.5029 -0.5 
1/3 10.0908 3.1557 - 0.3657 
1/4 18.1298 3.4508 -0.3032 
1/5 28.0371 3.5742 0.2670 
1/13 176.508 3.6839 0.1783 
2/5 23.9153 4.4459 -0.4184 
2/13 170.943 5.3840 -0.2339 
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Fig. 4. Plot of 16m/n I/n 2 versus m/n for the l/n and 2/n se- 
quences of period n-tuplings. 61,'2 is the Feigenbaum number 
6 for the bifurcation sequence. 

similar to the one described in ref. [1].  These calcula- 

tions also yield as and 6s. For  example ,  the first few 

terms of  the t r i furcat ion universal func t ion  are 

gl /3(z )  = 1 + (0.0547 + i0 .7490)z  2 

+ ( - 0 . 0 2 4 4  + i0 .0525)z  4 + ... 

and some 6s and as are listed in table 1, and p lo t ted  

in figs. 4 and 5. (More exhaustive tables will be given 

in a subsequent  publ icat ion [14] .) The phase o f  am~ n 
is given by 
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Fig. 5. (a) Plot of i~rn/nl versus rn/n. This is the scaling num- 
ber for trajectory splittings in successive period n-tuplings. 
(b) Plot of AXm/n, eq. (5), versus m/n. 

-c~ = Is I exp (27rX), 

× = - 1 / 8  - 3m/4n + A × ,  (5) 

where 2x x is a small deviation (fig. 5b). 
The significance of the universal equation is per- 

haps best illustrated by the associated n cycle. In 
fig. 6 we have plot ted the first 30000 points obtained 

by iterating gl/13(z). The sequence z 0 = 0 -* z 1 = 
g(zo) ~ ... ~ z 12 traces out a large "horseshoe".  The 

sequence z 0 ---~ z 13 --*7,26 --~ ... --+2156 traces out a 
smaller horseshoe, and so forth. The universality equa- 
tion (4) states that these horseshoes are similar under 
rescaling and rotation by -cq/13 .  X, eq. (5), is the rota- 
tion angle. The horseshoes for 1 In, n ~ 0% look very 
much alike, with all the extra cycle points accumulating 
between two unstable fixed points. In this way one can 
understand the existence of the n ~ ~o, m fixed limits 
for am/n, see table 1 and fig. 5. 

Plots of  basins of  at traction (sets of  all initial points 
which converge towards a given stable cycle) provide 
another way of  understanding the significance of the 
scaling number a. The basin of  at traction for the (2/3) 2 
cycle is shown in fig. 2. Its area is roughly Ic~2/312 
smaller than for the 2/3 basin of attraction. The self- 
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Fig. 6. The 1/13 "universal horseshoe": the first 30000 points 
Zn = 0, z 1, ... from the iteration of the 1/13 universal function. 
The smaller horseshoe at the origin is identical to the full horse- 
shoe, except for a scaling and rotation by the complex num- 
ber --~1/13. 

similarity under rescaling and rotation by -o~2/3 = 
-a~/3  is already evident. 

If  the extremum maps into an unstable fixed point,  
then the at tractor ,  in the real case [13], is one or more 
chaotic bands. Complex generalizations of  the 
Misiurewicz [ 15 ] sequence of  reverse bifurcations can 
also be studied. In the complex case the chaotic motion 
takes place along a fractal curve. An example is shown 
in fig. 3. It is associated with the 2/3 sequence of  tri- 
furcations, and the value of  the parameter X is deter- 
mined by the conditions z 0 = 1/2,z  2 = 1,z 3 = 0 = un- 
stable fixed point ,  and Im k > 0. 

In summary, we have generalized the universality 
theory to iterations of  complex analytic functions. An 
interesting aspect of  this theory is the observation that 
the universal scaling numbers a for period n-tuplings 
approach n ~ oo limits. An experimental observation 
of sequences of  multifurcations would be made diffi- 
cult both  by the n 4 reduction of  the area in param- 
eter space for each successive n tupling, and by the 
I~l 2 reduction of  the basin of  at traction,  implying the 
need for very precise adjustment of  initial conditions. 
Still, the experimental  precision needed for observing 
one trifurcation is roughly the same as is required for 
observing two bifurcations, so several trifurcations 
could be observed. 
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