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Trace Formulas for Stochastic Evolution Operators:
Weak Noise Perturbation Theory

1. INTRODUCTION

Noise plays important role in a variety of physical contexts. Robustness to
noise is of interest for any system since there is always some small length
scale at which the dynamics is affected by thermal or quantum fluctuations
or unobserved degrees of freedom. For example, the interplay of deter-
ministic dynamics and magnetic diffusivity is subject of great interest in the
dynamo problem, where the effect of magnetic field diffusion on the steady
fast kinematic dynamo rates is discussed in ref. 1 within the periodic orbit
theory formulation of refs. 2-4.

1 Center for Chaos and Turbulence Studies, Niels Bohr Institute, DK-2100 Copenhagen 0 ,
Denmark.

981

0022-4715/98/1100-0981$15.00/0 © 1998 Plenum Publishing Corporation

Predrag Cvitanovic,1 C. P. Dettmann,' Ronnie Mainieri,1 and
Gabor Vattay1

Received December 3, 1998

Periodic orbit theory is all effective tool for the analysis of classical and quantum
chaotic systems. In this paper we extend this approach to stochastic systems, in
particular to mappings with additive noise. The theory is cast in the standard
field-theoretic formalism and weak noise perturbation theory written in terms of
Feynman diagrams. The result is a stochastic analog of the next-to-leading h
corrections to the Gutzwiller trace formula, with long-time averages calculated
from periodic orbits of the deterministic system. The perturbative corrections
are computed analytically and tested numerically on a simple 1-dimensional
system.
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The noise tends to regularize the theory, replacing the deterministic
delta function evolution operators by smooth distributions. While in this
paper we are interested in effects of weak but finite noise, the <T-»0 limit
is also important as a tool for identifying the natural measure(5–7) for deter-
ministic flows. The noise regularization might in addition cure some of the
ills of intermittent systems which are plagued by power-law convergences
arising from terms like \A — 1 | - 1 in the limit A-*\.

We have cast the theory in the standard field theoretic language,(8) in the
spirit of approaches such as the Martin-Siggia-Rose(9) formalism, the Parisi-
Wu(10) stochastic quantization, and the Feigenbaum and Hasslacher(11)

study of noise renormalization in period doubling. This perturbation
theory has the same structure as the h corrections to the semiclassical
Gutzwiller trace formulas(12) computed by Gaspard and Alonso,(13–15) and
the trace formulas for continuous stochastic flows and for the h corrections
formulated by Vattay.(16)

Though it is clear from the literature on stochastic path integrals that
some kind of Feynman diagrams apply, the present work seems to be one
of the few that actually compute the weak noise corrections for a concrete
dynamical system, although in some cases the leading correction may be
obtained directly from the perturbed eigenfunction.(17, l8) The form of the
perturbative expansions of Section 4 is reminiscent of perturbative calcula-
tions of field thery, but in some aspects the calculations undertaken here
are relatively more difficult. The main difference is that there is no transla-
tional invariance along the chain, so unlike the case of usual field theory,
the propagator is not diagonalized by a Fourier transform. We do our
computations in configuration coordinates. Unlike the most field-theoretic
literature, we are neither "quantizing" around a trivial vacuum, nor a count-
able infinity of stable soliton saddles, but around an infinity of nontrivial
unstable hyperbolic saddles.

Two aspects of our results are a priori far from obvious: (a) that the
structure of the periodic orbit theory should survive introduction of noise,
and (b) a more subtle and surprising result, repeats of prime cycles can be
resummed and theory reduced to the dynamical zeta functions and spectral
determinants of the same form as the for the deterministic systems.

Having constructed the perturbation expansion in Section 4, in Sec-
tion 5 we confront the theory with a numerical determination of eigenfunc-
tions and eigenvalues, and verify the correctness of our perturbation
expansion to the same numerical accuracy. A variety of flow models with
noise are simpler to study in nonperturbative (large a) limits; numerical
eigenfunctions do not depend on the weak noise assumptions, and in fact
require the noise to be larger than the effective discretization length of the
basis.
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2. STOCHASTIC EVOLUTION OPERATOR

The periodic orbit theory allows us to calculate long time averages in
a chaotic system as expansions in terms of the periodic orbits (cycles) of
the system. The simplest example is provided by the Perron-Frobenius
operator

The method can be applied to smooth distributions other than the
Gaussian one in the same manner.

We shall evaluate the trace formulas by steepest descent methods, and
obtain the noisy traces (traces of Jz?CT) and determinants in terms of the
cycles of the deterministic system. The theory is then tested numerically on
one-dimensional maps, but we expect the generalization to higher dimen-
sions to be of the same structure as the formulas derived here.

3. STOCHASTIC TRACE FORMULA, STEEPEST DESCENT
APPROXIMATION

We start by calculating the trace of the nth iterate of the stochastic
evolution operator S£a for a one-dimensional analytic map f(x) with
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for a deterministic map f(x) which maps a density distribution p(x)
forward in time. The periodic orbit theory relates the spectrum of this
operator and its weighted evolution operator generalizations to the peri-
odic orbits via trace formulas, dynamical zeta functions and spectral deter-
minants.(19, 20) Our purpose here is to develop the parallel theory for
stochastic dynamics, given by the discrete Langevin equation(21, 22)

where the £„ are independent normalized Gaussian random variables.
We shall treat a chaotic system with such Gaussian weak external

noise by replacing the the deterministic evolution d-function kernel by S£a,
the Fokker-Planck kernel corresponding to (1), a sharply peaked noise
distribution function

where <5_ is the Gaussian kernel
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additive Gaussian noise ex. This trace is an n-dimensional integral on n
points along a discrete periodic chain, so x becomes an n-vector xa with
indices a, b,... ranging from 0 to n — 1 in a cyclic fashion

As we are dealing with a path integral on a finite discrete chain, we find
it convenient to rewrite the exponent in matrix notation

where x andf{x) are column vectors with components xa and f(xj) respec-
tively, and h is the left cyclic shift or hopping matrix satisfying h" = 1,
h~l =hT. Unless stated otherwise, we shall assume the repeated index sum-
mation convention throughout, and that the Kronecker d function is the
periodic one, defined by

For sufficiently short chains, (4) is an integral that conceivably lends
itself to numerical evaluation,(23) although clearly not in the long time n-> oo
limit. However, if the noise is weak, the path integral (4) is dominated by
periodic deterministic trajectories. Assuming that the periodic points of given
finite period n are isolated and the trajectory broadening a sufficiently small
so that they remain clearly separated, the dominant contributions come from
neighborhoods of periodic points; in the saddlepoint approximation the tra
(4) is given by

where the sum goes over all periodic points xc = xc+n of period n,f(xc) = xc.
The contribution of the xc neighborhood is obtained by shifting the origin of
integration to
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where from now on xa refers to the position of the a-th periodic point, and
expanding f in Taylor series around each of the periodic points in the orbit
of xc.

The contribution of the neighborhood of the periodic point xc is given
by

where the propagator and interaction terms are collected in

We find it convenient to also introduce a bidirectional propagator C = AAT

for reasons that will become apparent below. In the second line of (8) we
have changed coordinates,

and used the matrix identity 1n det M — tr ln M on the Jacobian

The functional dependence of (j> = <j>((p) is recovered by iterating

The above manipulations are standard(9) and often used in the
"stochastic quantization" literature,(10, 24) where they are artfully employed
to promote identities such as det M/det M = 1 to supersymmetric field
theories. Such symmetries do not seem to simplify the calculation at hand.

The saddlepoint expansion is most conveniently evaluated in terms of
Feynmann diagrams, which we now introduce. The interaction terms in V
and its derivatives can be represented in terms of the vertices
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and the propagators as directed lines

The first two derivatives of V may be written

with the cross-hatched circle as V and the diagonally filled circle as p. The
relation between the fields (12) becomes

with the small open circle as p. This recursively generates all tree diagrams
ending in q, which the stochastic averaging of Section 4 will tie into loop
corrections.

As the sum is cyclic, ew< is the same for all periodic points in a given
cycle, independent of the choice of the starting point xc.

In the saddlepoint approximation we assume that the map is analytic
and the extrema f" are isolated. For the leading a2 correction that we shall
evaluate here we need derivatives of f up too the third. A map with non-
analytic points or marginal stability would lead to additional diffraction
corrections that we shall not consider here.

From the second path integral representation in (8) it follows that A
can be interpreted as the "free" propagator. As A will play a central role
in what follows, we write its inverse in its full [« xn] matrix form:
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where f is a diagonal matrix with elements f'a = f'(xa) a shorthand nota-
tion for stability of the map at the periodic point xa. The determinant of
A is

with Ac the stability of the n cycle going through the periodic point xc. We
shall assume that we are dealing with a chaotic dynamical system, and that
all cycles are unstable, \AC\ > 1.

The formula for propagator itself is obtained by inverting (16) and
using relation (hf')" = Ac, (due to the periodicity of the chain):

where d increases cyclically through the range b + 1 to a — 1; for example,
if a = 0, a — \—n — 1. We note that A is invertible only for cycles which are
not marginal, \AC\ J= 1. The \AC\ = 1 case we would require going beyond
the Gaussian saddlepoints studied here, and typically to the Airy-function
type stationary points.(25)

or, more compactly,

In the full matrix form, the propagator is given by
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4. WEAK NOISE PERTURBATION EXPANSION

The saddlepoint approximation (8) is a discrete path integral on peri-
odic chain of n points which we shall evaluate by standard field-theoretic
methods. Separating the quadratic terms we obtain

where

The terms collected in S,{<p), linear or higher in q, are the interaction ve-
tices.

Next introduce a source term Ja and define a partition function

Here we have used standard formulas for Gaussian integrals together with
the normalization (4). In our diagrammatic notation this is

Expanding

operating on this series with exp{ -S,(d/dJ)},



Stochastic Evolution Operators 989

collecting terms of the same order in a2, and setting Ja to zero yields the
perturbation expansion

In field-theoretic calculations the WcJj term is usually an overall volum
term that drops out in the expectation value computations. In contrast,
here the Wc< 0 = — ln \AC — 11 term is the classical weight of the cycle w
plays the key role both in the classical and stochastic trace formulas.

In diagrammatic language, we join all possible pairs of p vertices, each
one giving a o2C propagator. Thus the first diagram in (24) is expanded
(14, 15) to

and then the q vertices joined to form two diagrams contributing at order
a2. The full noise corrections of order a2 ares given by all connected two-
loop diagrams:

Each diagram has a two-fold symmetry, hence all combinatorial weights
equal 1/2. Before writing down the final expression, we note that several
sub-diagrams may be simplified using (20). These are (no sum on a, b)

Adding the terms we obtain the a2 contribution to the trace:



For an alternative approach to evaluating multiple derivatives, see
Appendix A.

4.1. Repeats of prime cycles

In the deterministic case repeats of periodic orbits can be summed up,
and spectral determinants and dynamical zeta functions written in terms of
prime cycles rather than periodic points. In order to accomplish this for the
stochastic case, we need to compute the trace for repeats of periodic orbits.

For r repeats of a prime cycle p we have n = npr, Ac = At
p, where Ap

is the stability of the prime cycle p. Each index a = 0,..., n — 1 is decomposed
as a-d + dnp + d with a = 0,..., np — 1 and a = 0,..., r— 1. a is an arbitrary
starting point on the orbit which may be chosen independently for each
index. f and its derivatives depend only on d.

The first sum in (29) is

where a — b is the number of full repeats of p contained in n5—*-+-1; this
is achieved by setting d = b + 1. The sums over a and b are performed,
leading to
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which is just a factor depending on r and Ap multiplied by the sum for the
single repeat of the prime cycle.

When the calculations are carried out for both of the other sums, some
rather unenlightening algebra leads to exactly the same prefactor; we dis-
cuss this rather remarkable point and its generalization to higher orders in
detail in the sequel paper.(26) Combining all three terms of (29) leads to an
expression for the trace in terms of cycles:
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up to order a2, where

contains all the dependence on the higher derivatives along the prime cycle
p, with no dependence on the repetition number r. To put it another way,
if p is a cycle, not necessarily prime, then

Next, using the identity

we rewrite the trace formula in a form in which repeats are resummed over
by expanding the exponential in (30) to order a1, forming the sum over k,
and putting the result back in an exponential:

where tpk is the kth local eigenvalue

This is the stochastic equivalent of the Gutzwiller trace formula for the
semiclassical case.(12)

We sum over r as usual(20) to obtain from (33) a Selberg type product
for the noisy spectral determinant

valid to order a2.



We observe a crossover effect, since for higher order eigenvalues (large k),
eventually the argument of the exponential becomes of order one, and
further noise corrections are required. This is as it should be: the higher
order eigenfunctions have more detailed structure, are more quickly
smeared by the noise, and should decay faster.

4.2. Fixed point

The contribution from a fixed point (cycle of length one) is par-
ticularly simple, as all the sums and products collapse to a single term, and
f' = A. We obtain

5. NUMERICAL TESTS

To test the above expressions for the trace, we have computed the
required derivatives for the 23 prime cycles up to length n = 6 for the quartic
map
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If the map contains only a single isolated unstable fixed point, we thus
have an expression for the eigenvalues,

valid to order a2. Note that depending on the sign of wp 2, small amounts
of noise can either enhance or inhibit escape from the fixed point. Higher
order terms for a fixed point are given in ref. 26.

The choice of the map is motivated by requiring that the system be simple
(one-dimensional in this case), with non-trivial f", f'" (hence quartic), with
complete binary dynamics (hence a nice repeller), and no diffraction and
nonhyperbolic regions in the immediate vicinity of the repeller (where the
Gaussian saddle points would be insufficient).



5.1. Evaluation of the determinant

In this we follow the approach to computing escape rates originally
introduced by Kadanoff and Tang.(27) The topological length truncated
cycle expansions(20) of spectral determinant (34) are obtained by writing
the trace and determinant as power series expansions in z and a,
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Here, the C coefficients come from (30), and the c coefficients are obtained
by equating coefficients in

following from the identity ln det M = tr ln M. The solution is found recur-
sively as

From the cM 0 coefficients we construct the deterministic Fredholm determi-
nant, from which the deterministic eigenvalue v0 is found using Newton's
method on the characteristic equation for £a at a = 0:

The a2 correction to the eigenvalue is found from the a2 terms in the
characteristic equation, and comes to

The leading eigenvalue v0 for the deterministic (noiseless) map and the
coefficient of the a2 correction v0, 2, shown in Table I, demonstrate the
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Table 1. Significant Digits of the leading
Deterministic Eigenvalue and Its a 2 Coefficient,
Calculated from the Spectral Determinant as a

Function of the Cycle Truncation Length n"

n

1
2
3
4
5
6

v0

0.308
0.37140
0.3711096
0.371110995255
0.371110995234863
0.371110995234863

v0,2

0.42
1.422
1.43555
1.435811262
1.43581124819737
1.43581124819749

a Note the superexponential convergence of both u0 and v0, 2

(n = 6 result is limited by the machine precision).

superexponential convergence with n of spectral determinant, as expected
for nice hyperbolic dynamical systems.

The escape rate y of the repeller is calculated directly from the eigen-
value,
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and hence

We have also directly tested the repeat formula (32) for our cycle set.

5.2. Discretized Eigenfunction

In order to check the perturbative calculation we evaluate the eigen-
value numerically as a function of a by treating the evolution operator as
a matrix acting on a discretized eigenfunction. That is, we approximate if
by a matrix L, x where {xc, yc) is the center of a square in the x-y plane
of small but finite size c (with upper limits (x,, y,) and lower limits
{xb, yb)). The matrix element is obtained by assuming the distribution p is
constant across this small square:
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The integral may be approximated using just a few evaluations of the ker-
nel with errors of a similar order to those due to the variation in p. For
example

Fig. 1. The deviation of the analytic estimate (44) from the numerically computed vu(a) for
a range of values of the noise strength a (points), vs. the conjectured remainder, 38A4 (solid
line). For small a the errors are due to the finiteness of the grid, and for larger a the devia-
tions is due to the neglected higher order contributions.

with Ltc — 8a{y,—f{xc)\ etc. requires only four evaluations per squar
since the boundary points belong to more than one square. For the map
at hand, the discretized evolution operator leads to six digit accuracy in the
escape rate for values of a as low as 3e.

When a is small the matrix is very sparse, a fact which can be used to
speed up the calculation. The leading eigenvalue is obtained by repeatedly
evolving and rescaling an arbitrary smooth initial distribution, which then
approaches the leading eigenfunction. In our case the map is expanding on
the neighborhood of the asymptotic repeller, so the eigenfunctions are
smooth, and the discretization procedure is stable. The numerical eigen-
functions for two values of a is shown in Fig. 2. The eigenfunction peaks
at the critical point of the map, but this has no detectable effect on the
eigenvalue, as subsequent iterations send the points around the peak
towards — oo, away from the repeller xe[0, 1]. As the flow is conserve
only on the infinite interval ;ce( — oo, oo), no normalizable eigenfunctio
exists. On any finite interval, however, the escape rate is nonzero. If no
point outside the interval can return (ignoring the exponentially small
tunneling probabilities), that is, if the interval encloses the repeller and the
neighboring region around it determined by the magnitude of the noise, the
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Fig. 2. The eigenfunction for (7 = 0.01 (sharp peak) and 7 = 0.1 (smoother).

escape rate and the leading eigenfunction (up to normalization) are inde-
pendent of the interval chosen.

Subtracting the perturbative analytic terms from the numerically com-
puted VO(A),

we compare with the numerically computed vo(<j) in Fig. 1, and estimate
the next term to be approximately 38cr4.

6. SUMMARY AND OUTLOOK

We have formulated weak noise perturbation theory for noisy maps in
terms of periodic orbits of the deterministic system, expanding to order a2

explicitly, resummed repeats of prime cycles, and tested the results numeri-
cally. From here, there are many possible generalizations and future direc-
tions.

In the sequel paper(26) we shall recast the remarkable resummation of
repeats (Section 4.1) in a more general framework applicable to all orders
of the expansion. It seems from the numerical section that the coefficients
of powers of a are growing very rapidly. The expansion is expected to be
asymptotic.

Evaluation of expectation values(20) on a stochastic flow requires
replacing the Perron-Frobenius operator (2) by the generalized evolution
operator



The same general perturbation theory applies, but now an observable a(x)
contributes an extra set of interaction vertices to SI(p) in (21)- Similarly,
the addition of more dimensions and/or non-Gaussian weak noise can be
treated by modifying the propagators and adding new vertices.

While for deterministic flows it is appropriate to replace a flow by a
return map on a Poincare section of the flow, it is not clear that this is
appropriate for stochastic flows; a noise that is "white" on the Langevin
equation level is "colored" when integrated to a Poincare section return,
and it might have memory of the trajectory that a noisy iterated mapping
cannot mimic.

The noise in general has a different structure than the deterministic
equations of motion; it typically breaks whatever symmetries the classical
flow might have, unless clever precautions are taken to ensure that the noise
respects the symmetry.(28) This situation is familiar from Quantum Mechanics,
where quantization and canonical transformations do not commute.

Our saddlepoint approximation to the spectrum of the exact evolution
operator receives perturbative contributions from all cycles, no matter how
long. However, the noise causes the physical system to effectively lose
memory at a rate depending on the region of phase space, so it might be
possible to obtain accurate averages by replacing the evolution operator by
effective finite memory, finite Markov partition transfer matrices.

Such studies might enable us to understand the range of applicability
of the "semi-classical" theory in greater detail than for the single cut-off
time proposed in the case of semiclassical quantization by Berry and
Keating.(29) Different regions of phase space are dominated by different
time scales, and the program of periodic orbit theory allows us to use the
dynamics itself, encoded in the properties of cycles, to determine at what
point classical behavior is modified by semiclassical or noise corrections.

As in the semiclassical case, the saddlepoint approximation causes the
multiplicative structure of the evolution operators to be lost, and one might
consider extended formulation of ref. 30 to improve the analyticity of the
spectral determinants. Finally, non-analytic points in the dynamics will
lead to diffraction effects which are of different orders in a, for example, the
escape rate of the map 4x(l—x) which has a quadratic maximum at the
boundary of the deterministic repeller is of order v/a.(17)

APPENDIX. RECURSIVE EVALUATION OF DERIVATIVES

The derivatives of xn = f(x)
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with initial values

can be computed recursively by

x'n + 1 in the above has form of a propagator, f"(xk)/f'{xk) 3-vertex, x'"n+l

gets contribution from a 4-vertex diagram plus three 4-leg diagrams with
two 3-vertices, etc. In another words, this iteration of the "transport equa-
tions" generates the Feynman diagram expansion.
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