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Threshold accelerations necessary to excite surface waves parametrically in a vertically vibrated fluid layer
are presented and compared with a linear stability analysis of the full hydrodynamic equations. The effects of
viscosity and finite depth are treated rigorously. The case of two-frequency forcing is considered in detail
because of its relevance to recently reported pattern forming phenomena. Absolute agreement between theory
and experiment, generally to within 2%, is obtained for kinematic viscosities in the range 10–50 cS~1 S51
cm2/s! and three frequency ratios. A slight discrepancy is noted for single-frequency forcing at high frequen-
cies.@S1063-651X~96!07807-5#

PACS number~s!: 47.35.1i, 47.20.Ky

I. INTRODUCTION

The Faraday instability, produced by vertical oscillation
of an incompressible liquid with a free upper surface, pro-
vides an excellent context in which to explore a variety of
issues related to nonlinear pattern formation. Many of the
regular patterns that are possible in two dimensions can be
produced in this system for suitable choices of parameters,
including one-dimensional standing waves~‘‘stripes’’ !,
squares, hexagons, and triangles. Octagonal and dodecagonal
quasicrystalline patterns~‘‘quasipatterns’’!, which lack strict
translational periodicity, have also recently been reported
@1–4#. In addition, the formation and propagation of defects
in these patterns can be easily studied, as can the develop-
ment of spatiotemporally chaotic patterns~for a review, see
@5#!.

Some of these patterns, including the hexagonal and
dodecagonal patterns shown in Fig. 1, are most readily pro-
duced by generalizing the conventional sinusoidal forcing to
a mixture of two frequencies. An explanation for this effect
in terms of the breaking of the subharmonic symmetry of the
induced waves was given by Edwards and Fauve@4#. How-
ever, to develop a more complete theory of the quasipatterns,
it is desirable to have a quantitative understanding of the
linear stability problem with multiple frequency forcing,
which is the subject of this paper. We note that Mu¨ller’s
observation of regular triangles@6# also resulted from two-
frequency forcing.

We first extend the stability analysis of Kumar and Tuck-
erman@7# to the case of two-frequency forcing. The effects
of viscosity and finite depth are treated exactly for layers of
infinite lateral extent. We then describe a set of precise ex-
periments yielding quantitative tests of the two-frequency
theory to within 2%~for stability thresholds! for three fluids
with kinematic viscositiesn in the range 10–50 cS~1 cS
50.01 cm2/s!. We also test the stability theory for single-
frequency forcing more precisely than measurements previ-

ously reported. Since the effects of viscous damping are
subtle, the improved precision is important to a quantitative
understanding.

For single-frequency forcing, there is substantial litera-
ture. We refer the reader to@8# for a review and bibliography
of previous theoretical and experimental work.~Our experi-
mental results will be compared to those of Ref.@8# in Sec.
V.! A two-frequency stability calculation was also recently
performed by Beyer and Friedrich@9#. No precise experi-
mental tests on two-frequency forcing have been previously
reported.

In contrast to low-viscosity, large-depth experiments such
as @2# and references therein and experiments at low aspect
ratio ~for a general review see@10#!, our study is concerned
with the case of a large aspect ratio, finite depth, and finite
viscosity.

II. THEORETICAL CONSIDERATIONS

We consider the linear stability of the interface between
two incompressible Newtonian fluidsj51,2. The lower fluid
j51 is a liquid layer of finite depthh. The upper layerj52
is air, of small but nonzero density, extending upward to
z5`. The hydrodynamic problem and the numerical method
for its solution are discussed at some length in@7#; here we
summarize the main points.

Elimination of the pressure in the linearized Navier-
Stokes equations leads to

~] t2n j¹
2!¹2wj50, ~2.1!

wherewj (x,y,z,t) andn j are the vertical velocity and kine-
matic viscosity, respectively, in each fluid layerj51,2. In a
reference frame that oscillates vertically with the container
and whose originz50 coincides with the flat interface, the
boundary conditions are

wj5]zwj50 at z52h,`. ~2.2!

The interface position isz5z(x,y,t) and is advected by
the fluid

] tz5w. ~2.3!

~Horizontal advection is nonlinear and is therefore omitted.!*Electronic address: laurette@limsi.fr
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Several conditions must be imposed at the interface. Con-
tinuity of velocity and of tangential stress imply that

Dw5D]zw50, ~2.4a!

Drn~¹H
2 2]zz!w50, ~2.4b!

where¹ H
2 is the horizontal Laplacian,r is the density, andD

denotes the difference in the given quantity across the inter-
face ~e.g.,Drn]zzw[r2n2]zzw2uz5z2r1n1]zzw1uz5z!.

Curvature of the interface yields a normal stress disconti-
nuity of 2s¹ H

2 z, wheres is the surface tension. The total
balance of forces normal to the interface is

Dr@] t2n~3¹H
2 1]zz!#]zw5Dr@g1 f ~ t !#¹H

2 z1s¹H
4 z,

~2.4c!

whereg[980.665 cm/s2 is the usual gravitational accelera-
tion and f (t) is its effective modulation by the imposed ver-

tical oscillation. @Although the full hydrodynamic problem
would require the interface conditions~2.4a!–~2.4c! to be
applied atz5z(x,y,t), linearization justifies the more trac-
table use ofz50.#

The linear system~2.1–2.4! is homogeneous in the hori-
zontal directions and periodic in time. With the assumption
of boundedness~as x,y→6`!, the solutions are of the
Floquet-Fourier form

wj~x,y,z,t !5sin~kxx1kyy!e~m1 ia!t(
n

wjn~z!einvt1c.c.,

~2.5a!

z~x,y,t !5sin~kxx1kyy!e~m1 ia!t(
n

zne
invt1c.c.,

~2.5b!

where 2p/v is the period of the vertical accelerationf (t),
k5Akx21ky

2 is the horizontal wave number, andm1 ia is the
Floquet exponent, with 0<a<v/2. Thez dependence ofw is
determined by substituting~2.5a! into ~2.1!:

wjn~z!5ajne
kz1bjne

2kz1cjne
qjnz1djne

2qjnz,
~2.6a!

where

qjn
2 [k21

m1 i ~a1nv!

n j
. ~2.6b!

Equations~2.2! and ~2.3!, which do not couple the different
temporal Fourier components, allow the four coefficients in
~2.6a! to be expressed in terms ofzn .

The remaining equation~2.4c! can then be written as

Anzn52@ f z#n , ~2.7!

whereAn is an algebraic function of the physical parameters
andm,a,k and [f z] n is the nth Fourier component of the
product of f (t) and (n8zn8e

in8vt. With the two-frequency
vertical acceleration given by

f ~ t !5a@cos~x!cos~mvt !1sin~x!cos~ lvt1f!#,
~2.8!

we have

@ f z#n5
a

2
@cos~x!~zn2m1zn1m!

1sin~x!~eifzn2 l1e2 ifzn1 l !#, ~2.9!

with appropriate modifications to ensure thatz is real and is
represented by a truncated Fourier series in~2.5b!. Equation
~2.7! can therefore be written as

Aẑ5aBẑ, ~2.10!

whereẑ is the vector of temporal Fourier coefficientszn , A
is the diagonal matrix ofAn , andB is a banded matrix con-
taining ~in the present case of two-frequency forcing! four
super- and subdiagonals.@Beyer and Friedrich@9# derive an
equation equivalent to~2.10!, using an integro-differential
equation forz.# With A or B invertible, Eq.~2.10! constitutes

FIG. 1. ~a! Hexagonal and~b! dodecagonal patterns produced
somewhat beyond the critical acceleration for two-frequency forc-
ing. Parameter values leading to these states are given in Ref.@4#.
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an eigenvalue problem for the forcing amplitudea and can
be solved by calling a standard subroutine, in this caseRG
from EISPACK. At most 20 temporal Fourier coefficients suf-
fice to resolveẑ for typical calculations such as (m,l )5(4,5)
anda<30g.

With fixed physical parameters, the solution of~2.10!
yields a set of amplitudesa that depend onm, a, andk. To
obtain marginal stability curves, we fixk and a, set the
growth ratem to 0, and select the smallest real positivea
obtained. We find that setting the imaginary parta of the
Floquet exponent to any value other than 0 andv/2 yields
only physically unrealizable complex values ofa, indicating
that the time dependence of the marginal modes is always
either harmonic~a50! or subharmonic~a5v/2!. ~We have
not determined rigorously that this is true in all cases.!

Figure 2 presents marginal stability curves in the (k,a)
plane for selected values of the mixing anglex of ~2.8! with
(m,l )5(4,5). The curves delineate tongues, inside of which
the growth ratem is positive. We wish to understand how the
structure of these tongues evolves asx varies from 0° to 90°,
i.e., as one interpolates between pure 4v and pure 5v forc-
ing.

To understand Fig. 2, it is helpful to recall the undamped,
single-frequency case, in which the equation governing the
interface between two ideal fluids forced at the single angu-
lar frequencyv reduces to the classic undamped Mathieu
equation@11#. One finds tongues in the (k,a) plane extend-
ing down toa50. As a→0, the temporal response within
each tongue approachesz;cos[(n/2)vt], wheren51,2,...
indexes the tongues ask increases. Thus subharmonic~n
odd! tongues alternate with harmonic~n even! tongues. For
a finite, z contains a mixture of frequencies that are either all
odd multiples ofv/2, for a subharmonic tongue, or all even,
for a harmonic tongue. The tongues widen witha, the
boundary of one tongue becoming nearly tangent to that of
the next asa→`.

For fixed values of (k,a), there are only two Floquet ex-
ponents, and their sum is zero because the system is nondis-
sipative. On the tongue boundaries, the real partm and the
imaginary parta of both Floquet exponents vanish. Inside
the tongues, the exponents are real and of equal magnitude
and opposite sign, whereas outside the tongues, the two ex-
ponents form a complex conjugate imaginary pair. This is
best understood in terms of the Floquet multipliers, defined
as exp[(m1 ia)(2p/v)], which are real or a complex con-
jugate pair and whose product is one. Let us consider the
behavior of the multipliers for some fixed finitea as k is
varied. As a subharmonic tongue is encountered, the multi-
pliers, both initially21, travel in opposite directions along
the real axis, but eventually reverse directions to meet again
at21 as the tongue is exited. Between tongues, the multipli-
ers become complex and travel in opposite directions along
the unit circle, coalescing at11 when a harmonic tongue is
entered. They travel in opposite directions along the real axis
as the harmonic tongue is traversed, returning to11 as the
tongue is exited. They then travel along the unit circle to21,
where a new subharmonic tongue is entered and the whole
process repeats.

With the inclusion of viscosity in the hydrodynamic equa-
tions or of damping in the Mathieu equation, the tongues
become rounded, as can be seen in Fig. 2, or in more detail
in @7# and in @8#. Their minima are no longer ata50; the
lowest minimum defines the critical amplitude and wave
number. The critical tongue is usually that corresponding to
the lowestk and is subharmonic.~An exception to this rule
has recently been discovered by Kumar@12# for very shallow
or very viscous fluid layers.! Damping decreasesm(k,a) so
that the curves on which the Floquet multipliers become
complex no longer coincide with the tongue boundaries, but
are located outside the tongues, wherem,0, as can be seen
in @9#. For the hydrodynamic problem, there is a countable
infinity of Floquet multipliers for each (k,a) pair.

Returning to Fig. 2, the casex50 shows the instability
tongues for a viscous~n520 cS! fluid layer forced at the
single frequency 4v. The tongues can be labeled as corre-
sponding roughly to 2v,4v, . . . ~their temporal responses
would approach these pure frequencies asn was decreased!.
Thus, although the tongues follow the classic alternation be-
tween subharmonic and harmonic with respect to the period
2p/4v, they are all harmonic with respect to the period 2p/v
of the two-frequency functional form~2.8!. The critical wave
number is k158.15 cm21 and the critical amplitude
a151.62g.

FIG. 2. Stability tongues for a 20-cS fluid~PS039.5 of Table I!
layer of depthh50.3 cm for two-frequency forcing of the form
f (t)5a@cos~x!cos(mvt)1sin~x!cos(lvt1f)#, with (m,l )5(4,5),
4v/2p544 Hz, andf50°. Solid ~dashed! curves correspond to a
temporal response that is harmonic~subharmonic! with respect to
the period 2p/v. Dots represent critical wave numbers and ampli-
tudes. The amplitude mixing anglex50° corresponds to pure 4v
forcing. At x525°, another system of narrow tongues has de-
scended from higha. Intermediate valuesx530°,40°,45°,50°,55°
depict a complicated process involving the appearance of ‘‘islands’’
and their growth into tongues. At the bicritical valuex560°, two
wave numbersk2510.05 cm21 andk157.76 cm21 share the same
critical amplitudea52.70g. At x580°, narrow tongues retreat to
high a. The valuex590° corresponds to pure 5v forcing.
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Increasingx corresponds to adding an increasing compo-
nent of cos(5vt1f) in the forcing function~2.8!. New sets
of three narrow tongues—subharmonic, harmonic, and
subharmonic—descend from higha, between each pair of
the original~harmonic! single-frequency tongues, as seen for
x525°. Some of the tongues are so narrow that they cannot
be seen on the scale of Fig. 2. As a general guide, harmonic
and subharmonic tongues alternate—a structure inherited
from the single-frequency case—but only for sufficiently
high a.

The sequence ofx values from 30° to 55° depicts a curi-
ous and complicated phenomenon. Newm50 curves appear,
but the regions they delineate cannot all be classified as
tongues, since they do not extend to arbitrarily higha. In-
stead, some are ‘‘islands’’ that occupy a finite range ofa.
One prominent island is adjacent to the largest harmonic
tongue and is itself subharmonic. This island widens ink and
elongates ina asx is further increased, eventually merging
with a subharmonic tongue that exists at highera. By
x559.5°, the island turned tongue has a minimum whose
amplitude coincides with that of the harmonic tongue. This is
the bicritical point at whicha15a252.70g; the corre-
sponding critical wave numbers arek157.76 cm21 and
k2510.05 cm21.

The valuex580° shows the reversal of the phenomenon
seen forx near 0: sets of very narrow tongues retreat to high
a. At x590° there remains the regular alternating sequence
of subharmonic and harmonic tongues corresponding to forc-
ing at the pure frequency 5v, with k259.86 cm21 and
a252.32g.

III. EXPERIMENTAL APPARATUS AND METHODS

A. Mechanical system and fluids

The apparatus is shown in Fig. 3. A circular container
filled with a thin layer of silicone oil is mechanically coupled
to a computer controlled electromagnetic vibrator and the
induced wave patterns are visualized by reflected light. This
system has several unique features: large aspect ratio~more
than 100 wavelengths!; high achievable accelerations~up to
15g!; precise computer control of the exciting wave form,
including the amplitudes and the relative phases of the vari-
ous frequency components; and automated determination of
stability boundaries. A detailed description follows.

Silicone oils were used for these experiments because of
their relatively low surface tension, which yields high wave
numbers at a given frequency; and stable viscosity and sur-
face tension over long periods of time. In comparison to
water, surface contamination is not a problem. Viscosities
are determined using a falling ball viscometer to an accuracy
of 62%. The density and surface tension are provided by the
manufacturer to an accuracy of better than61%. The various
fluid parameters are shown in Table I.

The diameter of the fluid container~32 cm! is sufficient to
achieve aspect ratios~diameter to wavelength! up to 100. It
is machined from a solid piece of aluminum 1.4 cm thick
that is bolted to a Delrin temperature control plate. This con-
tainer assembly is attached to an electromagnetic vibrator
~Vibration Test Systems VTS-500! that generates peak
forces up to 2200 N. The maximum acceleration (21g) is
determined by the mass~10.7 kg! of the container assembly;

sustained operation is possible only to 15g due to overheat-
ing of the power amplifier. Flexing of the container is elimi-
nated by its thickness and conical shape and by the structure
of the brace and the use of two bolt circles. Though the
container is rigid, there remains some inhomogeneity of ac-
celeration~about 2–5 % across the surface of the container!
due to horizontal motion within the vibrator.

The container is designed to minimize the formation of
meniscus waves by filling the fluid to the top of a ledge
machined into the sidewall~cf. Refs.@13,14,8#!. The depth of
the fluid layer is 0.3 cm in all cases. The fluid is maintained
at 25.0~60.1! °C by circulating bath water through the tem-
perature control plate. The container is enclosed in a glass
and Plexiglas box to prevent contamination of the surface.

B. Wave-form generation and control

The vibrator is driven in real time by a computer gener-
ated wave form composed of two frequencies

FIG. 3. Apparatus and visualization.~a! Camera.~b! Circular
ring of 58 incandescent lights.~c! Silicone oil fluid layer, 0.3 cm
deep.~d! Anodized aluminum container, 32 cm diameter, 1.4 cm
thick. ~e! Temperature control plate.~f! Aluminum brace.~g! Piezo-
electric accelerometer.~h! Standoffs, 1 in. diameter, mounted on
vibrator; four of eight are shown.

TABLE I. Fluid parameters. Experimental working fluids are
commercial silicone oils~products of United Chemical Technolo-
gies! at 25 °C. Viscosity values are obtained from falling-ball vis-
cometer measurements. Density and surface tension values are the
manufacturer’s specifications.

Product n ~cS! s ~dyn/cm! r ~g/cm3!

PS039 10.0460.3 20.1 0.935
PS039.5 20.960.5 20.6 0.950
PS040 51.961.3 20.8 0.960
PS041 98.961.3 20.9 0.966
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f ~ t !5a@cos~x!cos~mvt !1sin~x!cos~ lvt1f!#,
~3.1!

wherex is known as the mixing angle. This wave form is
converted to an analog signal~by a National Instruments
AT-MIO-16X interface board! and is amplified by a Vibra-
tion Test Systems PA1200 power amplifier that drives the
electromagnetic vibrator. The resulting acceleration is mea-
sured simultaneously using a piezoelectric accelerometer
~Wilcoxon 726T!, whose output is Fourier analyzed by the
computer. The amplitudes and phases of the two spectral
components of the accelerometer signal are compared to
those in the desired wave form and the driving wave form is
updated approximately once per second. The control is linear
in the sense that each spectral component is updated on the
basis of the measured amplitude and phase of that compo-
nent. The feedback removes amplitude and phase errors due
to the power amplifier and vibrator. Residual fluctuations in
the acceleration are about60.002g ~about 0.1% typically!.
The accelerometer was independently calibrated to60.5%
using optical interferometry.

C. Visualization

Patterns are visualized by reflecting light from the surface
of the fluid. The light originates from an annulus~inner ra-
diusRi547 cm, outer radiusRo552 cm! of 58 incandescent
flashlight bulbs~see Fig. 3!. Since the annulus produces axi-
symmetric lighting, this visualization technique does not fa-
vor any direction in the pattern. The distance between the
camera, located at the center of the annulus, and the con-
tainer isL53.40 m. Finite surface slopes~in the range 4.2°
60.2°! reflect light to the camera. The anodized aluminum
container provides a black background.

The 5123512 square-pixel charge coupled device camera
~Dalsa CA-D2-0512! is equipped with a ferroelectric liquid
crystal shutter~Displaytech VS2200!. It is interfaced to the
computer via a fast frame-grabber card~Bitflow Data Rap-

tor!. Shutter timing is synchronized with the wave-form gen-
eration. Typically, the exposure time is one full period of the
forcing; shorter exposures~down to 1 ms! are also used.

D. Threshold measurement procedure

The measurement of stability thresholds is performed au-
tomatically by the controlling computer. The protocol is to
fix all parameters expect the overall acceleration amplitudea
of ~3.1!. As the acceleration is increased to destabilize the
flat surface, the computer monitors the video image, measur-
ing the intensity of light reflected from the fluid surface at
the center of the container. If a change of light intensity is
observed in a~0.4-cm!2 region~i.e., if a pattern has formed!,
the acceleration is recorded and the independent variable,
either the mixing angle~for two-frequency measurements! or
the frequency~for single-frequency measurements! is incre-
mented. Otherwise, the acceleration is increased by 0.002g
and the reflected light intensity is measured again after ap-
proximately 15 s. This interval is sufficient to eliminate
threshold errors due to instability delay to within 0.1%.

IV. EXPERIMENTAL RESULTS

A. Sources of error

The most important source of uncertainty in the experi-
mental parameters is related to the viscosity, which was mea-
sured to within62%. Using the linear stability analysis and
numerical code of Sec. II, we found that a 1% variation in
viscosity results approximately in a 1% variation in the com-
puted threshold. Uncertainty in the surface tension and den-
sity does not contribute significantly to uncertainty in com-
puted threshold.

Inhomogeneity of vibration combined with the subcritical
nature of the instability can result in underestimation of the
true linear stability threshold, as we now explain. The pattern
typically forms on one side of the container because of the
2–5 % inhomogeneity of vibration and grows towards the
opposite edge as the forcing acceleration is increased. Fur-
thermore, as observed by Edwards and Fauve@4#, a hyster-
esis band exists for 38°<x<70° for two-frequency forcing.
At the bicritical point, depending on the nature of the forc-
ing, the width of the hysteresis band can be as large as 5%.
The combination of these factors causes the computer to
record thresholds that are low by approximately 1–2.5 %.
~That is, the detected pattern is actually due to an instability
at a different location, where the excitation amplitude is
larger.! Data points for which hysteresis causes the pattern to
grow all the way to the center immediately after a pattern has
formed at the edge of the container are denoted by triangles
in Figs. 5–7.

A systematic error in threshold measurement could result
from the finite surface slope necessary to reflect light into the
camera. However, we checked by direct observation and
found that this error is less 0.1% in all cases.

Accelerations measured by the accelerometer attached to
the vibrator ~see Fig. 3! were found to be systematically
higher, by 0.4–0.9 %, than that at the center of the vibrating
cell. All measurements were corrected for this error.

B. Results

Threshold measurements for single-frequency forcing are
shown in Fig. 4 for various viscosities. The theoretical

FIG. 4. Stability boundaries for single-frequency forcing. Four
sets of theoretical~solid lines! and experimental~dots! results are
shown for the four kinematic viscosities 10, 20, 50, and 100 cS.
~See Table I.! Multiple experimental data sets are superposed.
Quantitative agreement is excellent at low frequencies. A discrep-
ancy is apparent for frequencies above about 120 Hz.
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curves were obtained using the numerical code of Sec. II and
Ref. @7#; there are no adjustable parameters. To show the
degree of reproducibility of the experimental measurements,
multiple data runs are shown.

Threshold measurements for two-frequency forcing are
shown in Figs. 5, 6, and 7 for the frequency pairs~2v,3v!,
~4v,5v!, and ~6v,7v!, respectively. All use the lower
‘‘base’’ frequencymv/2p[44 Hz. The horizontal and ver-
tical coordinate axes correspond to the amplitudes of the im-

posed accelerations at the lower and higher frequencies, re-
spectively. The theoretical curves are the critical amplitudes
obtained using the Kumar-Tuckerman code.~The 20-cS
theoretical curves of Fig. 6 are the tongue minima whose
evolution was presented in detail in Fig. 2.! Each experimen-
tal data point shown corresponds to the average of three in-
dependent measurements and is reproducible to approxi-
mately 0.5%.

V. DISCUSSION AND CONCLUSIONS

For single-frequency forcing, we find quantitative agree-
ment with the theoretical calculations to within about 2%,
except at frequencies above about 120 Hz. We emphasize
that there are no adjustable parameters. Our results extend
those of Bechhoeferet al. @8# in the following respects:~a!
the large aspect ratio of the present experiments allows lat-
eral boundaries to be neglected to within the stated precision;
~b! our measurements include fluids with different viscosi-
ties; ~c! the measurements are extended to somewhat higher
frequencies. For high frequencies, the theory overestimates
the threshold by about 5%.

We speculate that the discrepancy at high frequencies
could result from physical effects that are not included in the
hydrodynamic description, for example, surface viscosity,
compressibility, or viscoelastic effects. It is also possible that
the numerical method fails to accurately solve the linear
eigenproblem when the values ofqjn in Eq. ~2.6! are such
thatqjnh@1, even thoughkh;1. This is true for alln when
v/(n/h2) is large. Physically, the wave numberq11 is asso-
ciated with boundary layers at the interface and on the con-
tainer bottom, which can be much thinner than the fluid
depthh. The discrepancy could also be due to mechanical
imperfections of the experiment.

For two-frequency forcing atmv/2p544 Hz, we find
excellent agreement for the entire stability boundary. Our
results establish that for a finite-depth viscous layer, linear
theory~including damping due to bulk viscosity, the bound-
ary layer at the container bottom, and the shear layer at the

FIG. 5. Stability boundaries for forcing with two frequencies
~2v,3v! and phase anglef50°. Herea cos~x! anda sin~x! are the
acceleration amplitudes at 2v,3v, respectively.~2v/2p544 Hz;
n510, 20, and 50 cS.! Solid lines are theoretical predictions. Circles
and triangles are experimental data. The62% error bar on the
theoretical predictions is due to the 2% accuracy of our viscosity
measurements. The62% error bar on the experimental data is an
accumulation of errors explained in the text. Triangles denote ex-
perimental data points that are affected by the existence of hyster-
esis as described in Sec. IV A.

FIG. 6. Stability boundaries for~4v,5v! forcing, 4v/2p544 Hz,
f50°. Symbols are the same as in Fig. 5. The 20-cS theoretical
curves are the tongue minima shown in Fig. 2.

FIG. 7. Stability boundaries for~6v,7v! forcing, 6v/2p544 Hz,
f50°. Symbols are the same as in Fig. 5.
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free surface! correctly predicts critical accelerations to ex-
perimental accuracy. Thus we are justified in ignoring side-
wall boundaries. Also, effects due to possible contamination
of the surface do not seem to be significant. Therefore, at
least for low to moderate frequencies, all of the important
physics is included in the stability calculations and subse-
quent efforts to understand the exotic patterns above onset
can proceed from a firm foundation, at least for low to mod-
erate frequencies.
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