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Two-frequency parametric excitation of surface waves
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Threshold accelerations necessary to excite surface waves parametrically in a vertically vibrated fluid layer
are presented and compared with a linear stability analysis of the full hydrodynamic equations. The effects of
viscosity and finite depth are treated rigorously. The case of two-frequency forcing is considered in detail
because of its relevance to recently reported pattern forming phenomena. Absolute agreement between theory
and experiment, generally to within 2%, is obtained for kinematic viscosities in the range 105053
cn?/s) and three frequency ratios. A slight discrepancy is noted for single-frequency forcing at high frequen-
cies.[S1063-651X96)07807-9

PACS numbes): 47.35+i, 47.20.Ky

I. INTRODUCTION ously reported. Since the effects of viscous damping are
subtle, the improved precision is important to a quantitative
The Faraday instability, produced by vertical oscillation Understanding.

vides an excellent context in which to explore a variety oftUre- We refer the reader [8] for a review and bibliography

issues related to nonlinear pattern formation. Many of theOf previous theoretical and experimental wof@ur experi-

regular patterns that are possible in two dimensions can mental results will be compared to those of Réf in Sec.
9 P P .) A two-frequency stability calculation was also recently

produced in this system for suitable choices of parameter%erformed by Beyer and Friedridl9]. No precise experi-

including one-dimensional standing waveSstripes”),  mental tests on two-frequency forcing have been previously
squares, hexagons, and triangles. Octagonal and dodecagopgported.

quasicrystalline patterngquasipatterns’), which lack strict In contrast to low-viscosity, large-depth experiments such
translational periodicity, have also recently been reporteds[2] and references therein and experiments at low aspect
[1-4]. In addition, the formation and propagation of defectsratio (for a general review sgfd0]), our study is concerned
in these patterns can be easily studied, as can the developith the case of a large aspect ratio, finite depth, and finite
ment of spatiotemporally chaotic pattertisr a review, see VISCOSIty.
[5D.

Some of these patterns, including the hexagonal and Il. THEORETICAL CONSIDERATIONS
dodecagonal patterns shown in Fig. 1, are most readily pro- We consider the linear stability of the interface between
duced by generalizing the conventional sinusoidal forcing tdwo incompressible Newtonian fluigs=1,2. The lower fluid
a mixture of two frequencies. An explanation for this effectj=1 is a liquid layer of finite depth. The upper layej=2
in terms of the breaking of the subharmonic symmetry of thés air, of small but nonzero density, extending upward to
induced waves was given by Edwards and Fa#leHow-  z=c. The hydrodynamic problem and the numerical method
ever, to develop a more complete theory of the quasipattern&r its solution are discussed at some lengthiah here we
it is desirable to have a quantitative understanding of théummarize the main points. _ ) _ )
linear stability problem with multiple frequency forcing, _ Elimination of the pressure in the linearized Navier-
which is the subject of this paper. We note thaflldus ~ Stokes equations leads to
observation of_ regular triangld$§] also resulted from two- (8,— VjVZ)VZWJ-:O, 2.
frequency forcing.

We first extend the stability analysis of Kumar and Tuck-wherew;(x,y,z,t) and»; are the vertical velocity and kine-
erman[7] to the case of two-frequency forcing. The effects matic viscosity, respectively, in each fluid layjer 1,2. In a
of viscosity and finite depth are treated exactly for layers offeference frame that oscillates vertically with the container
infinite lateral extent. We then describe a set of precise ex@nd whose origire=0 coincides with the flat interface, the
periments yielding quantitative tests of the two-frequencyPoundary conditions are
th.eory_ to within 2%(fo_r _stability thresholdsfor three fluids wj=dw;=0 atz=—h,. 2.2
with kinematic viscositiesr in the range 10-50 c$%l cS
=0.01 cnf/s). We also test the stability theory for single-  The interface position ig={(x,y,t) and is advected by
frequency forcing more precisely than measurements previhe fluid

h{=Ww. (2.3

*Electronic address: laurette@limsi.fr (Horizontal advection is nonlinear and is therefore omiited.

1063-651X/96/541)/507(7)/$10.00 54 507 © 1996 The American Physical Society



508 BESSON, EDWARDS, AND TUCKERMAN 54

tical oscillation.[Although the full hydrodynamic problem
would require the interface condition®.49—(2.49 to be
applied atz= {(x,y,t), linearization justifies the more trac-
table use oz=0.]

The linear systent2.1-2.4 is homogeneous in the hori-
zontal directions and periodic in time. With the assumption
of boundednesgas x,y— *), the solutions are of the
Floquet-Fourier form

w(X,Y,2,t) = sin(kx+ kyy) e O w (z)eMet+c.c.,
n
(2.59

L%,y D) =sin(kx+ kyy)e# oty £ elnetycc,
n
(2.5b

where 27/w is the period of the vertical acceleratidi(t),
k= K+ ky2 is the horizontal wave number, apgdti « is the
Floquet exponent, withQa<w/2. Thez dependence ok is
determined by substituting?.53 into (2.1):

Win(2) = aj,€"%+ bj,e %+ ¢ e%n?+ dj e~ %inZ,
(2.639

where

+i(a+nw
o2, =k2+ prifatno) (2.6b
v
Equations(2.2) and(2.3), which do not couple the different
temporal Fourier components, allow the four coefficients in
(2.6a to be expressed in terms ¢f .

The remaining equatiof2.4¢ can then be written as

Andn=2[f{]n, 2.7

whereA,, is an algebraic function of the physical parameters

and u,a,k and [f{], is the nth Fourier component of the

product of f(t) and Enrgn,e‘”""t. With the two-frequency
FIG. 1. (a) Hexagonal andb) dodecagonal patterns produced vertical acceleration given by

somewhat beyond the critical acceleration for two-frequency forc-

ing. Parameter values leading to these states are given if4ef. f(t)=a[coq x)cog mwt) +sin(y)cogl wt+ ¢)],
Several conditions must be imposed at the interface. Con- 9
tinuity of velocity and of tangential stress imply that we have
Aw=20=0, (2.49 (11— (605 X)(Ennt Znsm)
Apv(VZ—3d,)W=0, (2.4b +sin(x) (€%, +e )], (2.9

whereV { is the horizontal Laplaciam is the density, and  with appropriate modifications to ensure tigas real and is
denotes the difference in the given gquantity across the |nterrepresented by a truncated Fourier Serie@lﬁb)_ Equation

face (€.9.,Apvd, W=p,v30, Wal,— ;= p1v1d,MN1|,— ). (2.7) can therefore be written as
Curvature of the interface yields a normal stress disconti- R R
nuity of —a'V 3¢, whereo is the surface tension. The total A¢=aB¢, (2.10

balance of forces normal to the interface is - ) o
where{ is the vector of temporal Fourier coefficients, A

Ap[d— V(3vﬁ+ 9,0 ]9 Ww=Ap[g+ f(t)]vﬁ§+ Uvﬁg, is the diagonal matrix of,, and B is a banded matrix con-
(2.49 taining (in the present case of two-frequency forgirfgur
' super- and subdiagonal8eyer and Friedrici9] derive an
whereg=980.665 cm/is the usual gravitational accelera- equation equivalent t¢2.10), using an integro-differential
tion andf (t) is its effective modulation by the imposed ver- equation forZ.] With A or B invertible, Eq.(2.10 constitutes
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To understand Fig. 2, it is helpful to recall the undamped,
single-frequency case, in which the equation governing the
interface between two ideal fluids forced at the single angu-
lar frequencyw reduces to the classic undamped Mathieu
equation[11]. One finds tongues in th&a) plane extend-
ing down toa=0. As a—0, the temporal response within
each tongue approachés-cos[(n/2)wt], wheren=1,2,...
indexes the tongues ds increases. Thus subharmoric
odd) tongues alternate with harmonin ever) tongues. For
a finite, { contains a mixture of frequencies that are either all
odd multiples ofw/2, for a subharmonic tongue, or all even,
for a harmonic tongue. The tongues widen wih the
boundary of one tongue becoming nearly tangent to that of
the next a;a— .

For fixed values ofK,a), there are only two Floquet ex-
ponents, and their sum is zero because the system is nondis-
sipative. On the tongue boundaries, the real pagnd the
imaginary parta of both Floquet exponents vanish. Inside
the tongues, the exponents are real and of equal magnitude
and opposite sign, whereas outside the tongues, the two ex-
ponents form a complex conjugate imaginary pair. This is
best understood in terms of the Floquet multipliers, defined
as exp[+ia)(27/w)], which are real or a complex con-
jugate pair and whose product is one. Let us consider the
behavior of the multipliers for some fixed finiee ask is
varied. As a subharmonic tongue is encountered, the multi-
pliers, both initially —1, travel in opposite directions along
(1) = a[cos y)cosMat) +sin(y)cosl wt + ¢) ], with (m,1)=(4.5), the real axis, but evgntuqlly reverse directions to meet aga_in
4wl2m=44 Hz, andé=0°. Solid (dashedl curves correspond to a at —1 as the tongue is exited. Bet'ween tor_lgue's, th.e multipli-
temporal response that is harmorfzibharmonig with respect to €S become complex and travel in opposite directions along
the period Z/w. Dots represent critical wave numbers and ampli- the unit circle, coalescing at1 when a harmonic tongue is
tudes. The amplitude mixing angje=0° corresponds to purewt  €ntered. They travel in opposite directions along the real axis
forcing. At x=25°, another system of narrow tongues has de-2s the harmonic tongue is traversed, returning-toas the
scended from higha. Intermediate valueg=30°40°45°,50°,55° tongue is exited. They then travel along the unit circle-tb,
depict a complicated process involving the appearance of “islands'where a new subharmonic tongue is entered and the whole
and their growth into tongues. At the bicritical valye=60°, two process repeats.
wave numberk_ =10.05 cm * andk . =7.76 cm ! share the same With the inclusion of viscosity in the hydrodynamic equa-
critical amplitudea=2.70y. At y=80°, narrow tongues retreat to tions or of damping in the Mathieu equation, the tongues
high a. The valuex=90° corresponds to purewtforcing. become rounded, as can be seen in Fig. 2, or in more detail
in [7] and in[8]. Their minima are no longer a&=0; the
lowest minimum defines the critical amplitude and wave

from EISPACK. At most 20 temporal Fourier coefficients suf- "UMPer. The critical tongue is usually that corresponding to

fice to resolve’ for typical calculations such asn(1)= (4,5 the lowestk and is subharmoni¢An exception to this rule
anda<30g. ¢ P sl =(4.5) has recently been discovered by KurhB2] for very shallow

With fixed physical parameters, the solution .10 ~ OF very viscous fluid layers Damping decreases(k,a) so
yields a set of amplitudes that depend om, «, andk. To  that the curves on which the Floquet multipliers become
obtain marginal stability curves, we fik and «, set the complex no longer coincide with the tongue boundaries, but
growth ratex to 0, and select the smallest real positae are located outside the tongues, whar€0, as can be seen
obtained. We find that setting the imaginary parof the  in [9]. For the hydrodynamic problem, there is a countable
Floquet exponent to any value other than O awd yields infinity of Floquet multipliers for eachl,a) pair.
only physically unrealizable complex valuesafindicating Returning to Fig. 2, the casg=0 shows the instability
that the time dependence of the marginal modes is alway®ngues for a viscousr=20 c9S fluid layer forced at the
either harmonida=0) or subharmonida=w/2). (We have single frequency &. The tongues can be labeled as corre-
not determined rigorously that this is true in all cages. sponding roughly to @,4w, ... (their temporal responses

Figure 2 presents marginal stability curves in theal would approach these pure frequencies agas decreased
plane for selected values of the mixing anglef (2.8) with ~ Thus, although the tongues follow the classic alternation be-
(m,1)=(4,5). The curves delineate tongues, inside of whichtween subharmonic and harmonic with respect to the period
the growth rateu is positive. We wish to understand how the 27/4w, they are all harmonic with respect to the periad @
structure of these tongues evolvesyagries from 0° to 90°, of the two-frequency functional forrf2.8). The critical wave
i.e., as one interpolates between pute ahd pure & forc-  number is k,=8.15 cm® and the critical amplitude
ing. a,=1.6%.

FIG. 2. Stability tongues for a 20-cS flui@S039.5 of Table)l
layer of depthh=0.3 cm for two-frequency forcing of the form

an eigenvalue problem for the forcing amplitudeand can
be solved by calling a standard subroutine, in this case
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Increasingy corresponds to adding an increasing compo- (@)
nent of cos(wt+ ¢) in the forcing function(2.8). New sets
of three narrow tongues—subharmonic, harmonic, and O
subharmonic—descend from high between each pair of \
the original(harmonig single-frequency tongues, as seen for
x=25°. Some of the tongues are so narrow that they cannot ) /
be seen on the scale of Fig. 2. As a general guide, harmonic |
and subharmonic tongues alternate—a structure inherited
from the single-frequency case—but only for sufficiently
high a.

The sequence of values from 30° to 55° depicts a curi- \ '
ous and complicated phenomenon. NewO curves appear, L
but the regions they delineate cannot all be classified as (e () (¢ \
tongues, since they do not extend to arbitrarily highin- / /
stead, some are “islands” that occupy a finite rangeaof (=
One prominent island is adjacent to the largest harmonic

|
tongue and is itself subharmonic. This island widenk and (f)

L,
elongates ira as y is further increased, eventually merging ///gﬁg
with a subharmonic tongue that exists at higteer By (] T

x=59.5° the island turned tongue has a minimum whose I . |
amplitude coincides with that of the harmonic tongue. This is Vibrator

the bicritical point at whicha,=a_=2.70g; the corre-

sponding critical wave numbers ate,=7.76 cm! and
k_=10.05 cm™.

FIG. 3. Apparatus and visualizatiofe) Camera.(b) Circular
ring of 58 incandescent lightgc) Silicone oil fluid layer, 0.3 cm
The Va|ueX:80° shows the reversal of the phenomenondeep.(d) Anodized aluminum Container, 32 cm diameter, 1.4 cm
seen fory near 0: sets of very narrow tongues retreat to higthick. (6) Temperature control platéf) Aluminum brace(g) Piezo-

a. At y=90° there remains the regular alternating Sequencé_leCtr'C acceleromete(h) Standoffs, 1 in. diameter, mounted on
of subharmonic and harmonic tongues corresponding to forcZiprator; four of eight are shown.
ing at the pure frequencyd§ with k_=9.86 cm?® and
a_=2.32%.

sustained operation is possible only togl&ue to overheat-
ing of the power amplifier. Flexing of the container is elimi-
IIl. EXPERIMENTAL APPARATUS AND METHODS nated by its thickness and conical shape and by the structure
of the brace and the use of two bolt circles. Though the
container is rigid, there remains some inhomogeneity of ac-
The apparatus is shown in Fig. 3. A circular containerceleration(about 2—5 % across the surface of the container
filled with a thin layer of silicone oil is mechanically coupled due to horizontal motion within the vibrator.
to a computer controlled electromagnetic vibrator and the

A. Mechanical system and fluids

The container is designed to minimize the formation of
induced wave patterns are visualized by reflected light. Thigneniscus waves by filling the fluid to the top of a ledge
system has several unique features: large aspect(rabee ~ Machined into the sidewa(itf. Refs.[13,14,8). The depth of
than 100 wavelengthshigh achievable acceleratiofisp to the fluid layer is 0.3 cm in gll cases. The fluid is maintained
159); precise computer control of the exciting wave form, at 25.+0.1) °C by circulating bath water through the tem-
including the amplitudes and the relative phases of the variPerature control plate. The container is enclosed in a glass
ous frequency components; and automated determination &hd Plexiglas box to prevent contamination of the surface.
stability boundaries. A detailed description follows.

Silicone oils were used for these experiments because of B. Wave-form generation and control

their relatively I(_)W surface tension, which yiv_elds high wave  The vibrator is driven in real time by a computer gener-
numbers at a given frequen_cy; and ;table viscosity gind SUkted wave form composed of two frequencies

face tension over long periods of time. In comparison to
water, surface contamination is not a problem. Viscosities ] ) ] )

are determined using a falling ball viscometer to an accuracy 'ABLE I. Fluid parameters. Experimental working fluids are
of 2%. The density and surface tension are provided by th§2mmercial silicone oil¢products of United Chemical Technolo-
manufacturer to an accuracy of better that%. The various gies at 25 °C. Viscosity values_ are obtained from _falllng-ball vis-
fluid parameters are shown in Table I. cometer mea,sureme.n.ts. .DenS|ty and surface tension values are the
The diameter of the fluid contain€32 cm) is sufficient to manufacturer's specifications.

achieve aspect ratiggliameter to wavelengjrup to 100. It

is machined from a solid piece of aluminum 1.4 cm thickPrOdUCt v (9 o (dynfem p (glom)
that is bolted to a Delrin temperature control plate. This conS039 10.040.3 20.1 0.935
tainer assembly is attached to an electromagnetic vibratarS039.5 20.9+0.5 20.6 0.950

(Vibration Test Systems VTS-500that generates peak PS040 51.9+1.3 20.8 0.960
forces up to 2200 N. The maximum accelerationdRls  psp41 98.9+1.3 20.9 0.966
determined by the mag&0.7 kg of the container assembly;
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100 _ tor). Shutter timing is synchronized with the wave-form gen-
1 . ‘ i eration. Typically, the exposure time is one full period of the
ac (g) 100 ¢S = forcing; shorter exposurgglown to 1 m$ are also used.
| L4
10 AT (/’// D. Threshold measurement procedure

; “ "; : The measurement of stability thresholds is performed au-

T A =~ tomatically by the controlling computer. The protocol is to

j,/ - ¥l fix all parameters expect the overall acceleration amplitude
] 10 ¢S of (3.1). As the acceleration is increased to destabilize the

flat surface, the computer monitors the video image, measur-
ing the intensity of light reflected from the fluid surface at
the center of the container. If a change of light intensity is
observed in 40.4-cm? region(i.e., if a pattern has formed

0 100 200 the acceleration is recorded and the independent variable,
either the mixing angléfor two-frequency measuremepty

the frequency(for single-frequency measuremenis incre-
mented. Otherwise, the acceleration is increased by §.002
sets of theoreticafsolid lineg and experimentafdots results are g?gxitrzztﬁge%eds.“grrgi Smfﬁtn esrl\%dlsi smseli‘?ilg:gt E%[%algli%fitﬁ;tgp

shown for the four_klnematlc_wscosmes 10, 20, 50, and 100 Csthreshold errors due to instability delay to within 0.1%.
(See Table ). Multiple experimental data sets are superposed.

Quantitative agreement is excellent at low frequencies. A discrep-

0.1

2w /27 (Hz)

FIG. 4. Stability boundaries for single-frequency forcing. Four

ancy is apparent for frequencies above about 120 Hz. IV. EXPERIMENTAL RESULTS
A. Sources of error
f(t)=a[cog y)cog mwt) +sin( y)cogl wt+ ¢)], The most important source of uncertainty in the experi-

mental parameters is related to the viscosity, which was mea-

sured to within£2%. Using the linear stability analysis and
where y is known as the mixing angle. This wave form is numerical code of Sec. Il, we found that a 1% variation in
converted to an analog signéby a National Instruments viscosity results approximately in a 1% variation in the com-
AT-MIO-16X interface boargland is amplified by a Vibra- puted threshold. Uncertainty in the surface tension and den-
tion Test Systems PA1200 power amplifier that drives thesity does not contribute significantly to uncertainty in com-
electromagnetic vibrator. The resulting acceleration is meaputed threshold.
sured simultaneously using a piezoelectric accelerometer Inhomogeneity of vibration combined with the subcritical
(Wilcoxon 726T), whose output is Fourier analyzed by the nature of the instability can result in underestimation of the
computer. The amplitudes and phases of the two spectrdiue linear stability threshold, as we now explain. The pattern
components of the accelerometer signal are compared ttgpmally_ forms on one S|de_ of t_he container because of the
those in the desired wave form and the driving wave form is2—> % inhomogeneity of vibration and grows towards the
updated approximately once per second. The control is line pposite edge as the forcing acceleration is increased. Fur-
in the sense that each spectral component is updated on tHEMOre, as observed b)/<EdXvards and Fdulea hyster-
basis of the measured amplitude and phase of that comp Sis band exists for 38%<70" for two-frequency forcing.

nent. The feedback removes amplitude and phase errors d t the bicritical point, depending on the nature of the forc-
: o > amp ) P . . H?g, the width of the hysteresis band can be as large as 5%.
to the power amplifier and vibrator. Residual fluctuations i

n . .
. . The combination of these factors causes the computer to
the acceleration are abott0.002) (about 0.1% typically. P

X ; o record thresholds that are low by approximately 1-2.5 %.
The accelerometer was independently calibrated-@5%  (That s, the detected pattern is actually due to an instability
using optical interferometry.

at a different location, where the excitation amplitude is
larger) Data points for which hysteresis causes the pattern to
C. Visualization grow all the way to the center immediately after a pattern has
formed at the edge of the container are denoted by triangles
8 Figs. 5-7.

A systematic error in threshold measurement could result

. . . . from the finite surface slope necessary to reflect light into the
flashlight bulbs(see Fig. 3 Since the annulus produces axi- camera. However, we checked by direct observation and

symmetric lighting, this visualization technique does not fa'found that this error is less 0.1% in all cases

vor any cljlrecttlc()jn Itnt:]he pat;[ern. fT{Ee d'StaTce bet‘j"’?ﬁ” the A ccelerations measured by the accelerometer attached to
camera, locatéd at the center of the annuius, an € COW%e vibrator (see Fig. 3 were found to be systematically

tfme[, 'SL:3'4.O m. Finite surface slopgin th? range 4'.2° higher, by 0.4-0.9 %, than that at the center of the vibrating
£0.27) reflect light to the camera. The anodized alumlnumce"_ All measurements were corrected for this error.

container provides a black background.
The 512x512 square-pixel charge coupled device camera
(Dalsa CA-D2-0512is equipped with a ferroelectric liquid
crystal shutteDisplaytech VS220p It is interfaced to the Threshold measurements for single-frequency forcing are
computer via a fast frame-grabber cggitflow Data Rap- shown in Fig. 4 for various viscosities. The theoretical

Patterns are visualized by reflecting light from the surfac
of the fluid. The light originates from an annul@isner ra-
diusR;=47 cm, outer radiuR,=52 cm of 58 incandescent

B. Results
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5 . 5 4
asinx - a,sinX 4
0 ' 0 . L

0 acosy 5 0 acosx 5

FIG. 5. Stability boundaries for forcing with two frequencies  F|G. 7. Stability boundaries fdBw, 7w) forcing, 6w/2m=44 Hz,
(20,3w) and phase anglg=0°. Herea cogy) anda sin(y) are the  4—0°. Symbols are the same as in Fig. 5.
acceleration amplitudes atwBw, respectively.(2w/27=44 Hz;
v=10, 20, and 50 c$Solid lines are theoretical predictions. Circles . ) .
and triangles are experimental data. Th&% error bar on the POsed accelerations at the lower and higher frequencies, re-
theoretical predictions is due to the 2% accuracy of our viscositysPectively. The theoretical curves are the critical amplitudes
measurements. Th&2% error bar on the experimental data is an obtained using the Kumar-Tuckerman codd@he 20-cS
accumulation of errors explained in the text. Triangles denote extheoretical curves of Fig. 6 are the tongue minima whose
perimental data points that are affected by the existence of hysteevolution was presented in detail in Fig) Each experimen-
esis as described in Sec. IV A. tal data point shown corresponds to the average of three in-

dependent measurements and is reproducible to approxi-
curves were obtained using the numerical code of Sec. Il anghately 0.5%.
Ref. [7]; there are no adjustable parameters. To show the
degr_ee of reproducibility of the experimental measurements, V. DISCUSSION AND CONCLUSIONS
multiple data runs are shown.

Threshold measurements for two-frequency forcing are For single-frequency forcing, we find quantitative agree-
shown in Figs. 5, 6, and 7 for the frequency pa®,3w),  ment with the theoretical calculations to within about 2%,
(40,50), and (6w,7w), respectively. All use the lower except at frequencies above about 120 Hz. We emphasize
“base” frequencymw/2m=44 Hz. The horizontal and ver- that there are no adjustable parameters. Our results extend
tical coordinate axes correspond to the amplitudes of the imhose of Bechhoefeet al. [8] in the following respectsta)
the large aspect ratio of the present experiments allows lat-
eral boundaries to be neglected to within the stated precision;
(b) our measurements include fluids with different viscosi-
ties; (¢) the measurements are extended to somewhat higher
frequencies. For high frequencies, the theory overestimates
the threshold by about 5%.

We speculate that the discrepancy at high frequencies
4 could result from physical effects that are not included in the
hydrodynamic description, for example, surface viscosity,
. compressibility, or viscoelastic effects. It is also possible that
the numerical method fails to accurately solve the linear
. eigenproblem when the values qf, in Eqg. (2.6) are such
thatq;,h>1, even thougkh~1. This is true for alh when
. wl/(v/h?) is large. Physically, the wave numbey; is asso-
ciated with boundary layers at the interface and on the con-
7 tainer bottom, which can be much thinner than the fluid
depthh. The discrepancy could also be due to mechanical
imperfections of the experiment.

0 acos ) 5 For two-frequency forcing amw/27=44 Hz, we find
excellent agreement for the entire stability boundary. Our

FIG. 6. Stability boundaries fd#w,5w) forcing, 4w/2m=44 Hz,  results establish that for a finite-depth viscous layer, linear
¢=0°. Symbols are the same as in Fig. 5. The 20-cS theoreticdheory (including damping due to bulk viscosity, the bound-
curves are the tongue minima shown in Fig. 2. ary layer at the container bottom, and the shear layer at the
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