10346: Continuum Physics, spring 2002
Homework assignment 2: Collapsing and oscillating bubbles.

During the first world war Lord Rayleigh was approached by the English Navy. They
wanted him to solve the problem of cavitation, which is one of the major causes of
erosion of ship propellers. If a fluid locally experiences large (negative) pressures or
velocities, i.e. when it passes a sharp edge, it can “break” and form small voids,
cavities which will then very rapidly collapse. The collapse generates noise and large
pressures which can destroy solid bodies. This lead Lord Rayleigh to investigate the
process of collapse of a spherical bubble. Recently bubble dynamics has become a
very active field, because a gas-filled bubble can emit light when subjected to an
intense sound field (sonoluminescence). In fact, some people claim that it is possible
to obtain fusion in this way, and this has created a lot of publicity and controversy.

Imagine that a spherical cavity of radius R, is formed at time ¢ in an infinite, static
fluid. Assume first that the fluid is inviscid and incompressible and neglect surface
tension. The pressure of the fluid is py far away from the bubble and the desity is p.
We further assume that the bubble retains the spherical shape through the collapse
and that the velocity field is purely radial (with origin in the center of the bubble).

1. Use dimensional analysis to find an expression for the collapse time 7', assuming
that it only depends on Ry, py and p.

2. Let the bubble radius be R(¢). Show that the incompressibility of the flow
together with the fact that it is purely radial, allows us to express it as
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3. Use the Euler equation together with the condition that the pressure on the
surface of the cavity vanishes (since it is empty) to derive the equation of motion
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for R. Hint: integrate the Euler equation from r = R to r = oo.

4. Solve the equation of motion (2) numerically (say for py = 10° Pa and p = 10?
kg/m?). Plot R(t).

5. Solve (2) analytically. Use this to calculate the collaps time 7" and compare with
the result of question 1. Hint: You can try the following trick: regard the velocity
U = R as a function of R. More precisely, transform (2) by using the independent
variable y = In(R/R,) and the dependent variable f = U?.

6. At the collaps U(t) ~ t°. Determine s numerically and analytically.

We now include surface tension. Across an interface with principal radii of curvature
R; and R, there will be a pressure jump AP = «(1/R; + 1/R,) with increased



pressure inside the convex region. Here « is the coefficient of surface tension. For
water at room temprature « = 7.3 X 1072 N/m.

7. Show that surface tension changes the equation of motion to
RR+2(R2=-20 =2 (3)
Repeat questions 1-6 for this case.

Including viscosity, has two effects. It changes the Euler equations to the Navier-
Stokes equations and it changes the boundary conditions at the bubble.

8. Show that the first of these effects disappears for the case studied above, i.e. the
viscous term in the Navier-Stokes equation vanishes for the flow around a spherical
bubble.

We shall now imagine that the bubble is filled with an ideal gas of pressure p,. The
gas is assumed to be polytropic (see Lautrup, section 4.5) with index 7, and the
variations in the gas are assumed to be adiabatic. The gas will prevent the bubble
from collapsing completely, but forcing it with a time dependent pressure field can
make it oscillate. We assume that the acoustic wave field which traps the bubble
causes periodic pressure variations i.e. that the pressure far away from the bubble
has the form

Poo = Po — Pp sin(wpt) (4)

9. Show that the equation of motion now becomes
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Note that the only non-vanishing component of the stress tensor is o,, = —p+ 2/1%.

10. Even without the exciting sound field (i.e. with pp = 0) the bubble can perform
damped oscillations. Find the frequency wy and damping rate of small oscillations
with bubble radius around R;. Compute the numerical values for Ry = 5 x 10~%m.

11. Solve (5) numerically. Assume that the fluid is water and take v = 1.33 for
the gas in the bubble. Try Ry = 10 2m (although experimentally they are typically
alot smaller). Vary the driving frequency wp and the driving amplitude pp. Try
frequencies both above and below wy. Find periodic solutions R(t). Are they always
in phase with the driving pressure? Do they always have the same period as the
driving pressure? Can you find solutions that are not periodic. For pp around 1 Atm,
plot the temperature and pressure of the gas inside the bubble. Use dimensionless
variables and write the coefficients in terms of dimensionless numbers. Make a
complete list of such numbers, indicating their meaning and size. Motivate your
choices.

Due Tuesday, April 23 — Have fun!




