
Introduction to nonlinear dynamics and chaos
P Cvitanovi�c
Physics D60-0, Spring quarter 1999

Final exam
due 2:30 PM tuesday, June 8, 1999, Predrag's o�ce, Tech F332

1 The prelude

The only way to developed intuition about chaotic dynamics is by com-
puting, and you are urged to try to work through the essential steps in
this take-home exam, combining the techniques learned in the course with
whatever other explorations that seem of of interest to you. The exam is
a real-life example of how one uses general tools of nonlinear dynamics to
explore a real-life research problem. Here is Yueheng and he would like to
understand turbulence. How does he get started? The steps are:

1. a problem is posed and formulated - here as the approximate equation
(1) describing the dynamics of a ame front.

2. ways of reformulating the dynamics suited to numerical explorations
are explored. Here the Fourier representation (5) seems a good starting
point.

3. determine the �xed point(s)

4. compute the �xed point stabilities

5. explore the �xed point stabilities and the associated bifurcations as
system parameter(s) are varied

So far all work has been analytic, and Yueheng has some �ngertips feeling
for the topology of solutions and bifurcation sequences. This is all one can
extract from the problem by analysis not assisted by numerical experimen-
tation. Next,
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1. implement a numerical simulator for your problem

2. plot a variety of long orbits to get some sense for the attractors for
di�erent values of system parameters

3. �nd numerically stable cycles, if any

4. compute stable cycle stabilities (this might be too hard)

5. determine values of parameters for stable cycles ! unstable cycles
bifurcations (at least estimate by trial and error)

6. diagnose parameter values at which onset of chaos seems to be taking
place

7. �rm up your hunch by estimating by numerical simulation some chaos
diagnostic, like existence of a positive Lyapunov exponent (though this
might take too much time as part of the exam)

8. try to study such bifurcations in a Poincar�e section

9. perhaps compute the unstable cycle eigenvectors (this might be too
hard for this exam)

10. if a cycle is unstable, and you have succeeded in computing its unstable
eigenvector(s), attempt to trace out its unstable manifold by starting
with a set of points close to its Poincar�e section �xed point, sprinkled
along the unstable eigenvector

11. have a Carlsberg, perhaps the best beer in some parts of Copenhagen

In the exam tour guide that follows, I have indicated which steps are
exam questions, and which are optional. I do not expect you to get through
the whole length of the exam in the time allotted; do as much as feels right.

The list of references is appended only to amuse you, and none are needed
in order to get through the exam.

2 Hopf's last hope, or: Turbulence, and what to

do about it?

Hopf[1] and Spiegel[2, 3, 4] have proposed that the turbulence in spatially ex-
tended systems be described in terms of recurrent spatiotemporal patterns.
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Pictorially, dynamics drives a given spatially extended system through a
repertoire of unstable patterns; as we watch a turbulent system evolve, ev-
ery so often we catch a glimpse of a familiar pattern. For any �nite spatial
resolution, for a �nite time the system follows approximately a pattern be-
longing to a �nite alphabet of admissible patterns, and the long term dy-
namics can be thought of as a walk through the space of such patterns, just
as chaotic dynamics with a low dimensional attractor can be thought of as
a succession of nearly periodic (but unstable) motions.

In this exam we explore such ideas in a spatially extended system claimed
to describe the utter of the ame front of gas burning in a cylindrically
symmetric burner on your kitchen stove. Carrying out Hopf's program in
a systematic manner is an open research problem, far too di�cult as an
exam question. Here we are happy if in a few days of analysis we succeed in
simulating the system numerically, and develop some intuition about such
systems on the level of Strogatz's textbook: determine the �xed points,
stabilities, stability eigenvectors, bifurcations, onset of chaos.

3 Fluttering ame front

The Kuramoto-Sivashinsky equation[5, 6] is one of the simplest partial dif-
ferential equations that exhibits chaos. It is a dynamical system extended
in one spatial dimension, de�ned by

ut = (u2)x � uxx � �uxxxx : (1)

In this equation t � 0 is the time and x 2 [0; 2�] is the space coordinate.
The subscripts x and t denote the partial derivatives with respect to x and
t; ut = du=dt, uxxxx stands for 4th spatial derivative of the \height of the
ame front" u = u(x; t) at position x and time t. � is a \viscosity" damping
parameter; its role is to suppress solutions with fast spatial variations. The
term (u2)x makes this a nonlinear system.

How good description of a ame front this is need not concern us here;
su�ce it to say that such model amplitude equations for interfacial insta-
bilities arise in a variety of contexts - see e.g. reference [7] - and this one
is perhaps the simplest physically interesting spatially extended nonlinear
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system. The salient feature of such partial di�erential equations is that
for any �nite value of the phase-space contraction parameter � a theorem
says that the asymptotic dynamics is describable by a �nite set of \inertial
manifold" ordinary di�erential equations[8]. We shall verify by numerical
experimentation that even though u(x; t) is in principle in�nite dimensional
(it has a component for each spatial point x), the attractors are indeed of
�nite dimension.

The \ame front" u(x; t) = u(x + 2�; t) is periodic on the x 2 [0; 2�]
interval, so the standard strategy is to expand it in a discrete spatial Fourier
series:

u(x; t) =
+1X

k=�1

bk(t)e
ikx : (2)

Since u(x; t) is real,

bk = b�
�k : (3)

Show that substituting (2) into (1) yields the in�nite ladder of evolution Exam question

equations for the Fourier coe�cients bk:

_bk = (k2 � �k4)bk + ik
1X

m=�1

bmbk�m : (4)

As _b0 = 0, the solution integrated over space is constant in time. In what
follows we shall assume that this average is zero,

R
dxu(x; t) = 0.

The coe�cients bk are in general complex functions of time. We can
simplify the system (4) further by considering the case of bk pure imaginary,
bk = iak, where ak are real, with the evolution equations

_ak = (k2 � �k4)ak � k
1X

m=�1

amak�m : (5)

Argue that this picks out the subspace of odd solutions u(x; t) = �u(�x; t) Exam question
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(the optional reading in sect. 7 discusses this in more detail). Use (3) to
further simplify the tower of evolution equations.

How you solve the equations numerically is up to you. Here are some of
the options:

1. You can divide the x interval into a su�ciently �ne discrete grid of N
points, replace space derivatives (1) by approximate discrete deriva-
tives, and integrate a �nite set of �rst order di�erential equations for
the discretized spatial components uj(t) = u(2�j=N; t), by any inte-
gration routine you feel comfortable with.

2. You can integrate numerically the Fourier modes (5), truncating the
ladder of equations to a �nite length N , i.e., set ak = 0 for k >
N . In my experience, for this exploration N � 16 truncations were
su�ciently accurate.

3. If you happen to have such things handy, you can use more sophisti-
cated numerical methods, such as pseudo-spectral methods or implicit
methods. But that is much more sophisticated than what is expected
here.

If your integration takes days and gobbles up terabits of memory, you are
using some brain-damaged \high level" software. You should have written
a few lines of the Runge-Kuta code in some mundane everyday language.

In my own simulations, I have have determined the solutions in the space
of Fourier coe�cients, and then reconstituted from them the spatiotemporal
solutions of (1).

The trivial solution u(x; t) = 0 is a �xed point of (1).

Show that from (5) it follows that the jkj < 1=
p
� long wavelength Exam question

modes of this �xed point are linearly unstable, and the jkj > 1=
p
� short

wavelength modes are stable. For � > 1, u(x; t) = 0 is the globally attractive
stable �xed point, i.e., the dissipation is so strong that any ame front burns
out.

Starting with � = 1 the solutions go through a rich sequence of bifurca-
tions, studied e.g. in reference [7].
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What kind of bifurcation takes place as � > 1! � < 1? As � decreases, Exam question

are there any further bifurcations from the u(x; t) = 0 �xed point, and if so,
of what type?

Try to determine some further �xed points of (5); if any, discuss bifur- Optional

cations that lead to them, etc. (I have not checked myself in any signi�cant
detail what interesting �xed points are there beyond u(x; t) = 0, but there
is surely a whole zoo, so do not spend too much time on this.)

Detailed investigation of the parameter dependence of bifurcations se-
quences is too laborious for the time alloted; from here on we turn to nu-
merical experimentation. We shall take

p
� su�ciently small so that the

dynamics can be spatiotemporally chaotic, but not so small that we would
be overwhelmed by too many short wavelength modes needed in order to
accurately represent the dynamics.

My advice how to do such exploration: start on terra �rma, at � = 1,
low N , and decrease � a little bit, integrate until the trajectory has settled
down; then decrease � a little bit again, integrate until the trajectory has
settled down. Repeat. Stop incrementing � for a bit, increment N instead
and check how sensitive is your attarctor to truncation size. You will sail
thorugh a sequence of bifurcations and enter chaos, most likely via period-
doubling route. This \adiabatic" approach has advantage of (almost) always
starting you close to the attractor and avoids potentially long transients of
arbitrary starting conditions.

4 Fourier modes truncations

The growth of the unstable long wavelengths (low jkj) excites the short
wavelengths through the nonlinear term in (5). The excitations thus trans-
ferred are dissipated by the strongly damped short wavelengths, and a sort of
\chaotic equilibrium" can emerge. The very short wavelengths jkj � 1=

p
�

will remain small for all times, but the intermediate wavelengths of order
jkj � 1=

p
� will play an important role in maintaining the dynamical equi-

librium. Hence, while one may truncate the high modes in the expansion
(5), care has to be exercised to ensure that no modes essential to the dy-
namics are chopped away. In practice one does this by repeating the same
calculation at di�erent truncation cuto�s N , and making sure that inclusion
of additional modes has no e�ect within the accuracy desired.
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Figure 1: Projections of a typical 16-dimensional trajectory onto di�erent 3-
dimensional subspaces, coordinates (a) fa1; a2; a3g, (b) fa1; a2; a4g. N = 16
Fourier modes truncation with � = 0:029910.

When we simulate the equation (5) on a computer, we have to truncate
the ladder of equations to a �nite length N , i.e., set ak = 0 for k > N . N
has to be su�ciently large that no harmonics ak important for the dynamics
with k > N are truncated. On the other hand, computation time increases
with the increase of N .

For reasons that will be explained below, I have performed my numerical
calculations taking N = 16.

The problem with such high dimensional truncations of (5) is that the
dynamics is di�cult to visualize. Best we can do without much programming
is to examine trajectory's projections onto any three axes ai; aj ; ak.

Plot your trajectory for the same �, the same two or three axes as in Exam question

�gure 1; is your dynamics qualitatively the same as in my plots?

5 Poincar�e section
Optional

The question is how to look at such ow? Usually one of the �rst steps
in analysis of such ows is to restrict the dynamics to a Poincar�e section.
I �x (arbitrarily) the Poincar�e section to be the hyperplane a1 = 0, and
integrate (5) with the initial conditions a1 = 0, and arbitrary values of the
coordinates a2; : : : ; aN , where N is the truncation order. When a1 becomes
0 the next time, the coordinates a2; : : : ; aN are mapped into (a02; : : : a

0

N ) =
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Figure 2: The attractor of the system (5), plotted as the a6 component of
the a1 = 0 Poincar�e section return map, 10,000 Poincar�e section returns of
a typical trajectory. Indicated are the periodic points 0, 1 and 01. N = 16
Fourier modes truncation with � = 0:029910.
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P (a2; : : : ; aN ), where P is the Poincar�e mapping of a N � 1 dimensional
hyperplane into itself. Figure 2 is an example of a results that one gets.
While the topology of the attractor is still obscure, one thing is clear - as
claimed in the introduction, the attractor is �nite and thin, barely thicker
than a line.

6 Bifurcation trees
Optional

Provided we have �gured out how to generate numerically a Poincar�e sec-
tion, we can let computer run and do some numerical �shing on our behalf.
Figure 3 is a representative bifurcation diagram for the system at hand. To
obtain this �gure, we took a random initial point, iterated it for a some
time to let it settle on the attractor and then plotted the a6 coordinate of
the next 1000 intersections with the Poincar�e section. Repeating this for
di�erent values of the damping parameter �, one can obtain a picture of
the attractor as a function of �. For an intermediate range of values of �,
the dynamics exhibits a rich variety of behaviors, such as period-doubling,
strange attractors, stable limit cycles, and so on.

I have found that the minimum value of N to get any chaotic behavior
at all was N = 9.

Do you get any chaos for N < 9? Exam question

The dynamics for the N = 9 truncated system is rather di�erent from
the full system dynamics, and therefore I have performed all calculations
reported here for N = 16, which seemed a reasonable cuto�. Having been
there, done that, I recommend examining in particular two values of the
damping parameter: � = 0:029910, for which the system is chaotic, and
� = 0:029924, for which the system has a stable period-3 cycle.

Do you get a stable cycle for � = 0:029924? Exam question

7 Symmetry decomposition
Optional

Before proceeding with the calculations, we take into account the symme-
tries of the solutions. Consider the spatial ip and shift symmetry op-
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Figure 3: Period-doubling tree for coordinate a6, N = 16 Fourier modes
truncation of (5). The two upper arrows indicate the values of damping pa-
rameter that we use in our numerical investigations; � = 0:029910 (chaotic)
and � = 0:029924 (period-3 window). Truncation to N = 17 modes yields a
similar �gure, with values for speci�c bifurcation points shifted by � 10�5

with respect to the N = 16 values. The choice of the coordinate a6 is
arbitrary; projected down to any coordinate, the tree is qualitatively the
same.
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erations Ru(x) = u(�x), Su(x) = u(x + �). The latter symmetry re-
ects the invariance under the shift u(x; t) ! u(x + �; t), and is a particu-
lar case of the translational invariance of the Kuramoto-Sivashinsky equa-
tion (1). In the Fourier modes decomposition (5) this symmetry acts as
S : a2k ! a2k; a2k+1 ! �a2k+1. Relations R2 = S2 = 1 induce decomposi-
tion of the space of solutions into 4 invariant subspaces[7]; the restriction to
bk = iak that lead to simpli�ed set of equations (5) amounts to specializing
to a subspace of odd solutions u(x; t) = �u(�x; t).

Now, with the help of the symmetry S the whole attractor Atot can be
decomposed into two pieces: Atot = A0 [ SA0 for some set A0. It can
happen that the set A0 (the symmetrically decomposed attractor) can be
decomposed even further into four disjoint sets: Atot = A[SA[�A[�SA.

8 Strange interlude

You might have wondered why am I giving you values of the viscosity param-
eter � accurate to 5 signi�cant �gures, if all we want is to get a qualitative
feeling for the ame front utter?

The problem is that it is extremely hard to prove that an attractor
is chaotic. Adding an extra dimension to a truncation of the system (5)
introduces a small perturbation, and this can (and often will) throw the
system into a totally di�erent asymptotic state. A chaotic attractor for
N = 15 can become a period three window for N = 16, and so on.

Let us switch gears for a moment, and perform a numerical experiment
that will enable you to do a part of this exam even if all your integration
programs are in shambles.

8.1 How strange is the H�enon attractor?

Numerical studies indicate that for a = 1:4, b = 0:3 the attractor of the
H�enon map (see pictures in the Strogatz's book)

xn+1 = 1� ax2n + byn

yn+1 = xn :
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is \strange". Reproduce the H�enon picture of his \strange attractor" by nu-
merical iteration of the map. Next, repeat the numerical experiment for the
map with parameter variation as minute as changing a to a = 1:39945219. If
you wait long enough (100,000's of iterations), the attractor should undergo
a dramatic change. What do you get?

The moral of this experiment is that \strange attractors" are not struc-
turally stable. If we compute, for example, the Lyapunov exponent �(�;N)
for the strange attractor of the system (5), there is no reason to expect
�(�;N) to smoothly converge to the limit value �(�;1) as N !1.

9 Tour of a few numerical results

If we are integrating an unstable, chaotic solution in the Fourier space, we
can go back to the con�guration space using (2) and plot the corresponding
spatiotemporal solution u(x; t).

Plot a spatiotemporal solution u(x; t) for the chaotic, � = 0:029910 Exam question

attractor.

Staring at the solution as it evolves in time we should start getting a
glimpse of the repertoire of the spatiotemporal patterns that Hopf wanted
us to see in turbulent dynamics.

More precisely, he wanted us to see recurrent patterns, that is to say, the
unstable spatiotemporally periodic solutions of our equations. This can be
done, but is hard work - I list a few computed by Freddy Christiansen in
table 1, and plot the shortest one in �gure 4, just to give you a feeling for
the form and stability of such solutions. Other solutions exhibit the same
overall gross structure - a few wiggles here and there, continuously in ux
and yet so alike.

One of the objectives of a theory of turbulence is to predict measurable
global averages over turbulent ows, such as velocity-velocity correlations
and transport coe�cients. With the present parameter values we are far
from any strongly turbulent regime, and in fact we are lucky if in the time
alloted we manage to implement even the simplest test of chaotic dynamics:
evaluation of the Lyapunov exponents.
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Table 1: A few unstable cycles for the N = 16 Fourier modes truncation of
the Kuramoto-Sivashinsky equation (5), damping parameter � = 0:029910
(chaotic attractor) and � = 0:029924 (period-3 window), periods, the �rst
four stability eigenvalues. The deviation from unity of �2, the eigenvalue
along the ow, is an indication of the accuracy of the numerical integration.
p Tp �1 �2 � 1 �3 �4

Chaotic, � = 0:029910

0 0.897653 3.298183 5�10�12 2.793085�10�3 2.793085�10�3

1 0.870729 -2.014326 5�10�12 6.579608�10�3 3.653655�10�4

10 1.751810 -3.801854 8�10�12 3.892045�10�5 2.576621�10�7

Period-3 window, � = 0:029924

0 0.897809 3.185997 7�10�13 2.772435�10�3 -2.772435�10�3

1 0.871737 -1.914257 5�10�13 6.913449�10�3 -3.676167�10�4

10 1.752821 -3.250080 1�10�12 4.563478�10�5 2.468647�10�7

Figure 4: Spatiotemporally periodic solution u0(x; t). We have divided x
by � and plotted only the x > 0 part, since we work in the subspace of the
odd solutions, u(x; t) = �u(�x; t). N = 16 Fourier modes truncation with
� = 0:029910.
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For the strange attractor at � = 0:029910 our numerical simulation esti- Exam question

mate for the Lyapunov exponent is 0.629. What do you get?

10 Wrapping up this guided tour

Hopf's proposal for a theory of turbulence was to think of turbulence as
a sequence of near recurrences of a repertoire of unstable spatiotemporal
patterns. This exam falls short of implementing the proposal, but it sheds
some light on how such ideas are developed - numerical solutions that you
have studied are both \turbulent" and recognizable to the eye.

Hopf's proposal is in its spirit very di�erent from most ideas that animate
current turbulence research. It is distinct from the Landau quasiperiodic
picture of turbulence as a sum of in�nite number of incommensurate fre-
quencies, with dynamics taking place on a large-dimensional torus. It is not
the Kolmogorov's 1941 homogeneous turbulence with no coherent structures
�xing the length scale, here all the action is in speci�c coherent structures.
And it is not probabilistic; everything is �xed by the deterministic dynamics
with no probabilistic assumptions on the velocity distributions or external
stochastic forcing.

The parameter � values that we have played with correspond to the
weakest nontrivial \turbulence", and it is an open question to what extent
the approach remains implementable as the system goes more turbulent.

Have a Carlsberg, and a good summer.
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