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Exercise 2.6 Runge-Kutta integration. Implement the fourth-order
Runge-Kutta integration formula (see, for example, ref. [2.7]) for ẋ = v(x):

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(δτ 5)

k1 = δτv(xn) , k2 = δτv(xn + k1/2)

k3 = δτv(xn + k2/2) , k4 = δτv(xn + k3) . (2.17)

If you already know your Runge-Kutta, program what you believe to be a better
numerical integration routine, and explain what is better about it.

Exercise 2.7 Rössler system. Use the result of exercise 2.6 or some
other integration routine to integrate numerically the Rössler system (2.14).
Does the result look like a “strange attractor”? If you happen to already know
what fractal dimensions are, argue (possibly on basis of numerical integration)
that this attractor is of dimension smaller than R

3 .

Exercise 2.8 Equilibria of the Rössler system.

(a) Find all equilibrium points (xq, yq, zq) of the Rössler system (2.14). How
many are there?

(b) Assume that b = a. Define parameters

ǫ = a/c
D = 1 − 4ǫ2

p± = (1 ±
√

D)/2
(2.18)

Express all the equilibria in terms of (c, ǫ,D, p±). Expand equilibria to
the first order in ǫ. Note that it makes sense because for a = b = 0.2,
c = 5.7 in (2.14), ǫ ≈ 0.035.

(continued as exercise 3.1)

(Rytis Paškauskas)

Exercise 2.9 Can you integrate me? Integrating equations numerically is
not for the faint of heart. It is not always possible to establish that a set of nonlinear
ordinary differential equations has a solution for all times and there are many cases were
the solution only exists for a limited time interval, as, for example, for the equation
ẋ = x2 , x(0) = 1 .

(a) For what times do solutions of

ẋ = x(x(t))

exist? Do you need a numerical routine to answer this question?

(b) Let’s test the integrator you wrote in exercise 2.6. The equation ẍ = −x with
initial conditions x(0) = 2 and ẋ = 0 has as solution x(t) = e−t(1 + e2 t) . Can
your integrator reproduce this solution for the interval t ∈ [0, 10]? Check you
solution by plotting the error as compared to the exact result.
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Exercises

Exercise 3.1 Poincaré sections of the Rössler flow. (continuation of
exercise 2.8) Calculate numerically a Poincaré section (or several Poincaré sec-
tions) of the Rössler flow. As the Rössler flow phase space is 3-dimensional,
the flow maps onto a 2-dimensional Poincaré section. Do you see that in your
numerical results? How good an approximation would a replacement of the re-
turn map for this section by a 1-dimensional map be? More precisely, estimate
the thickness of the strange attractor. (continued as exercise 4.3)

(Rytis Paškauskas)

Exercise 3.2 Arbitrary Poincaré sections. We will generalize the construction
of Poincaré sections so that they can have any shape, as specified by the equation
U(x) = 0.

(a) Start by modifying your integrator so that you can change the coordinates once
you get near the Poincaré section. You can do this easily by writing the equations
as

dxk

ds
= κfk , (3.16)

with dt/ds = κ, and choosing κ to be 1 or 1/f1. This allows one to switch
between t and x1 as the integration “time.”

(b) Introduce an extra dimension xn+1 into your system and set

xn+1 = U(x) . (3.17)

How can this be used to find a Poincaré section?

Exercise 3.3 Classical collinear helium dynamics. (continuation of ex-
ercise 2.10)

Make a Poincaré surface of section by plotting (r1, p1) whenever r2 = 0:
Note that for r2 = 0, p2 is already determined by (5.6). Compare your results
with figure 34.3(b).

(Gregor Tanner, Per Rosenqvist)

Exercise 3.4 Hénon map fixed points. Show that the two fixed points
(x0, x0), (x1, x1) of the Hénon map (3.12) are given by

x0 =
−(1 − b) −

√

(1 − b)2 + 4a

2a
,

x1 =
−(1 − b) +

√

(1 − b)2 + 4a

2a
. (3.18)

Exercise 3.5 How strange is the Hénon attractor?
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Exercises

Exercise 4.1 Trace-log of a matrix. Prove that

det M = etr ln M .

for an arbitrary finite dimensional matrix M .

Exercise 4.2 Stability, diagonal case. Verify the relation (4.16)

J
t = etA = U

−1etADU , where AD = UAU
−1 .

Exercise 4.3 Topology of the Rössler flow. (continuation of exer-
cise 3.1)

(a) Show that equation |det (A−λ1)| = 0 for Rössler system in the notation
of exercise 2.18 can be written as

λ3 + λ2c (p∓ − ǫ) + λ(p±/ǫ + 1 − c2ǫp∓) ∓ c
√

D = 0 (4.41)

(b) Solve (4.41) for eigenvalues λ± for each equilibrium point as an expansion
in powers of ǫ. Derive

λ−
1 = −c + ǫc/(c2 + 1) + o(ǫ)

λ−
2

= ǫc3/[2(c2 + 1)] + o(ǫ2)
θ−2 = 1 + ǫ/[2(c2 + 1)] + o(ǫ)
λ+

1 = cǫ(1 − ǫ) + o(ǫ3)
λ+

2 = −ǫ5c2/2 + o(ǫ6)

θ+
2 =

√

1 + 1/ǫ (1 + o(ǫ))

(4.42)

Compare with exact eigenvalues. What are dynamical implications of the
extravagant value of λ−

1 ?

(continued as exercise 4.3) (Rytis Paškauskas)

Exercise 4.4 A contracting baker’s map. Consider a contracting (or “dis-
sipative”) baker’s map, acting on a unit square [0, 1]2 = [0, 1] × [0, 1], defined by

(

xn+1

yn+1

)

=

(

xn/3
2yn

)

yn ≤ 1/2

(

xn+1

yn+1

)

=

(

xn/3 + 1/2
2yn − 1

)

yn > 1/2

This map shrinks strips by a factor of 1/3 in the x-direction, and then stretches (and
folds) them by a factor of 2 in the y-direction.

By how much does the phase space volume contract fo one iteration of the map?
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