Exercise 2.6 Runge-Kutta integration. Implement the fourth-order Runge-Kutta integration formula (see, for example, ref. [2.7]) for $\dot{x} = v(x)$:

$$\begin{aligned}
x_{n+1} &= x_n + \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6} + O(\delta\tau^5) \\
k_1 &= \delta\tau v(x_n), \quad k_2 = \delta\tau v(x_n + k_1/2) \\
k_3 &= \delta\tau v(x_n + k_2/2), \quad k_4 = \delta\tau v(x_n + k_3).
\end{aligned}$$
(2.17)

If you already know your Runge-Kutta, program what you believe to be a better numerical integration routine, and explain what is better about it.

Exercise 2.7 <u>Rössler system.</u> Use the result of exercise 2.6 or some other integration routine to integrate numerically the Rössler system (2.14). Does the result look like a "strange attractor"? If you happen to already know what fractal dimensions are, argue (possibly on basis of numerical integration) that this attractor is of dimension smaller than \mathbb{R}^3 .

Exercise 2.8 Equilibria of the Rössler system.

- (a) Find all equilibrium points (x^q, y^q, z^q) of the Rössler system (2.14). How many are there?
- (b) Assume that b = a. Define parameters

$$\begin{aligned} \epsilon &= a/c \\ D &= 1 - 4\epsilon^2 \\ p^{\pm} &= (1 \pm \sqrt{D})/2 \end{aligned} \tag{2.18}$$

Express all the equilibria in terms of $(c, \epsilon, D, p^{\pm})$. Expand equilibria to the first order in ϵ . Note that it makes sense because for a = b = 0.2, c = 5.7 in (2.14), $\epsilon \approx 0.035$.

(continued as exercise 3.1)

(Rytis Paškauskas)

Exercise 2.9 Can you integrate me? Integrating equations numerically is not for the faint of heart. It is not always possible to establish that a set of nonlinear ordinary differential equations has a solution for all times and there are many cases were the solution only exists for a limited time interval, as, for example, for the equation $\dot{x} = x^2$, x(0) = 1.

(a) For what times do solutions of

 $\dot{x} = x(x(t))$

exist? Do you need a numerical routine to answer this question?

(b) Let's test the integrator you wrote in exercise 2.6. The equation $\ddot{x} = -x$ with initial conditions x(0) = 2 and $\dot{x} = 0$ has as solution $x(t) = e^{-t}(1 + e^{2t})$. Can your integrator reproduce this solution for the interval $t \in [0, 10]$? Check you solution by plotting the error as compared to the exact result.

Exercises

Exercise 3.1 <u>Poincaré sections of the Rössler flow.</u> (continuation of exercise 2.8) Calculate numerically a Poincaré section (or several Poincaré sections) of the Rössler flow. As the Rössler flow phase space is 3-dimensional, the flow maps onto a 2-dimensional Poincaré section. Do you see that in your numerical results? How good an approximation would a replacement of the return map for this section by a 1-dimensional map be? More precisely, estimate the thickness of the strange attractor. (continued as exercise 4.3)

(Rytis Paškauskas)

Exercise 3.2 Arbitrary Poincaré sections. We will generalize the construction of Poincaré sections so that they can have any shape, as specified by the equation U(x) = 0.

(a) Start by modifying your integrator so that you can change the coordinates once you get near the Poincaré section. You can do this easily by writing the equations as

$$\frac{dx_k}{ds} = \kappa f_k \,, \tag{3.16}$$

with $dt/ds = \kappa$, and choosing κ to be 1 or $1/f_1$. This allows one to switch between t and x_1 as the integration "time."

(b) Introduce an extra dimension x_{n+1} into your system and set

$$x_{n+1} = U(x). (3.17)$$

How can this be used to find a Poincaré section?

Exercise 3.3 Classical collinear helium dynamics. (continuation of exercise 2.10)

Make a Poincaré surface of section by plotting (r_1, p_1) whenever $r_2 = 0$: Note that for $r_2 = 0$, p_2 is already determined by (5.6). Compare your results with figure 34.3(b).

(Gregor Tanner, Per Rosenqvist)

Exercise 3.4 Hénon map fixed points. Show that the two fixed points (x_0, x_0) , (x_1, x_1) of the Hénon map (3.12) are given by

$$x_{0} = \frac{-(1-b) - \sqrt{(1-b)^{2} + 4a}}{2a},$$

$$x_{1} = \frac{-(1-b) + \sqrt{(1-b)^{2} + 4a}}{2a}.$$
(3.18)

Exercise 3.5 How strange is the Hénon attractor?

Exercises

Exercise 4.1 Trace-log of a matrix. Prove that

 $\det M = e^{\operatorname{tr} \ln M}.$

for an arbitrary finite dimensional matrix M.

Exercise 4.2 Stability, diagonal case. Verify the relation (4.16)

 $\mathbf{J}^t = e^{t\mathbf{A}} = \mathbf{U}^{-1} e^{t\mathbf{A}_D} \mathbf{U}, \quad \text{where} \quad \mathbf{A}_D = \mathbf{U} \mathbf{A} \mathbf{U}^{-1}.$

Exercise 4.3 <u>Topology of the Rössler flow.</u> (continuation of exercise 3.1)

(a) Show that equation $|\det (A - \lambda \mathbf{1})| = 0$ for Rössler system in the notation of exercise 2.18 can be written as

$$\lambda^3 + \lambda^2 c \left(p^{\mp} - \epsilon \right) + \lambda \left(p^{\pm} / \epsilon + 1 - c^2 \epsilon p^{\mp} \right) \mp c \sqrt{D} = 0 \qquad (4.41)$$

(b) Solve (4.41) for eigenvalues λ^{\pm} for each equilibrium point as an expansion in powers of ϵ . Derive

$$\lambda_{1}^{-} = -c + \epsilon c/(c^{2} + 1) + o(\epsilon) \lambda_{2}^{-} = \epsilon c^{3}/[2(c^{2} + 1)] + o(\epsilon^{2}) \theta_{2}^{-} = 1 + \epsilon/[2(c^{2} + 1)] + o(\epsilon) \lambda_{1}^{+} = c\epsilon(1 - \epsilon) + o(\epsilon^{3}) \lambda_{2}^{+} = -\epsilon^{5}c^{2}/2 + o(\epsilon^{6}) \theta_{2}^{+} = \sqrt{1 + 1/\epsilon} (1 + o(\epsilon))$$

$$(4.42)$$

Compare with exact eigenvalues. What are dynamical implications of the extravagant value of λ_1^- ?

(continued as exercise 4.3)

(Rytis Paškauskas)

Exercise 4.4 A contracting baker's map. Consider a contracting (or "dissipative") baker's map, acting on a unit square $[0,1]^2 = [0,1] \times [0,1]$, defined by

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} x_n/3 \\ 2y_n \end{pmatrix} \quad y_n \le 1/2$$
$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} x_n/3 + 1/2 \\ 2y_n - 1 \end{pmatrix} \quad y_n > 1/2$$

This map shrinks strips by a factor of 1/3 in the *x*-direction, and then stretches (and folds) them by a factor of 2 in the *y*-direction.

By how much does the phase space volume contract fo one iteration of the map?