
Chapter 24

Turbulence?

I am an old man now, and when I die and go to
Heaven there are two matters on which I hope en-
lightenment. One is quantum electro-dynamics and
the other is turbulence of fluids. About the former, I
am rather optimistic.
Sir Horace Lamb

There is only one honorable cause that would justify sweating
through so much formalism - this is but the sharpening of a pencil in
order that we may attack the Navier-Stokes equation,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ ν∇2u + f , (24.1)

and solve the problem of turbulence.

Flows described by partial differential equations are said to be ‘infinite
dimensional’ because if one writes them down as a set of ordinary differ-
ential equations [ODEs], one needs infinitely many of them to represent
the dynamics of one partial differential equation [PDE]. Even though their
state space is infinite dimensional, the long-time dynamics of many sys-
tems of physical interest is finite-dimensional, contained within an inertial
manifold.

Here we intend to cure you of the fear of ‘infinite-dimensional’ dynamical
systems. If you are already fearless, you might prefer to skip the chapter
on the first reading of the book.

Being realistic, we are not so foolhardy to immediately plunge into the
problem – there are too many dimensions and indices. Instead, we start
small, in one spatial dimension, u → u, u · ∇u → 1

2∂xu
2, assume constant

ρ, forget about the pressure p, and so on. This line of reasoning, as well
as many other equally sensible threads of thought, such as the amplitude
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436 CHAPTER 24. TURBULENCE?

equations obtained via weakly nonlinear stability analysis of steady flows,
leads to a small set of frequently studied nonlinear PDEs, like the one that
we turn to now.

24.1 Fluttering flame front

Romeo: ‘Misshapen chaos of well seeming forms!’
W. Shakespeare, Romeo and Julliet, Act I, Scene I

The Kuramoto-Sivashinsky system, arising in the description of the
flame front flutter of gas burning in a circular burner on your kitchen stove,
figure 24.1(a), and many other problems of greater import, is one of the sim-
plest partial differential equations [PDEs] that is one of the simplest nonlin-
ear that exhibit ‘turbulence’, or, more modestly ‘spatiotemporally chaotic
behavior.’ The time evolution of the ‘flame front velocity’ u = u(x, t) on a
periodic domain u(x, t) = u(x+ L, t) is given by

ut + 1
2 (u2)x + uxx + uxxxx = 0 , x ∈ [0, L] . (24.2)

In this equation t is the time and x is the spatial coordinate. The subscripts
x and t denote partial derivatives with respect to x and t: ut = du/dt, uxxxx
stands for the 4th spatial derivative of u = u(x, t) at position x and time t.
In what follows we use interchangeably the “dimensionless system size” L̃,
or the periodic domain size L = 2πL̃, as the system parameter. We take
note, as in the Navier-Stokes equation (24.1), of the “inertial” term u∂xu,
the “anti-diffusive” term ∂2

xu (with a “wrong” sign), etc..

The term (u2)x makes this a nonlinear system. This is one of the sim-
plest conceivable nonlinear PDE, playing the role in the theory of spatially
extended systems a bit like the role that the x2 nonlinearity plays in the
dynamics of iterated mappings. The time evolution of a typical solution of

☞ sect. 3.3
the Kuramoto-Sivashinsky system is illustrated by figure 24.1 (b).

☞ remark 24.1

Spatial periodicity u(x, t) = u(x+ L, t) makes it convenient to work in
the Fourier space,

u(x, t) =
+∞∑
k=−∞

ak(t)eikx/L̃ , (24.3)

with the 1-dimensional PDE (24.2) replaced by an infinite set of ODEs for
the complex Fourier coefficients ak(t):

ȧk = vk(a) = ((k/L̃)2 − (k/L̃)4) ak − i
k

2L̃

+∞∑
m=−∞

amak−m . (24.4)

PDEs - 24apr2007 ChaosBook.org/version11.9.1, Apr 24 2007



24.1. FLUTTERING FLAME FRONT 437

u(x,t)

x

(a)
0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

t

x/(2π
√

2)

(b)

Figure 24.1: (a) Kuramoto-Sivashinsky dynamics visualized as the Bunsen burner
flame flutter, with u = u(x, t) the “velocity of the flame front” at position x and time
t. (b) A typical “turbulent” solution of the Kuramoto-Sivashinsky equation, system
size L = 88.86. The color (gray scale) indicates the value of u at a given position
and instant in time. The x coordinate is scaled with the most unstable wavelength
2π
√

2, which is approximately also the mean wavelength of the turbulent flow. The
dynamics is typical of a large system, in this case approximately 10 mean wavelengths
wide. (from ref. [24.7])

Since u(x, t) is real, ak = a∗−k , and we can replace the sum in (24.10) by a
sum over k > 0.

Due to the hyperviscous damping uxxxx, long time solutions of Kuramoto-
Sivashinsky equation are smooth, ak drop off fast with k, and truncations
of (24.10) to N terms, 16 ≤ N ≤ 128, yield highly accurate solutions for
system sizes considered here. Robustness of the Fourier representation of
KS as a function of the number of modes kept in truncations of (24.10)
is, however, a subtle issue. Adding an extra mode to a truncation of the
system introduces a small perturbation. However, this can (and often will)
throw the dynamics into a different asymptotic state. A chaotic attrac-
tor for N = 15 can collapse into an attractive period-3 cycle for N = 16,
and so on. If we compute, for example, the Lyapunov exponent λ(L̃,N)
for a strange attractor of the system (24.10), there is no reason to expect
λ(L̃,N) to smoothly converge to a limit value λ(L̃,∞) as N →∞, because
of the lack of structural stability both as a function of truncation N , and
the system size L̃. The topology is more robust for L̃ windows of transient
turbulence, where the system can be structurally stable, and it makes sense
to compute Lyapunov exponents, escape rates, etc., for the repeller, i.e.,
the closure of the set of all unstable periodic orbits.

Spatial representations of PDEs (such as the 3d snapshots of veloc-
ity and vorticity fields in Navier-Stokes) offer little insight into detailed
dynamics of low-Re flows. Much more illuminating are the state space
representations.

The objects explored in this paper: equilibria and short periodic orbits,
are robust both under mode truncations and small system parameter L̃
changes.

ChaosBook.org/version11.9.1, Apr 24 2007 PDEs - 24apr2007



438 CHAPTER 24. TURBULENCE?

24.1.1 Scaling and symmetries

The Kuramoto-Sivashinsky equation (24.2) is space translationally invari-
ant, time translationally invariant, and invariant under reflection x→ −x,
u→ −u.

Comparing ut and (u2)x terms we note that u has dimensions of [x]/[t],
hence u is the “velocity,” rather than the “height” of the flame front. In-
deed, the Kuramoto-Sivashinsky equation is Galilean invariant: if u(x, t)
is a solution, then v + u(x + 2vt, t), with v an arbitrary constant velocity,
is also a solution. Without loss of generality, in our calculations we shall
work in the mean zero velocity frame

∫
dxu = 0 . (24.5)

In terms of the system size L, the only length scale available, the di-
mensions of terms in (24.2) are [x] = L, [t] = L2, [u] = L−1, [ν] = L2 .
Scaling out the “viscosity” ν

x→ xν
1
2 , t→ tν , u→ uν−

1
2 ,

brings the Kuramoto-Sivashinsky equation (24.2) to a non-dimensional form

ut = (u2)x − uxx − uxxxx , x ∈ [0, Lν−
1
2 ] = [0, 2πL̃] . (24.6)

In this way we trade in the “viscosity” ν and the system size L for a single
dimensionless system size parameter

L̃ = L/(2π
√
ν) (24.7)

which plays the role of a “Reynolds number” for the Kuramoto-Sivashinsky
system.

In the literature sometimes L is used as the system parameter, with ν
fixed to 1, and at other times ν is varied with L fixed to either 1 or 2π. To
minimize confusion, in what follows we shall state results of all calculations
in units of dimensionless system size L̃. Note that the time units also
have to be rescaled; for example, if T ∗

p is a period of a periodic solution of
(24.2) with a given ν and L = 2π, then the corresponding solution of the
non-dimensionalized (24.6) has period

Tp = T ∗
p /ν . (24.8)
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24.1.2 Fourier space representation

Spatial periodic boundary condition u(x, t) = u(x + 2πL̃, t) makes it con-
venient to work in the Fourier space,

u(x, t) =
+∞∑

k=−∞
bk(t)eikx/L̃ . (24.9)

with (24.6) replaced by an infinite tower of ODEs for the Fourier coefficients:

ḃk = (k/L̃)2
(
1− (k/L̃)2

)
bk + i(k/L̃)

+∞∑
m=−∞

bmbk−m . (24.10)

This is the infinite set of ordinary differential equations promised in this
chapter’s introduction.

Since u(x, t) is real, bk = b∗−k , so we can replace the sum over m in
(24.10) by a sum over m > 0. As ḃ0 = 0, b0 is a conserved quantity, in our
calculations fixed to b0 = 0 by the vanishing mean 〈u〉 condition (24.5) for
the front velocity.

Example 24.1 Kuramoto-Sivashinsky antisymmetric subspace: The Fourier
coefficients bk are in general complex numbers. We can isolate the antisymmetric
subspace u(x, t) = −u(−x, t) by considering the case of bk pure imaginary, bk = iak,
where ak = −a−k are real, with the evolution equations

ȧk = (k/L̃)2
(
1− (k/L̃)2

)
ak − (k/L̃)

+∞∑
m=−∞

amak−m . (24.11)

By picking this subspace we eliminate the continuous translational symmetry from our
considerations; that is not an option for an experimentalist, but will do for our purposes.
In the antisymmetric subspace the translational invariance of the full system reduces
to the invariance under discrete translation by half a spatial period L. In the Fourier
representation (24.11) this corresponds to invariance under

a2m → a2m , a2m+1 → −a2m+1 . (24.12)

The antisymmetric condition amounts to imposing u(0, t) = 0 boundary condition.

24.2 Infinite-dimensional flows: Numerics

The trivial solution u(x, t) = 0 is an equilibrium point of (24.2), but that
is basically all we know as far as useful analytical solutions are concerned.
To develop some intuition about the dynamics we turn to numerical simu-
lations.

ChaosBook.org/version11.9.1, Apr 24 2007 PDEs - 24apr2007



440 CHAPTER 24. TURBULENCE?

Figure 24.2: Spatiotemporally periodic solu-
tion u0(x, t), with period T0 = 30.0118 . The
antisymmetric subspace, u(x, t) = −u(−x, t),
so we plot x ∈ [0, L/2]. System size L̃ =
2.89109, N = 16 Fourier modes truncation.
(From ref. [24.4])

How are solutions such as figure 24.1 (b) computed? The salient feature
of such partial differential equations is a theorem saying that for any finite
value of the state space contraction parameter ν, the asymptotic dynamics
is describable by a finite set of “inertial manifold” ordinary differential
equations. How you solve the equation (24.2) numerically is up to you.
Here are some options:

Discrete mesh: You can divide the x interval into a sufficiently fine dis-
crete grid of N points, replace space derivatives in (24.2) by approximate
discrete derivatives, and integrate a finite set of first order differential equa-
tions for the discretized spatial components uj(t) = u(jL/N, t), by any
integration routine you trust.

Fourier modes: You can integrate numerically the Fourier modes (24.10),
truncating the ladder of equations to a finite number of modes N , i.e., set
ak = 0 for k > N . In the applied mathematics literature more so-✎ 2.6

page 45
phisticated variants of such truncations are called Gälerkin truncations, or
Gälerkin projections. You need to worry about “stiffness” of the equations
and the stability of your integrator. For the parameter values explored in
this chapter, truncations N in range 16 to 64 yielded sufficient accuracy.

Pseudo-spectral methods: You can mix the two methods, exploiting
the speed of Fast Fourier Transforms.

Example 24.2 Kuramoto-Sivashinsky simulation, antisymmetric subspace: To
get started, we set ν = 0.029910, L = 2π in the Kuramoto-Sivashinsky equation (24.2),
or, equivalently, ν = 1, L = 36.33052 in the non-dimensionalized (24.6). Consider the
antisymmetric subspace (24.11), so the non-dimensionalized system size is L̃ = L/4π =
2.89109. Truncate (24.11) to 0 ≤ k ≤ 16, and integrate an arbitrary initial condition.
Let the transient behavior settle down.

Why this L̃? For this system size L̃ the dynamics appears to be chaotic, as
far as can be determined numerically. Why N = 16? In practice one repeats the
same calculation at different truncation cutoffs N , and makes sure that the inclusion of
additional modes has no effect within the desired accuracy. For this system size N = 16
suffices.

Once a trajectory is computed in Fourier space, we can recover and plot the
corresponding spatiotemporal pattern u(x, t) over the configuration space using (24.9),
as in figure 24.1 (b) and figure 24.2. Such patterns give us a qualitative picture of
the flow, but no detailed dynamical information; for that, tracking the evolution in
a high-dimensional state space, such as the space of Fourier modes, is much more
informative.

PDEs - 24apr2007 ChaosBook.org/version11.9.1, Apr 24 2007
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Figure 24.3: Projections of a typical 16-dimensional trajectory onto different 3-
dimensional subspaces, coordinates (a) {a1, a2, a3}, (b) {a1, a2, a4}. System size
L̃ = 2.89109, N = 16 Fourier modes truncation. (From ref. [24.4].)

Figure 24.4: The attractor of the Kuramoto-
Sivashinsky system (24.10), plotted as the a6

component of the a1 = 0 Poincaré section re-
turn map. Here 10,000 Poincaré section re-
turns of a typical trajectory are plotted. Also
indicated are the periodic points 0, 1, 01 and
10. System size L̃ = 2.89109, N = 16 Fourier
modes truncation. (From ref. [24.4].)

The problem with high-dimensional representations, such as truncations of the
infinite tower of equations (24.10), is that the dynamics is difficult to visualize. The

☞ sect. 24.3
best we can do without much programming is to examine the trajectory’s projections
onto any three axes ai, aj , ak, as in figure 24.3.

The question is: how is one to look at such a flow? It is not clear that
restricting the dynamics to a Poincaré section necessarily helps - after all,
a section reduces a (d + 1)-dimensional flow to a d-dimensional map, and
how much is gained by replacing a continuous flow in 16 dimensions by a
set of points in 15 dimensions? The next example illustrates the utility of
visualization of dynamics by means of Poincaré sections.

Example 24.3 Kuramoto-Sivashinsky Poincaré return maps: Consider the
Kuramoto-Sivashinsky equation in the N Fourier modes representation. We pick (ar-
bitrarily) the hyperplane a1 = 0 as the Poincaré section, and integrate (24.10) with
a1 = 0, and an arbitrary initial point (a2, . . . , aN ). When the flow crosses the a1 = 0 hy-
perplane in the same direction as initially, the initial point is mapped into (a′2, . . . a′N) =
P (a2, . . . , aN). This defines P , the Poincaré return map (3.1) of the (N−1)-dimensional
a1 = 0 hyperplane into itself.

Figure 24.4 is a typical result. We have picked - again arbitrarily - a subspace
such as a6(n + 1) vs. a6(n) in order to visualize the dynamics. While the topology
of the attractor is still obscure, one thing is clear: even though the flow state space is
infinite dimensional, the attractor is finite and thin, barely thicker than a line.

ChaosBook.org/version11.9.1, Apr 24 2007 PDEs - 24apr2007
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The above example illustrates why a Poincaré section gives a more
informative snapshot of the flow than the full flow portrait. While no
fine structure is discernible in the full state space flow portraits of the
Kuramoto-Sivashinsky dynamics, figure 24.3, the Poincaré return map fig-
ure 24.4 reveals the fractal structure in the asymptotic attractor.

In order to find a better representation of the dynamics, we now turn
to its topological invariants.

24.3 Equilibria of equilibria

(Y. Lan and P. Cvitanović)

The set of equilibria and their stable / unstable manifolds form the coarsest
topological framework for organizing state space orbits.

The equilibrium condition ut = 0 for the Kuramoto-Sivashinsky equa-
tion PDE (24.6) is the ODE

(u2)x − uxx − uxxxx = 0

which can be analyzed as a dynamical system in its own right. Integrating
once we get

u2 − ux − uxxx = c , (24.13)

where c is an integration constant whose value strongly influences the nature
of the solutions. Written as a 3−d dynamical system with spatial coordinate
x playing the role of “time”, this is a volume preserving flow

ux = v , vx = w , wx = u2 − v − c , (24.14)

with the “time” reversal symmetry,

x→ −x, u→ −u, v → v, w → −w .

From (24.14) we see that

(u+ w)x = u2 − c .

If c < 0, u + w increases without bound with x → ∞, and every solution
escapes to infinity. If c = 0, the origin (0, 0, 0) is the only bounded solution.

PDEs - 24apr2007 ChaosBook.org/version11.9.1, Apr 24 2007
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For c > 0 there is much c-dependent interesting dynamics, with compli-
cated fractal sets of bounded solutions. The sets of the solutions of the equi-
librium condition (24.14) are themselves in turn organized by the equilibria
of the equilibrium condition, and the connections between them. For c > 0
the equilibrium points of (24.14) are c+ = (

√
c, 0, 0) and c− = (−√c, 0, 0).

Linearization of the flow around c+ yields stability eigenvalues [2λ ,−λ±iθ]
with

λ =
1√
3

sinhφ , θ = cosh φ ,

and φ fixed by sinh 3φ = 3
√

3c. Hence c+ has a 1−d unstable manifold and
a 2−d stable manifold along which solutions spiral in. By the x→ −x “time
reversal” symmetry, the invariant manifolds of c− have reversed stability
properties.

The non–wandering set fo this dynamical system is quite pretty, and
surprisingly hard to analyze. However, we do not need to explore the frac-
tal set of the Kuramoto-Sivashinsky equilibria for infinite size system here;
for a fixed system size L with periodic boundary condition, the only sur-
viving equilibria are those with periodicity L. They satisfy the equilibrium
condition for (24.10)

(k/L̃)2
(
1− (k/L̃)2

)
bk + i(k/L̃)

+∞∑
m=−∞

bmbk−m = 0 . (24.15)

Periods of spatially periodic equilibria are multiples of L. Every time L̃
crosses an integer value L̃ = n, n-cell states are generated through pitchfork
bifurcations. In the full state space they form an invariant circle due to the
translational invariance of (24.6). In the antisymmetric subspace considered
here, they corresponds to two points, half-period translates of each other
of the form

u(x, t) = −2
∑
k

bkn sin(knx) ,

where bkn ∈ R.

For any fixed period L the number of spatially periodic solutions is
finite up to a spatial translation. This observation can be heuristically
motivated as follows. Finite dimensionality of the inertial manifold bounds
the size of Fourier components of all solutions. On a finite-dimensional
compact manifold, an analytic function can only have a finite number of
zeros. So, the equilibria, i.e. the zeros of a smooth velocity field on the
inertial manifold, are finitely many.

For a sufficiently small L the number of equilibria is small, mostly con-
centrated on the low wave number end of the Fourier spectrum. These
solutions may be obtained by solving the truncated versions of (24.15).
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Figure 24.5: The non–wandering set under study appears to consist of three patches:
the left part (SL), the center part (SC) and the right part (SR), each centered around
an unstable equilibrium: (a) central C1 equilibrium, (b) side R1 equilibrium on the
interval [0, L].

Example 24.4 Important Kuramoto-Sivashinsky equilibria:

24.4 Why does a flame front flutter?

We start by considering the case where a∗ is an equilibrium point (2.7).
Expanding around the equilibrium point a∗, and using the fact that the
matrix A = A(a∗) in (4.2) is constant, we can apply the simple formula
(4.26) also to the fundamental matrix of an equilibrium point of a PDE,

J t(a∗) = eAt A = A(a∗) .

The Kuramoto-Sivashinsky flat flame front u(x, t) = 0 is an equilibrium
point of (24.2). The stability matrix (4.3) follows from (24.10)

Akj(a) =
∂vk(a)
∂aj

= ((k/L̃)2 − (k/L̃)4)δkj − 2(k/L̃)ak−j . (24.16)

For the u(x, t) = 0 equilibrium solution the stability matrix is diagonal, and
– as in (4.15) – so is the fundamental matrix J tkj(0) = δkje

((k/L̃)2−(k/L̃)4)t .

For L̃ < 1, u(x, t) = 0 is the globally attractive stable equilibrium.
As the system size L̃ is increased, the “flame front” becomes increasingly
unstable and turbulent, the dynamics goes through a rich sequence of bi-
furcations on which we shall not dwell here.

The |k| <?? long wavelength perturbations of the flat-front equilibrium
are linearly unstable, while all |k| >?? short wavelength perturbations are
strongly contractive. The high k eigenvalues, corresponding to rapid vari-
ations of the flame front, decay so fast that the corresponding eigendirec-
tions are physically irrelevant. To illustrate the rapid contraction in the
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Figure 24.6: Lyapunov exponents λ1,k ver-
sus k for the least unstable spatio-temporally
periodic orbit 1 of the Kuramoto-Sivashinsky
system, compared with the stability exponents
of the u(x, t) = 0 stationary solution, λk =
k2 − νk4. The eigenvalue λ1,k for k ≥ 8
falls below the numerical accuracy of integra-
tion and are not meaningful. The cycle 1 was
computed using methods of chapter 17. Sys-
tem size L̃ = 2.89109, N = 16 Fourier modes
truncation. (From ref. [24.4]) -60
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non-leading eigendirections we plot in figure 24.6 the eigenvalues of the
equilibrium in the unstable regime, for relatively small system size, and
compare them with the stability eigenvalues of the least unstable cycle
for the same system size. The equilibrium solution is very unstable, in 5
eigendirections, the least unstable cycle only in one. Note that for k > 7 the
rate of contraction is so strong that higher eigendirections are numerically
meaningless for either solution; even though the flow is infinite-dimensional,
the attracting set must be rather thin.

While in general for L̃ sufficiently large one expects many coexisting
attractors in the state space,in numerical studies most random initial con-
ditions settle converge to the same chaotic attractor.

From (24.10) we see that the origin u(x, t) = 0 has Fourier modes as
the linear stability eigenvectors. When |k| ∈ (0, L̃), the corresponding
Fourier modes are unstable. The most unstable modes has |k| = L̃/

√
2 and

defines the scale of basic building blocks of the spatiotemporal dynamics of
the Kuramoto-Sivashinsky equation in large system size limit, as shown in
sect. ??.

Consider now the case of initial ak sufficiently small that the bilinear
amak−m terms in (24.10) can be neglected. Then we have a set of de-
coupled linear equations for ak whose solutions are exponentials, at most
a finite number for which k2 > νk4 is growing with time, and infinitely
many with νk4 > k2 decaying in time. The growth of the unstable long
wavelengths (low |k|) excites the short wavelengths through the amak−m
nonlinear term in (24.10). The excitations thus transferred are dissipated
by the strongly damped short wavelengths, and a “chaotic equilibrium” can
emerge. The very short wavelengths |k| ! 1/

√
ν remain small for all times,

but the intermediate wavelengths of order |k| ∼ 1/
√
ν play an important

role in maintaining the dynamical equilibrium. As the damping parameter
decreases, the solutions increasingly take on shock front character poorly
represented by the Fourier basis, and many higher harmonics may need to
be kept in truncations of (24.10).

Hence, while one may truncate the high modes in the expansion (24.10),
care has to be exercised to ensure that no modes essential to the dynamics
are chopped away.
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Table 24.1: Important Kuramoto-Sivashinsky equilibria: the first few stability exponents

S λ1 ± i θ1 λ2 ± i θ2 λ3 ± i θ3
C1 0.04422 ± i 0.26160 -0.255 ± i 0.431 -0.347 ± i 0.463
R1 0.01135 ± i 0.79651 -0.215 ± i 0.549 -0.358 ± i 0.262
T 0.25480 -0.07 ± i 0.645 -0.264

In other words, even though our starting point (24.2) is an infinite-
dimensional dynamical system, the asymptotic dynamics unfolds on a finite-
dimensional attracting manifold, and so we are back on the familiar ter-
ritory of sect. 2.2: the theory of a finite number of ODEs applies to this
infinite-dimensional PDE as well.

We can now start to understand the remark on page 38 that for infinite
dimensional systems time reversibility is not an option: evolution forward in
time strongly damps the higher Fourier modes. There is no turning back:
if we reverse the time, the infinity of high modes that contract strongly
forward in time now explodes, instantly rendering evolution backward in
time meaningless. As so much you are told about dynamics, this claim is
also wrong, in a subtle way: if the initial u(x, 0) is in the non–wandering set
(2.2), the trajectory is well defined both forward and backward in time. For
practical purposes, this subtlety is not of much use, as any time-reversed
numerical trajectory in a finite-mode truncation will explode very quickly,
unless special precautions are taken.

When is an equilibrium important? There are two kinds of roles
equilibria play:

“Hole” in the natural measure. The more unstable eigendirections it
has (for example, the u = 0 solution), the more unlikely it is that an orbit
will recur in its neighborhood.

unstable manifold of a “least unstable” equilibrium. Asymptotic dynam-
ics spends a large fraction of time in neighborhoods of a few equilibria with
only a few unstable eigendirections.

Example 24.5 Stability of Kuramoto-Sivashinsky equilibria:

spiraling out in a plane, all other directions contracting

Stability of “center” equilibrium

linearized stability exponents:

(λ1 ± i θ1, λ2 ± i θ2, · · ·) = (0.044± i 0.262 , −0.255± i 0.431 , · · ·)

The plane spanned by λ1± i θ1 eigenvectors rotates with angular period T ≈ 2π/θ1 =
24.02.

a trajectory that starts near the C1 equilibrium point spirals away per one rota-
tion with multiplier Λradial ≈ exp(λ1T) = 2.9.
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Figure 24.7: The Poincaré return map of
the Kuramoto-Sivashinsky system (24.10) fig-
ure 24.4, from the unstable manifold of the 1
fixed point to the (neighborhood of) the unsta-
ble manifold. Also indicated are the periodic
points 0 and 01.
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each Poincaré section return, contracted into the stable manifold by factor of
Λ2 ≈ exp(λ2T) = 0.002

The local Poincaré return map is in practice 1− dimensional

24.5 Periodic orbits

expanding eigenvalue of the least unstable spatio-temporally periodic orbit
1: Λ1 = −2.0 . . .

very thin Poincaré section
thickness ∝ least contracting eigenvalue Λ2 = 0.007 . . .

15-d → 15-d Poincaré return map projection on the [a6 → a6] Fourier
component is not even 1 → 1.

24.6 Intrinsic parametrization

Both in the Rössler flow of example 3.3, and in the Kuramoto-Sivashinsky
system of example 24.3 we have learned that the attractor is very thin,
but otherwise the return maps that we found were disquieting – neither
figure 3.3 nor figure 24.4 appeared to be one-to-one maps. This apparent
loss of invertibility is an artifact of projection of higher-dimensional return
maps onto lower-dimensional subspaces. As the choice of lower-dimensional
subspace is arbitrary, the resulting snapshots of return maps look rather
arbitrary, too. Other projections might look even less suggestive.

Such observations beg a question: Does there exist a “natural”, in-
trinsically optimal coordinate system in which we should plot of a return
map?

As we shall now argue (see also sect. 17.1), the answer is yes: The in-
trinsic coordinates are given by the stable/unstable manifolds, and a return
map should be plotted as a map from the unstable manifold back onto the
immediate neighborhood of the unstable manifold.
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Examination of numerical plots such as figure 24.3 suggests that a more
thoughtful approach would be to find a coordinate transformation y = h(x)
to a “center manifold”, such that in the new, curvilinear coordinates large-
scale dynamics takes place in (y1, y2) coordinates, with exponentially small
dynamics in y3, y4 · · ·. But - thinking is extra price - we do not know how
to actually accomplish this.

Both in the example of the Rössler flow and of the Kuramoto-Sivashinsky
system we sketched the attractors by running a long chaotic trajectory, and
noted that the attractors are very thin, but otherwise the return maps that
we plotted were disquieting – neither figure 3.3 nor figure 24.4 appeared to
be 1-to-1 maps. In this section we show how to use such information to
approximately locate cycles.

24.7 Energy budget

The space average of a function a = a(x, t) on the interval L,

〈a〉 =
1
L

∫ L

0
dx a(x, t) , (24.17)

is in general time dependent. Its mean value is given by the time average

a = lim
t→∞

1
t

∫ t

0
dτ 〈a〉 = lim

t→∞
1
tL

∫ t

0

∫ L

0
dτdx a(x, τ) . (24.18)

The mean value a, a = a(u) evaluated on an equilibrium or relative equi-
librium u(x, t) = uq(x− ct) is

aq = 〈a〉q . (24.19)

Evaluation of the infinite time average (24.18) on a function of a period
Tp periodic orbit or relative periodic orbit up(x, t) requires only a single
traversal of the periodic solution,

ap =
1
Tp

∫ Tp

0
dτ 〈a〉 . (24.20)

Equation (24.2) can be written as

ut = −Vx , V (x, t) = 1
2u

2 + ux + uxxx . (24.21)

u is related to the “flame-front height” h(x, t) by u = hx, so E can be
interpreted as the mean energy density (24.22).

PDEs - 24apr2007 ChaosBook.org/version11.9.1, Apr 24 2007



24.7. ENERGY BUDGET 449

Even though KS is a phenomenological small-amplitude model equation,
the time-dependent quantity

E =
1
L

∫ L

0
dxV (x, t) =

1
L

∫ L

0
dx

u2

2
(24.22)

has a physical interpretation as the average “energy” density of the flame
front. This analogy to the corresponding definition of the mean kinetic
energy density for the Navier-Stokes will be useful in what follows.

The energy (24.22) is also the quadratic norm in the Fourier space,

E =
∞∑
k=1

Ek , Ek = 1
2 |ak|

2 . (24.23)

Take time derivative of the energy density (24.22), substitute (24.2) and
integrate by parts. Total derivatives vanish by the spatial periodicity on
the L domain:

Ė = 〈ut u〉 = −
〈

(
u2

2
+ uux + uuxxx)xu

〉
=

〈
+ux

u2

2
+ (ux)2 + ux uxxx

〉
. (24.24)

Substitution by (??) verifies that for an equilibrium E is constant:

Ė =
〈(

u2

2
+ ux + uxxx

)
ux

〉
= E 〈ux〉 = 0 .

The first term in (24.24) vanishes by integration by parts,
〈
(u3)x

〉
= 3

〈
ux u

2
〉

=
0 , and integrating the third term by parts yet again we get that the energy
variation

Ė =
〈
(ux)2

〉
−
〈
(uxx)2

〉
(24.25)

balances the KS equation (24.2) power pumped in by the anti-diffusion uxx
against energy dissipated by the hypervicosity uxxxx.

In figure 24.8 we plot the power input
〈
(ux)2

〉
vs. dissipation

〈
(uxx)2

〉
for all L = 22 equilibria and relative equilibria determined so far, several
periodic orbits and relative periodic orbits, and for a typical “turbulent”
evolution. The time averaged energy density E computed on a typical
orbit goes to a constant, so the expectation values (24.26) of drive and
dissipation exactly balance each out:

Ė = lim
t→∞

1
t

∫ t

0
dτ Ė = (ux)2 − (uxx)2 = 0 . (24.26)
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Figure 24.8: Power input
〈
(ux)2

〉
vs. dissipation

〈
(uxx)2

〉
for L = 22 equilibria

and relative equilibria, for several periodic orbits and relative periodic orbits, and for
a typical “turbulent” state. Note that (up,x)2 of the (Tp, dp) = (32.8, 10.96) relative
periodic orbit, figure ??(c), which appears well embedded within the turbulent state,
is close to the turbulent expectation (ux)2. (from ref. [24.7])

In particular, the equilibria and relative equilibria sit on the diagonal in fig-
ure 24.8, and so do time averages computed on periodic orbits and relative
periodic orbits:

Ep =
1
Tp

∫ Tp

0
dτ E(τ)

(ux)2p =
1
Tp

∫ Tp

0
dτ

〈
(ux)2

〉
= (uxx)2p . (24.27)

In the Fourier basis (24.23) the conservation of energy on average takes
form

0 =
+∞∑
k=1

((k/L̃)2 − (k/L̃)4)Ek , Ek(t) = |ak(t)|2 . (24.28)
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Figure 24.9: E1 (red), E2 (green), E3 (blue), connections from E1 to A(L/4)E1

(green), from A(L/4)E1 to E1 (yellow-green) and from E3 to A(L/4)E1 (blue), along
with a generic long-time “turbulent” evolution (grey) for L = 22. Three different
projections of the (E,

〈
(ux)2

〉
,
〈
(uxx)2

〉
)−

〈
(ux)2

〉
) representation are shown. (from

ref. [24.7])

The large k convergence of this series is insensitive to the system size L;
Ek have to decrease much faster than 1/(k/L̃)4. Deviation of Ek from
this bound for small k determines the active modes. This may be useful to
bound the number of equilibria, with the upper bound given by zeros of a
small number of long wavelength modes.

Commentary

Remark 24.1 Model PDE systems. The theorem on finite dimensionality of in-
ertial manifolds of state space contracting PDE flows is proven in ref. [24.1].
The Kuramoto-Sivashinsky equation was introduced in refs. [24.2, 24.3]. Holmes,
Lumley and Berkooz [24.5] offer a delightful discussion of why this system deserves
study as a staging ground for studying turbulence in full-fledged Navier-Stokes
equation. How good a description of a flame front this equation is need not con-
cern us here; suffice it to say that such model amplitude equations for interfacial
instabilities arise in a variety of contexts - see e.g. ref. [24.6] - and this one is perhaps
the simplest physically interesting spatially extended nonlinear system. This
chapter is based on V. Putkaradze’s term project (see ChaosBook.org/extras).
and on the Christiansen et al. article [24.4].

For equilibria the L-independent bound on E is given by Michaelson [?]. The
best current bound[?, ?] on the long-time limit of E as a function of the system
size L scales as E ∝ L3/2.

Résumé

Turbulence is the graveyard of theories
Hans W Liepmann

We have learned that an instanton is an analytic solution of Yang-
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Mills equations of motion, but shouldn’t a strongly nonlinear field theory
dynamics be dominated by turbulent solutions? How are we to think about
systems where every spatiotemporal solution is unstable?

Here we think of turbulence in spatially extended systems in terms of
recurrent spatiotemporal patterns. Pictorially, dynamics drives a given
spatially extended system through a repertoire of unstable patterns; as we
watch a turbulent system evolve, every so often we catch a glimpse of a
familiar pattern:

=⇒ other swirls =⇒

For any finite spatial resolution, the system follows approximately for a
finite time a pattern belonging to a finite alphabet of admissible patterns,
and the long term dynamics can be thought of as a walk through the space
of such patterns. Recasting this image into mathematics is the subject of
this book.

The problem one faces with high-dimensional flows is that their topology
is hard to visualize, and that even with a decent starting guess for a point
on a periodic orbit, methods like the Newton-Raphson method are likely to
fail. Methods that start with initial guesses for a number of points along the

☞ chapter 32
cycle, such as the multipoint shooting method of sect. 17.3, are more robust.
The relaxation (or variational) methods take this strategy to its logical
extreme, and start by a guess of not a few points along a periodic orbit,
but a guess of the entire orbit. As these methods are intimately related to
variational principles and path integrals, we postpone their introduction to
chapter 32.

At present the theory is in practice applicable only to systems with a
low intrinsic dimension – the minimum number of coordinates necessary
to capture its essential dynamics. If the system is very turbulent (a
description of its long time dynamics requires a space of very high intrinsic
dimension) we are out of luck.
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Exercises

Exercise 24.1 Galilean invariance of the Kuramoto-Sivashinsky equation.

(a) Verify that the Kuramoto-Sivashinsky equation is Galilean invariant: if
u(x, t) is a solution, then v+ u(x+ 2vt, t), with v an arbitrary constant
velocity, i s also a solution.

(b) Verify that mean

〈u〉 =
1
L

∫
L
dxu

is conserved by the flow.

(c) Argue that the choice (24.5) of the vanishing mean velocity, 〈u〉 = 0
leads to no loss of generality in calculations that follow.

(d) [thinking is extra cost] Inspection of various “turbulent” solu-
tions of Kuramoto-Sivashinsky equation reveals subregions of “traveling
waves” with locally nonzero 〈u〉. Is there a way to use Galilean invariance
locally, even though we eliminated it by the 〈u〉 = 0 condition?

Exercise 24.2 Infinite dimensional dynamical systems are not smooth.
Many of the operations we consider natural for finite dimensional systems do not have
smooth behavior in infinite dimensional vector spaces. Consider, as an example, a
concentration φ diffusing on R according to the diffusion equation

∂tφ =
1
2
∇2φ .

(a) Interpret the partial differential equation as an infinite dimensional dynamical
system. That is, write it as ẋ = F (x) and find the velocity field.

(b) Show by examining the norm

‖φ‖2 =
∫

R

dxφ2(x)

that the vector field F is not continuous.

(c) Try the norm

‖φ‖ = sup
x∈R

|φ(x)| .

Is F continuous?

(d) Argue that the semi-flow nature of the problem is not the cause of our difficulties.

(e) Do you see a way of generalizing these results?
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