
Chapter 26

Universality in transitions to

chaos

The developments that we shall describe next are one of those pleasing
demonstrations of the unity of physics. The key discovery was made by
a physicist not trained to work on problems of turbulence. In the fall of
1975 Mitchell J. Feigenbaum, an elementary particle theorist, discovered a
universal transition to chaos in one-dimensional unimodal map dynamics.
At the time the physical implications of the discovery were nil. During the
next few years, however, numerical and mathematical studies established
this universality in a number of realistic models in various physical settings,
and in 1980 the universality theory passed its first experimental test.

The discovery was that large classes of nonlinear systems exhibit transi-
tions to chaos which are universal and quantitatively measurable. This ad-
vance was akin to (and inspired by) earlier advances in the theory of phase
transitions; for the first time one could, predict and measure “critical ex-
ponents” for turbulence. But the breakthrough consisted not so much in
discovering a new set of universal numbers, as in developing a new way to
solve strongly nonlinear physical problems. Traditionally, we use regular
motions (harmonic oscillators, plane waves, free particles, etc.) as zeroth-
order approximations to physical systems, and account for weak nonlinear-
ities perturbatively. We think of a dynamical system as a smooth system
whose evolution we can follow by integrating a set of differential equations.
The universality theory tells us that the zeroth-order approximations to
strongly nonlinear systems should be quite different. They show an amaz-
ingly rich structure which is not at all apparent in their formulation in
terms of differential equations; instead, they exhibit self-similar structures
which can be encoded by universality equations of a type which we will
describe here. To put it more provocatively: junk your old equations and
look for guidance in clouds’ repeating patterns.

In this chapter we reverse the chronology, describing first a turbulence
experiment, then a numerical experiment, and finally explain the observa-
tions using the universality theory. We will try to be intuitive and concen-
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(a)
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Figure 26.1:

Figure 26.2:

trate on a few key ideas. Even though we illustrate it by onset of turbulence,
the universality theory is by no means restricted to the problems of fluid
dynamics.

26.1 Onset of turbulence

We start by describing schematically the 1980 experiment of Libchaber and
Maurer. In the experiment a liquid is contained in a small box heated from
the bottom. The salient points are:

1. There is a controllable parameter, the Rayleigh number, which is pro-
portional to the temperature difference between the bottom and the
top of the cell.

2. The system is dissipative. Whenever the Rayleigh number is in-
creased, one waits for the transients to die out.

3. The container, figure 26.1(a), has a small “aspect ratio”; its width is
a small integer multiple of its height, approximately.

For small temperature gradients there is a heat flow across the cell, but
the liquid is static. At a critical temperature a convective flow sets in. The
hot liquid rises in the middle, the cool liquid flows down at the sides, and
two convective rolls appear. So far everything is as expected from standard
bifurcation scenarios. As the temperature difference is increased further,
the rolls become unstable in a very specific way - a wave starts running
along the roll, figure 26.1(b).

As the warm liquid is rising on one side of the roll, while cool liquid is
descending down the other side, the position and the sideways velocity of
the ridge can be measured with a thermometer, figure 26.2. One observes a
sinusoid, figure 26.3. The periodicity of this instability suggests two other
ways of displaying the measurement, figure 26.4.
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Figure 26.3:

Figure 26.4:

Now the temperature difference is increased further. After the stabiliza-
tion of the phase-space trajectory, a new wave is observed superimposed on
the original sinusoidal instability. The three ways of looking at it (real time,
phase space, frequency spectrum) are sketched in figure 26.5. A coarse mea-
surement would make us believe that T0 is the periodicity. However, a closer
look reveals that the phase-space trajectory misses the starting point at T0,
and closes on itself only after 2T0. If we look at the frequency spectrum, a
new wave band has appeared at half the original frequency. Its amplitude
is small, because the phase-space trajectory is still approximately a circle
with periodicity T0.

As one increases the temperature very slightly, a fascinating thing hap-
pens: the phase-space trajectory undergoes a very fine splitting, see fig-
ure 26.6. We see that there are three scales involved here. Looking casually,
we see a circle with period T0; looking a little closer, we see a pretzel of
period 2T0; and looking very closely, we see that the trajectory closes on
itself only after 4T0. The same information can be read off the frequency

Figure 26.5:
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Figure 26.6:

Figure 26.7:

spectrum; the dominant frequency is f0 (the circle), then f0/2 (the pretzel),
and finally, much weaker f0/4 and 3f0/4.

The experiment now becomes very difficult. A minute increase in the
temperature gradient causes the phase-space trajectory to split on an even
finer scale, with the periodicity 23T0. If the noise were not killing us, we
would expect these splittings to continue, yielding a trajectory with finer
and finer detail, and a frequency spectrum of figure 26.7, with families of
ever weaker frequency components. For a critical value of the Rayleigh
number, the periodicity of the system is 2∞T0, and the convective rolls
have become turbulent. This weak turbulence is today usually referred
to as the “onset of chaos”. Globally, the rolls persist but are wiggling
irregularly. The ripples which are running along them show no periodicity,
and the spectrum of an idealized, noise-free experiment contains infinitely
many subharmonics, figure 26.8. If one increases the temperature gradient

Figure 26.8:
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Duffing!damped

Figure 26.9:

beyond this critical value, there are further surprises (see, for example,
figure 26.16) which we will not discuss here.

We now turn to a numerical simulation of a simple nonlinear oscillator
in order to start understanding why the phase-space trajectory splits in this
peculiar fashion.

26.2 Onset of chaos in a numerical experiment

In the experiment that we have just described, limited experimental reso-
lution makes it impossible to observe more than a few bifurcations. Much
longer sequences can be measured in numerical experiments. A typical
example is the nonlinear Duffing oscillator cite Arecchi and Lisi

(1982)

✎ 26.2
page 542ẍ + γẋ − x + 4x3 = A cos(ωt) . (26.1)

The oscillator is driven by an external force of frequency ω, with amplitude
A period T0 = 2π/ω. The dissipation is controlled by the friction coefficient
γ. (See (2.6) and example 5.1.) Given the initial displacement and velocity
one can easily follow numerically the state phase-space trajectory of the
system. Due to the dissipation it does not matter where one starts; for
a wide range of initial points the phase-space trajectory converges to an
attracting limit cycle (trajectory loops onto itself) which for some γ = γ0

looks something like figure 26.9. If it were not for the external driving
force, the oscillator would have simply come to a stop. As it is, executing a
motion forced on it externally, independent of the initial displacement and
velocity. Starting at the point marked 1, the pendulum returns to it after
the unit period T0.

However, as one decreases, the same phenomenon is observed as in
the turbulence experiment; the limit cycle undergoes a series of period-
doublings, figure 26.10. The trajectory keeps on nearly missing the starting
point, until it hits after exactly 2nT0. The phase-space trajectory is getting
increasingly hard to draw; however, the sequence of points 1, 2, . . ., 2n,
which corresponds to the state of the oscillator at times T0, 2T0, . . ., 2nT0,
sits in a small region of the phase space, so in figure 26.11 we enlarge it
for a closer look. Globally the trajectories of the turbulence experiment

ChaosBook.org/version11.9, Dec 4 2006 UFO - 15nov2006

526 CHAPTER 26. UNIVERSALITY IN TRANSITIONS TO CHAOS

Figure 26.10:

Figure 26.11:

and of the non-linear oscillator numerical experiment look very different.
However, the above sequence of near misses is local, and looks roughly
the same for both systems. This sequence of points lies approximately
on a straight line, figure 26.12. Let us concentrate on this line, reducing
the dimensionality of the phase space by a Poincaré map. The Poincaré
map contains all the information we need; from it we can read off when
an instability occurs, and how large it is. One varies continuously the
non-linearity parameter (friction, Rayleigh number, etc.) and plots the
location of the intersection points; in the present case, the Poincaré surface
is - for all practical purposes - a smooth 1-dimensional curve, and the
result is a bifurcation tree of figure 26.13. We already have some qualitative

understanding of this plot. The phase-space trajectories we have drawn are
localized (the energy of the oscillator is bounded) so the tree has a finite
span. Bifurcations occur simultaneously because we are cutting a single
trajectory; when it splits, it does so everywhere along its length. Finer
and finer scales characterize both the branch separations and the branch
lengths.

Feigenbaum’s discovery consists of the following quantitative observa-
tions:

Figure 26.12:
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Figure 26.13:

Figure 26.14:

1. The parameter convergence is universal (i.e., independent of the par-
ticular physical system), ∆i/∆i+1 → 4.6692 . . . for i large, see fig-
ure 26.14.

2. The relative scale of successive branch splittings is universal: ǫi/ǫi+1 →
2.5029 . . . for i large, see figure 26.15.

The beauty of this discovery is that if turbulence (chaos) is arrived at
through an infinite sequence of bifurcations, we have two quantitative pre-
dictions:

1. The convergence of the critical Rayleigh numbers corresponding to
the cycles of length 2, 4, 8, 16, . . . is controlled by the universal
convergence parameter δ = 4.6692016 . . . .

Figure 26.15:
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period-doubling!tree
Figure 26.16: A period-doubling tree ob-
served in a small size Kuramoto-Sivashinsky
system, generated under adiabatic change of
the damping parameter (system size). The
choice of projection down to the coordinate
a6 is arbitrary; projected down to any coordi-
nate, the tree is qualitatively the same. The
two upper arrows indicate typical values: for
ν = 0.029910 dynamics appears chaotic, and
ν = 0.029924 there is a “golden-mean” re-
pelling set coexisting with attractive period-3
window. The lower arrow indicates the value at
which upper invariant set with this merges with
its u(x) → −u(−x) symmetry partner. N = 16
Fourier modes truncation of (25.8). Truncation
to N = 17 modes yields a similar figure, with
values for specific bifurcation points shifted by
∼ 10−5 with respect to the N = 16 values.
(from ref. [25.4])

2. The splitting of the phase-space trajectory is controlled by the uni-
versal scaling parameter α = 2.50290787 . . . . As we have indicated
in our discussion of the turbulence experiment, the relative heights of
successive subharmonics measure this splitting and hence α.

⇓PRELIMINARY

These universal numbers are measured in a variety of experiments: a
sample of early experiments is given in table ?.

⇑PRELIMINARY

While this universality was derived through study of simple, few-dimensional
systems (pendulum, oscillations along a convective roll), it also applies to
high- or even infinite-dimensional systems, such as. discretizations of the
Navier-Stokes equations, and in the literature there are innumerable other
examples of period-doublings in many-dimensional systems. A wonderful
thing about this universality is that it does not matter much how close our
equations are to the ones chosen by nature; as long as the model is in the
same universality class (in practice this means that it can be modeled by
a mapping of form (26.2)) as the real system, both will undergo a period-
doubling sequence. That means that we can get the right physics out of
very simple models, and this is precisely what we will do next.

Example 26.1 Period doubling tree in a flame flutter. For ν > 1, u(x, t) = 0 is
the globally attractive stable equilibrium; starting with ν = 1 the solutions go through
a rich sequence of bifurcations.use Holmes-Lumley

discussion
might prefer arti-
cles/vachtang/feig16.ps

Figure 26.16 is a representative plot of the period-doubling tree for the Poincaré
map P . To obtain this figure, we took a random initial point, iterated it for a some
time to let it settle on the attractor and then plotted the a6 coordinate of the next
1000 intersections with the Poincaré section. Repeating this for different values of the
damping parameter ν, one can obtain a picture of the attractor as a function of ν; the
dynamics exhibits a rich variety of behaviors, such as strange attractors, stable limit
cycles, and so on.
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Figure 26.17:

Figure 26.18:

The reason why multidimensional dissipative systems become effectively
one-dimensional is that: for a dissipative system phase-space volumes shrink.
They shrink at different rates in different directions, as in figure 26.17. The
direction of the slowest convergence defines a one-dimensional line which
will contain the attractor (the region of the phase space to which the tra-
jectory is confined at asymptotic times):

What we have presented so far are a few experimental facts; we now
have to convince you that they are universal.

26.3 What does all this have to do with fishing?

Looking at the phase-space trajectories shown earlier, we observe that the
trajectory bounces within a restricted region of the phase space. How does
this happen? One way to describe this bouncing is to plot the (n+1)th
intersection of the trajectory with the Poincaré surface as a function of
the preceding intersection. Referring to figure 26.12 we find the map of
figure 26.18. This is a Poincaré return map for the limit cycle. If we start
at various points in the phase space (keeping the non-linearity parameter
fixed) and mark all passes as the trajectory converges to the limit cycle, we
trace an approximately continuous curve f(x) of figure 26.19. which gives
the location of the trajectory at time t + T0 as a function of its location at
time t:

xn+1 = f(xn), (26.2)

The trajectory bounces within a trough in the phase space, and f(x) gives
a local description of the way the trajectories converge to the limit cycle.
In principle we know f(x), as we can measure it (see Simoyi, Wolf and ⇓PRELIMINARY
Swinney (1982) for a construction of a return map in a chemical turbulence
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Figure 26.19:

Figure 26.20: Correspondence between (a)
the Mandelbrot set, shown in plane (Reλ, Imλ)
for the map zk+1 = λ−z2

k , and (b) the period-
doubling bifurcation tree plane (λ, x), x, λ ∈ R.
(from ref. [26.14])

experiment , or compute it from the equations of motion. The form of f(x) ⇑PRELIMINAR
depends on the choice of Poincaré map, and an analytic expression for f(x)
is in general not available (see Gonzales and Piro (1983) for an example of⇓PRELIMINARY
an explicit return map), but we know what f(x) should look like; it has to

⇑PRELIMINARY fall on both sides (to confine the trajectory), so it has a maximum. Around
the maximum it looks like a parabola

f(x) = ao + a2(x − xc)
2 + . . . (26.3)

like any sensible polynomial approximation to a function with a hump.ask for permission to
use figure 26.20

This brings us to the problem of a rational approach to fishery. By
means of a Poincaré map we have reduced a continuous trajectory in phase
space to one-dimensional iteration. This one-dimensional iteration is stud-
ied in population biology, where f(x) is interpreted as a population curve
(the number of fish xn+1 in the given year as a function of the number of
fish xn the preceding year), and the bifurcation tree figure 26.13 has been
studied in considerable detail.

The first thing we need to understand is the way in which a trajectory
converges to a limit cycle. A numerical experiment will give us something
like figure 26.21. In the Poincaré map the limit trajectory maps onto itself,
x∗ = f(x∗) . Hence a limit trajectory corresponds to a fixed point of f(x).
Take a programmable pocket calculator and try to determine x∗. Type in
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Figure 26.21:
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Figure 26.22:

a simple approximation to f(x), such as

f(x) = λ − x2 . (26.4)

Here λ is the non-linear parameter. Enter your guess x0 and press the
button. The number x1 appears on the display. Is it a fixed point? Press
the button again, and again, until xn+1 = xn to desired accuracy. Dia-
grammatically, this is illustrated by the web traced out be the trajectory in
figure 26.22. Note the tremendous simplification gained by the use of the
Poincaré map. Instead of computing the entire phase-space trajectory by
a numerical integration of the equations of motion, we are merely pressing
a button on a pocket calculator.

This little calculation confirms one’s intuition about fishery. Given a
fishpond, and sufficient time, one expects the number of fish to stabilize.
However, no such luck - a rational fishery manager soon discovers that
anything can happen from year to year. The reason is that the fixed point
x∗ need not be attractive, and our pocket calculator computation need not
converge.

26.4 A universal equation
universal function →

universal fixed-point
function?

Why is the naive fishery manager wrong in concluding that the number of
fish will eventually stabilize? He is right when he says that x∗ = f(x∗)
corresponds to the same number of fish every year. However, this is not
necessarily a stable situation. Reconsider how we got to the fixed point in
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Figure 26.23:

figure 26.22. Starting with a sufficiently good guess, the iterates converge
to the fixed point. Now start increasing gently the non-linearity parameter
(Rayleigh number, the nutritional value of the pond, etc.). f(x) will slowly
change shape, getting steeper and steeper at the fixed point, until the fixed
point becomes unstable and gives birth to a cycle of two points. This is
precisely the first bifurcation observed in our experiments.

Example 26.2 Fixed point stability.

The fixed point condition for map (26.4) x2 + x− λ = 0 yields 2 fixed points.fix

xpm =
−1 ±

√
1 + 4λ

what?

The fixed point x+ loses stability at λ = −1. Inserted into λ = f
′

(x) = −2x, this
yields

λ = 3/4 , x+ = 1/2

as the value at which fixed point x+ loses stability.

This is the only gentle way in which our trajectory can become unstable
(cycles of other lengths can be created, but that requires delicate fiddling
with parameters; such bifurcations are not generic). Now we return to the
same point after every second iteration✎ 26.1

page 542

xi = f(f(xi)) , i = 1, 2 .

so the cycle points of f(x) are the fixed points of f(f(x)).

To study their stability, we plot f(f(x)) alongside f(x) in figure 26.24.
What happens as we continue to increase the “Rayleigh number”? f(x)
becomes steeper at its fixed point, and so does f(f(x)). Eventually the
magnitude of the slope at the fixed points of f(f(x)) exceeds one, and they
bifurcate. Now the cycle is of length four, and we can study the stability
of the fixed points of the fourth iterate. They too will bifurcate, and so
forth. This is why the phase-space trajectories keep on splitting 2 → 4 →
8 → 16 → 32 · · · in our experiments The argument does not depend on the
precise form of f(x), and therefore the phenomenon of successive period-
doublings is universal.

More amazingly, this universality is not only qualitative. In our analysis
of the stability of fixed points we kept on magnifying the neighborhood
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Figure 26.24:

Figure 26.25:

of the fixed point, figure 26.25. The neighborhoods of successive fixed
points look very much the same after iteration and rescaling. After we
have magnified the neighborhoods of fixed points many times, practically
all information about the global shape of the starting function f(x) is lost,
and we are left with a universal function g(x). Denote by T the operation
indicated in figure 26.25 iterate twice and rescale by (without changing the
non-linearity parameter),

Tf(x) = αf(f(x/α)), (26.5)

g(x) is self-replicating under rescaling and iteration, figure 26.26. More
precisely, this can be stated as the universal equation

g(x) = αg(g(−x/α)), (26.6)

which determines both the universal function g(x) and α = −1/g(1) =
2.50290787 . . ., with normalization convention g(0) = 1.

Example 26.3 An approximate period doubling renormalization. remark, contributor
credits to IsaKuz05c;
also Hellemann

Figure 26.26:
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Figure 26.27: Iteration of the approximate renormalization transformation (26.10).
Dashed line designates the backward iterations starting at the first period doubling
bifurcation point, λ1 = 3/4, and mapping to the further bifurcation points λm.

As the simplest examples of a period-doubling cascade, consider the map

xn+1 = fλ(xn) = λ − x2
n , λ, xǫR . (26.7)

The two fixed points of f , x± = 1±
√

1+4λ
2

, are the roots of x∗ = λ − x2
∗. At λ = 3/4

the stability multiplier Λ = f ′
λ(x∗) of the fixed point x∗ = 1+

√
1+4λ
2

is marginal,
Λ = −2x∗ = −1. For λ > 3/4, the fixed point loses its stability and undergoes
a period-doubling bifurcation. Values λ for subsequent bifurcations can be found by
means of the following approximate renormalization method. Apply the map (26.7)cite Hellemann, ask

about Landau two times:

xn+2 = λ − λ2 + 2λx2
n − x4

n , (26.8)

and drop the quartic term x4
n. By the scale transformation

xn → xn/α0, α0 = −2λ , (26.9)

this can be rewritten in the form xn+2 = λ1 − x2
n, which differs from (26.7) only by

renormalization of λ

λ1 = ϕ(λ) = −2λ(λ − λ2) . (26.10)

The map parametrized by λ, approximates two applications of the original map. Re-
peating the renormalization transformation (26.10) with scale factors αm = −2λm, one
obtains a sequence of the form

xn+2m = λm − x2
n , λm = ϕ(λm−1) . (26.11)

Fixed points of these maps correspond to the 2m-cycles of the original map.
All these cycles, as well as the fixed point of the map (26.7), become unstable at
λm = Λ1 = 3/4. Solving the chain of equations

Λ1 = ϕ(Λ2) Λ2 = ϕ(Λ3) ... Λm−1 = ϕ(Λm) , (26.12)

we get the corresponding sequence of bifurcation values of parameter λ (with λ ≈ Λm

the 2m-cycle of (26.7)). From iteration diagram of figure 26.27 it is evident, that
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this sequence converges with m → ∞ to a definite limit Λ∞, the fixed point of the
renormalization transformation. It satisfies the equation Λ∞ = ϕ(Λ∞), thus Λ∞ =
(1 +

√
3)/2 ≈ 1.37. The scaling factors also converge to the limit: αm → α, where

α = −2Λ∞ ≈ 2.74. The multipliers (Floquet eigenvalues of the 2m-cycles) converge
to µm → µ =

√
1 − 4Λ∞ ≈ −1.54.

From transformation (26.11) on can also describe the convergence of the bifur-
cation sequence:

Λm = ϕ(Λ∞) + ϕ′(Λ∞)(Λm+1 − Λ∞) =
= Λ∞ + δ(Λm+1 − Λ∞)

, (26.13)

where the Feigenbaum δ = ϕ′(Λ∞) = 4+
√

3 ≈ 5.73 characterizes parameter rescaling
for each successive period doubling.

The approximate values of Feigenbaum’s universal space and parameter scaling
constants are reasonably close to the exact values,

exact approximate
α = -2.502· · · -2.74
δ = 4.669· · · 5.73 ,

considering the crudeness of the approximation: the universal fixed-point function g(x)
is here truncated to a quadratic polynomial.

(O.B. Isaeva and S.P. Kuznetsov)

If you arrive at g(x) the way we have, by successive bifurcations and
rescalings, you can hardly doubt its existence. However, if you start with
(26.6) as an equation to solve, it is not obvious what its solutions should look
like. The simplest thing to do is to approximate g(x) by a finite polynomial
and solve the universal equation numerically, by Newton’s method. This
way you can compute α and δ to much higher accuracy than you can ever
hope to measure them to experimentally.

There is much pretty mathematics in universality theory. Despite its
simplicity, nobody seems to have written down the universal equation be- comment about uni-

versal equation
fore 1976, so the subject is still young. We do not have a series expansion
for α, or an analytic expression for g(x); the numbers that we have are
obtained by boring numerical methods. So far, all we know is that g(x)
exists. What has been proved is that the Newton iteration converges, so we
are no wiser for the result. In some situations the universal equation (26.6) ⇓PRELIMINARY

make up a example
has analytic solutions; we shall return to this in the discussion of intermit-
tency (SECTION 10). The universality theory has also been extended to
iterations of complex polynomials (SECTION 12). ⇑PRELIMINARY

To see why the universal function must be a rather crazy function, con-
sider high iterates of f(x) for parameter values corresponding to 2-, 4- and
8-cycles, figure 26.28. If you start anywhere in the unit interval and iterate
a very large number of times, you end up in one of the cycle points. For
the 2-cycle there are two possible limit values, so f(f(. . . f(x))) resembles
a castle battlement. Note the infinitely many intervals accumulating at
the unstable x = 0 fixed point. In a bifurcation of the 2-cycle into the
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Figure 26.28:

4-cycle each of these intervals gets replaced by a smaller battlement. After
infinitely many bifurcations this becomes a fractal (i.e., looks the same un-
der any enlargement), with battlements within battlements on every scale.
Our universal function g(x) does not look like that close to the origin, be-
cause we have enlarged that region by the factor α = 2.5029 . . . after each
period-doubling, but all the wiggles are still there; you can see them in
Feigenbaum’s (1978) plot of g(x). For example, (26.6) implies that if x∗remark 1978

is a fixed point of g(x), so is α(x∗). Hence g(x) must cross the lines y = x
and y = −x infinitely many times. It is clear that while around the origin
g(x) is roughly a parabola and well approximated by a finite polynomial,
something more clever is needed to describe the infinity of g(x)’s wiggles
further along the real axis and in the complex plane.

All this is fun, but not essential for understanding the physics of the
onset of chaos. The main thing is that we now understand where the
universality comes from. We start with a complicated many-dimensional
dynamical system. A Poincaré map reduces the problem from a study of
differential equations to a study of discrete iterations, and dissipation re-
duces this further to a study of one-dimensional iterations (now we finally
understand why the phase-space trajectory in the turbulence experiment
undergoes a series of bifurcations as we turn the heat up!). The successive
bifurcations take place in smaller and smaller regions of the phase space. Af-
ter n bifurcations the trajectory splittings are of order α−n = (0.399 . . .)−n
and practically all memory of the global structure of the original dynami-
cal system is lost (see figure 26.29). The asymptotic self-similarities can be
encoded by universal equations. The physically interesting scaling numbers
can be quickly estimated by simple truncations of the universal equations,
such as example 26.3 (May and Oster 1980, Derrida and Pomeau 1980,

⇓PRELIMINARY
Helleman 1980a, Hu 1981). The full universal equations are designed for

⇑PRELIMINARY accurate determinations of universal numbers; as they have built-in rescal-
ing, the round-off errors do not accumulate, and the only limit on the
precision of the calculation is the machine precision of the computer.

Anything that can be extracted from the asymptotic period-doubling
regime is universal; the trick is to identify those universal features that have
a chance of being experimentally measurable. We will discuss several such
extensions of the universality theory in the remainder of this introduction.
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Figure 26.29:

26.5 The unstable manifold

Feigenbaum delta

δ = lim
n→∞

=
rn−1 − rn

rn − rn+1
= 4.6692016 . . . (26.14)

is the universal number of the most immediate experimental import - it
tells us that in order to reach the next bifurcation we should increase the
Rayleigh number (or friction, or whatever the controllable parameter is in
the given experiment) by about one fifth of the preceding increment. Which
particular parameter is being varied is largely a question of experimental
expedience; if r is replaced by another parameter R = R(r), then the Taylor
expansion

R(r) = R(r∞) + (r − r∞)R′(r∞) + (r − r∞)2R′′(r∞)/2 + · · ·

yields the same asymptotic delta ✎ 26.3
page 543

δ ≃ R(rn−1) − R(rn)

R(rn) − R(rn+1)
=

rn+1 − rn

rn − rn+1
+ O(δn) (26.15)

providing, of course, that R′(r∞) is non-vanishing (the chance that a phys-
ical system just happens to be parametrized in such a way that R′(r∞) = 0
is nil).

In deriving the universal equation (26.6) we were intentionally sloppy,
because we wanted to introduce the notion of encoding self-similarity by
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Figure 26.30:

universal equations without getting entangled in too much detail. We ob-
tained a universal equation which describes the self-similarity in the x-
space, under iteration and rescaling by α. However, the bifurcation tree
figure 26.13 is self-similar both in the x-space and the parameter space:
each branch looks like the entire bifurcation tree. We will exploit this fact
to construct a universal equation which determines both α and δ.

Let T ∗ denote the operation of iterating twice, rescaling x by α, shifting

the non-linearity parameter to the corresponding value at the next bifurca-
tion (more precisely, the value of the nonlinearity parameter with the same
stability, i.e., the same slope at the cycle points), and rescaling it by δ:

T ∗fRn+∆np(x) = αnf
(2)
Rn+∆n(1+p/δn)(x/αn) (26.16)

Here Rn is a value of the non-linearity parameter for which the limit cycle
is of length 2n, ∆n is the distance to Rn+1, δn = ∆n/∆n+1, p provides
a continuous parametrization, and we apologize that there are so many
subscripts. T ∗ operation encodes the self-similarity of the bifurcation tree
figure 26.13, see figure 26.30:

For example, if we take the fish population curve f(x) (26.4) with R
value corresponding to a cycle of length 2n, and act with T ∗, the result
will be a similar cycle of length 2n, but on a scale α times smaller. If we
apply T ∗ infinitely many times, the result will be a universal function with
a cycle of length 2n:

gp(x) = (T ∗)∞fR+p∆
(x) (26.17)

If you can visualize a space of all functions with quadratic maximum, you
will find figure 26.31 helpful. Each transverse sheet is a manifold consist-
ing of functions with 2n-cycle of given stability. T ∗ moves us across this
transverse manifold toward gp.

gp(x) is invariant under the self-similarity operation T ∗, so it satisfies a
universal equation

gp(x) = αg1+p/δ(g1+p/δ(x/α)) (26.18)
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Figure 26.31:

p parameterizes a one-dimensional continuum family of universal functions.
Our first universal equation (26.6) is the fixed point of the above equation:

p∗ = 1 + p∗/δ (26.19)

and corresponds to the asymptotic 2∞-cycle.

The family of universal functions parametrized by p is called the unstable

manifold because T -operation (26.5) drives p away from the fixed point
value g(x) = gp∗(x).

You have probably forgotten by now, but we started this section promis-
ing a computation of δ. This we do by linearizing the equations (26.18)
around the fixed point p∗. Close to the fixed point gp(x) does not differ
much from g(x), so one can treat it as a small deviation from g(x):

gp(x) = g(x) + (p − p∗)h(x)

Substitute this into (26.18), keep the leading term in p − p∗, and use the
universal equation (26.6). This yields a universal equation for δ:

g′(g(x))h(x) + h(g(x)) = (δ/α)h(x) (26.20)

We already know g(x) and α, so this can be solved numerically by poly-
nomial approximations, yielding δ = 4.6692016 . . ., together with a part of
the spectrum of eigenvalues and eigenvectors h(x).

Actually, one can do better with less work; T ∗-operation treats the
coordinate x and the parameter p on the same footing, which suggests that
we should approximate the entire unstable manifold by a double power
series

gp(x) =

N∑

j=0

N∑

k=0

cjkx
2jpk (26.21)
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The scale of x and p is arbitrary. We will fix it by the normalization
conditions

g0(0) = 0 , (26.22)

g1(0) = 1
g1(1) = 0 ,

(26.23)

The first condition means that the origin of p corresponds to the superstable
fixed point. The second condition sets the scale of x and p by the super-
stable 2-cycle. (Superstable cycles are the cycles which have the maximum
of the map as one of the cycle points.) Start with any simple approximation
to gp(x) which satisfies the above conditions (for example, g(x) = p − x2).
Apply the T ∗-operation (26.16) to it. This involves polynomial expansions
in which terms of order higher than M and N in (26.21) are dropped.
Now find by Newton’s method the value of δ which satisfies normalization
(26.23). This is the only numerical calculation you have to do; the condition
(26.23) automatically yields the value of α. The result is a new approx-
imation to gp. Keep applying T ∗ until the coefficients in (26.21) repeat;
this has moved the approximate gp toward the unstable manifold along the
transverse sheets indicated in figure 26.31. Computationally this is straight-
forward, the accuracy of the computation is limited only by computer pre-
cision, and at the end you will have α, δ and a polynomial approximation
to the unstable manifold gp(x).

As δ controls the convergence of the high iterates of the initial mapping
toward their universal limit g(x), it also controls the convergence of most
other numbers toward their universal limits, such as the scaling number
αn = α + O(δ−n), or even δ itself, δn = δ + O(δ−n). As 1/δ = 0.2141 . . .,
the convergence is very rapid, and already after a few bifurcations the uni-
versality theory is good to a few per cent. This rapid convergence is both
a blessing and a curse. It is a theorist’s blessing because the asymptotic
theory applies already after a few bifurcations; but it is an experimental-
ist’s curse because a measurement of every successive bifurcation requires
a fivefold increase in the experimental accuracy of the determination of the
non-linearity parameter r.⇓PRELIMINARY

26.6 Cookie-cutter’s universality

Refs. [18.2, 18.6]: cycle expansion for δ.

Ref. [26.11]: method for computation of the generalized dimensions of
fractal attractors at the period-doubling transition to chaos, via an eigen-
value problem formulated in terms of functional equations, with a coefficient
expressed in terms of Feigenbaum’s universal fixed-point function.⇑PRELIMINARY
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Commentary

Remark 26.1 Sources. This chapter is based on a Nordita lecture prepared
together with Mogens Høgh Jensen (Cvitanović and Høgh Jensen 1982). Ulla
Selmer prepared the drawings, Oblivia Kaypro stood for initial execution.

The universal equation (26.6) was formulated by P. Cvitanović in March 1976,
in collaboration with M.J. Feigenbaum [26.2]. Equation (26.19) is not necessar-
ily the only way to formulate universality. Coullet and Tresser [26.5] have pro-
posed similar equations, after Feigenbaum’s work became known, but before Joel
Lebowitz rescued him from the referees and arranged for its publication. Daido
(1981a) has introduced a different set of universal equations. find Hoppensteadt

(1978)

We recommend review by May [26.6]

If f(x) is not quadratic around the maximum, the universal numbers will be
different - see Villela Mendés (1981) and Hu and Mao (1982b) for their values.
According to Kuramoto and Koga (1982) such mappings can arise in chemical
turbulence.

The elegant unstable manifold formulation of universality (26.18) is due to Vul
and Khanin (1982) and Goldberg, Sinai and Khanin (1983).

Derrida, Gervois and Pomeau (1979) have extracted a great many metric uni-
versalities from the asymptotic regime. Grassberger (1981) has computed the
Hausdorff dimension of the asymptotic attractor. Lorenz (1980) and Daido (1981b)
have found a universal ratio relating bifurcations and reverse bifurcations.

A nice description of initial experiments has been given by Libchaber and
Maurer(1981). The most thorough exposition available is the Collet and Eck-
mann [26.4] monograph. We also recommend Hu (1982), Crutchfield, Farmer and
Huberman (1982), Eckmann (1981) and Ott (1981).

Collet and Eckmann (1980a) and Collet, Eckmann and Koch (1980) give a
detailed description of how a dissipative system becomes one-dimensional.

The period route to turbulence that we describe is by no means the only one;
see Eckmann (1981) discussion of other routes to chaos.

The geometric parameter convergence was first noted by Myrberg (1958), and
independently of Feigenbaum, by Grossmann and Thomae (1977). These authors
have not emphasized the universality of δ.

Refs. [26.9, T.5, 26.10] are interesting; they compute solutions of the period-
doubling fixed point equation using methods of Schöder and Abel, yielding what
are so far the most accurate δ and α.

The theory of period-doubling universal equations and scaling functions is
developed in Kenway’s notes of Feigenbaum 1984 Edinburgh lectures [26.3] (trifle
hard to track down).

A nice discussion of circle maps and their physical applications is given in
refs. [28.3] The universality theory for golden mean scalings is developed in refs. [?,
28.7, 28.14] The scaling functions for circle maps are discussed in ref. [28.4].

⇓PRELIMINARY
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Remark 26.2 Universality theory for conservative systems. The details of the

universality theory are different for dissipative and conservative systems; however,

the spirit is the same. Almost all that we shall say applies to dissipative systems

we will not discuss conservative systems, but refer the reader to ???.

⇑PRELIMINARY

⇓PRELIMINARY
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