Chapter 11

Qualitative dynamics, for
pedestrians

The classification of the constituents of a chaos, noth-
ing less is here essayed.
Herman Melville, Moby Dick, chapter 32

In this chapter we begin to learn how to use qualitative properties of a flow
in order to partition the phase space in a topologically invariant way, and
name topologically distinct orbits. This will enable us — in chapter 13 — to
count the distinct orbits, and in the process touch upon all the main themes
of this book, going the whole distance from diagnosing chaotic dynamics to
computing zeta functions.

We start by a simple physical example, symbolic dynamics of a 3-disk
game of pinball, and then show that also for smooth flows the qualitative
dynamics of stretching and folding flows enables us to partition the phase
space and assign symbolic dynamics itineraries to trajectories. Here we
illustrate the method on a 1—d approximation to Rossler flow. In chapter 13
we turn this topological dynamics into a multiplicative operation on the
phase space partitions by means of transition matrices/Markov graphs, the
simplest examples of evolution operators. Deceptively simple, this subject
can get very difficult very quickly, so in this chapter we do the first pass, at
a pedestrian level, postponing the discussion of higher-dimensional, cyclist
level issues to chapter 12.

Even though by inclination you might only care about the serious stuff,
like Rydberg atoms or mesoscopic devices, and resent wasting time on
things formal, this chapter and chapter 13 are good for you. Read them.

11.1 Qualitative dynamics

(R. Mainieri and P. Cvitanovi¢)
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Figure 11.1: A trajectory with itinerary
021012.

What can a flow do to the phase space points? This is a very difficult
question to answer because we have assumed very little about the evolution
function f!; continuity, and differentiability a sufficient number of times.
Trying to make sense of this question is one of the basic concerns in the
study of dynamical systems. One of the first answers was inspired by the
motion of the planets: they appear to repeat their motion through the
firmament. Motivated by this observation, the first attempts to describe
dynamical systems were to think of them as periodic.

However, periodicity is almost never quite exact. What one tends to
observe is recurrence. A recurrence of a point xg of a dynamical system is
a return of that point to a neighborhood of where it started. How close
the point zg must return is up to us: we can choose a volume of any size
and shape, and call it the neighborhood My, as long as it encloses xy. For
chaotic dynamical systems, the evolution might bring the point back to the
starting neighborhood infinitely often. That is, the set

{y eEMy: y= ft(.’Eo), t> to} (111)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods of points. This
suggests another way of describing how points move in phase space, which
turns out to be the important first step on the way to a theory of dynamical
systems: qualitative, topological dynamics, or, as it is usually called, sym-
bolic dynamics. As the subject can get quite technical, a summary of the
basic notions and definitions of symbolic dynamics is relegated to sect. 11.6;
check that section whenever you run into obscure symbolic dynamics jar-
gon.

We start by cutting up the phase space up into regions M, Mp, ..., M.
This can be done in many ways, not all equally clever. Any such division
of the phase space into topologically distinct regions is a partition, and we
associate with each region (sometimes referred to as a state) a symbol s
from an N-letter alphabet or state set A = {A,B,C,---,Z}. As the dy-
namics moves the point through the phase space, different regions will be
visited. The visitation sequence - forthwith referred to as the itinerary -
can be represented by the letters of the alphabet A. If, as in the example
sketched in figure 11.1, the phase space is divided into three regions My,
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11.1. QUALITATIVE DYNAMICS 161

23132321

Figure 11.2: Two pinballs that start out very
close to each other exhibit the same qualitative
dynamics _2313_ for the first three bounces, but
due to the exponentially growing separation of
trajectories with time, follow different itineraries
thereafter: one escapes after _2313_, the other
one escapes after _23132321_. 2313

My, and Ma, the “letters” are the integers {0, 1,2}, and the itinerary for
the trajectory sketched in the figureis 0 —2—1+— 01— 2+ - -

If there is no way to reach partition M; from partition M,;, and con-
versely, partition M; from partition M;, the phase space consists of at
least two disconnected pieces, and we can analyze it piece by piece. An
interesting partition should be dynamically connected, i.e., one should be
able to go from any region M; to any other region M; in a finite number
of steps. A dynamical system with such partition is said to be metrically
indecomposable.

In general one also encounters transient regions - regions to which the
dynamics does not return to once they are exited. Hence we have to dis-
tinguish between (for us uninteresting) wandering trajectories that never
return to the initial neighborhood, and the non-wandering set (2.2) of the
recurrent trajectories.

The allowed transitions between the regions of a partition are encoded
in the [N x N|-dimensional transition matriz whose elements take values

T, - { 1 if a transition M; — M; is possible (11.2)

0 otherwise.

The transition matrix encodes the topological dynamics as an invariant law
of motion, with the allowed transitions at any instant independent of the
trajectory history, requiring no memory.

Example 11.1 Complete N-ary dynamics: All transition matrix entries equal
unity (one can reach any region from any other region in one step):

1 1 1
11 ... 1

.= . . (11.3)
1 1 1

Further examples of transition matrices, such as the 3-disk transition matrix (11.5) and
the 1-step memory sparse matrix (11.15), are peppered throughout the text.

ChaosBook.org/version11.9, Dec 4 2006 knead - 5may2006



25 11

page 32

162 CHAPTER 11. QUALITATIVE DYNAMICS, FOR PEDESTRIANS
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Figure 11.3: The 3-disk game of pinball Poincaré section, trajectories emanating
from the disk 1 with ¢y = (arclength, parallel momentum) = (sg, po) , disk radius : cen-
ter separation ratio a:R = 1:2.5. (a) Strips of initial points Mj2, M3 which reach
disks 2, 3 in one bounce, respectively. (b) Strips of initial points Mja1, Mi31 Mis2

and M3 which reach disks 1, 2, 3 in two bounces, respectively. (Y. Lan)

However, knowing that a point from M; reaches M, in one step is
not quite good enough. We would be happier if we knew that any point
in M, reaches M;; otherwise we have to subpartition M; into the points
which land in M}, and those which do not, and often we will find ourselves
partitioning ad infinitum.

Such considerations motivate the notion of a Markov partition, a parti-
tion for which no memory of preceding steps is required to fix the transitions
allowed in the next step. Dynamically, finite Markov partitions can be gen-
erated by ezpanding d-dimensional iterated mappings f : M — M, if M
can be divided into N regions { My, M1,..., My_1} such that in one step
points from an initial region M; either fully cover a region M;, or miss it
altogether,

either M; N f(M;) = 0 or M; C f(My). (11.4)

Let us illustrate what this means by our favorite example, the game of
pinball.

Example 11.2 3-disk symbolic dynamics: Consider the motion of a free point

particle in a plane with 3 elastically reflecting convex disks. After a collision with a disk
a particle either continues to another disk or escapes, and any trajectory can be labeled
by the disk sequence. For example, if we label the three disks by 1, 2 and 3, the two
trajectories in figure 11.2 have itineraries _2313_, 23132321 _ respectively. The 3-disk
prime cycles given in figures 1.6 and 11.6 are further examples of such itineraries.

At each bounce a cone of initially nearby trajectories defocuses (see figure 1.8),
and in order to attain a desired longer and longer itinerary of bounces the initial point
xo = (So0,po) has to be specified with a larger and larger precision, and lie within
initial phase space strips drawn in figure 11.3. Similarly, it is intuitively clear that
as we go backward in time (in this case, simply reverse the velocity vector), we also
need increasingly precise specification of xo = (so,po) in order to follow a given past
itinerary. Another way to look at the survivors after two bounces is to plot My, ,,
the intersection of M, with the strips M,  obtained by time reversal (the velocity
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Figure 11.4: The Poincaré section of the phase space for the binary labeled pinball.
For definitiveness, this set is generated by starting from disk 1, preceded by disk 2.
Indicated are the fixed points 0, 1 and the 2-cycle periodic points 01, 10, together
with strips which survive 1, 2, ... bounces. lteration corresponds to the decimal point
shift; for example, all points in the rectangle [01.01] map into the rectangle [010.1] in
one iteration. See also figure 11.6 (b).
changes sign singg — —sing). M, s,, figure 11.4, is a “rectangle” of nearby

trajectories which have arrived from the disk s, and are heading for the disk s5.

We see that a finite length trajectory is not uniquely specified by its

finite itinerary, but an isolated unstable cycle is: its itinerary is an in-
finitely repeating block of symbols. More generally, for hyperbolic flows
the intersection of the future and past itineraries, the bi-infinite itinerary
S™.8T = ...5_95_150.515983 - - - specifies a unique trajectory. This is intu-
itively clear for our 3-disk game of pinball, and is stated more formally in
the definition (11.4) of a Markov partition. The definition requires that the
dynamics be expanding forward in time in order to ensure that the cone
of trajectories with a given itinerary becomes sharper and sharper as the
number of specified symbols is increased.

Example 11.3 Pruning rules for a 3-disk alphabet: As the disks are convex,
there can be no two consecutive reflections off the same disk, hence the covering sym-
bolic dynamics consists of all sequences which include no symbol repetitions _11_, _22_,
_33_. This is a finite set of finite length pruning rules, hence, the dynamics is a subshift
of finite type (see (11.24) for definition), with the transition matrix (11.2) given by

T =

—= = O
=

1
1] . (11.5)
0

For convex disks the separation between nearby trajectories increases at every reflection,
implying that the stability matrix has an expanding eigenvalue. By the Liouville phase-
space volume conservation (5.23), the other transverse eigenvalue is contracting. This
example demonstrates that finite Markov partitions can be constructed for hyperbolic
dynamical systems which are expanding in some directions, contracting in others.
Further examples are the 1-dimensional expanding mapping sketched in figure 11.8,
and more examples are worked out in sect. 23.2.

Determining whether the symbolic dynamics is complete (as is the case
for sufficiently separated disks), pruned (for example, for touching or over-
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Figure 11.5: Binary labeling of the 3-disk

pinball trajectories; a bounce in which the tra- @7@
jectory returns to the preceding disk is labeled 4 1
0, and a bounce which results in continuation @

{

to the third disk is labeled 1.

lapping disks), or only a first coarse graining of the topology (as, for ex-
ample, for smooth potentials with islands of stability) requires case-by-case
investigation, a discussion we postpone to sect. 11.4 and chapter 12. For the
time being we assume that the disks are sufficiently separated that there is
no additional pruning beyond the prohibition of self-bounces.

W fast track:
sect. 11.3, p. 166
11.2 A brief detour; recoding, symmetries, tilings

\
J Though a useful tool, Markov partitioning is not without drawbacks.
One glaring shortcoming is that Markov partitions are not unique: any of
many different partitions might do the job. The 3-disk system offers a
simple illustration of different Markov partitioning strategies for the same
dynamical system.

The A = {1, 2,3} symbolic dynamics for 3-disk system is neither unique,
nor necessarily the smartest one - before proceeding it pays to exploit the
symmetries of the pinball in order to obtain a more efficient description. In
chapter 22 we shall be handsomely rewarded for our labors.

As the three disks are equidistantly spaced, our game of pinball has a
sixfold symmetry. For instance, the cycles 12, 23, and 13 are related to
each other by rotation by £27/3 or, equivalently, by a relabeling of the
disks. Further examples of such symmetries are shown in figure 1.6. The
disk labels are arbitrary; what is important is how a trajectory evolves as
it hits subsequent disks, not what label the starting disk had. We exploit
this symmetry by recoding, in this case replacing the absolute disk labels by

25 111 relative symbols, indicating the type of the collision.  For the 3-disk game
' of pinball there are two topologically distinct kinds of collisions, figure 11.5:

page 182
@ 112
page 182
)0 pinball returns to the disk it came from (11.6)
ST 1 pinball continues to the third disk. ’

This binary symbolic dynamics has two immediate advantages over the
ternary one; the prohibition of self-bounces is automatic, and the coding
utilizes the symmetry of the 3-disk pinball game in elegant manner. If the
disks are sufficiently far apart there are no further restrictions on symbols,
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b

0
1

01

001
011

0001
0011
0111

00001
00011
00101
00111
01011
01111

000001
000011
000101
000111
001011
001101
001111
010111
011111

7

0000001
0000011
0000101

np p Ny p np D Ny D
7 0001001 8 00001111 9 000001101 9 001001111
0000111 00010111 000010011 001010111
0001011 00011011 000010101 001011011
0001101 00011101 000011001 001011101
0010011 00100111 000100011 001100111
0010101 00101011 000100101 001101011
0001111 00101101 000101001 001101101
0010111 00110101 000001111 001110101
0011011 00011111 000010111 010101011
0011101 00101111 000011011 000111111
0101011 00110111 000011101 001011111
0011111 00111011 000100111 001101111
0101111 00111101 000101011 001110111
0110111 01010111 000101101 001111011
0111111 01011011 000110011 001111101
8 00000001 00111111 000110101 010101111

00000011 01011111 000111001 010110111
00000101 01101111 001001011 010111011
00001001 01111111 001001101 001111111
00000111 9 000000001 001010011 010111111
00001011 000000011 001010101 011011111
00001101 000000101 000011111 011101111
00010011 000001001 000101111 011111111
00010101 000010001 000110111
00011001 000000111 000111011
00100101 000001011 000111101

Table 11.1: Prime cycles for the binary symbolic dynamics up to length 9.

the symbolic dynamics is complete, and all binary sequences are admissible

itineraries. As this type of symbolic dynamics pops up frequently, we list

the shortest binary prime cycles in table 11.1. 25 113

page 182

Example 11.4 Recoding ternary symbolic dynamics in binary:
sequence and labels of 2 preceding disks, rule (11.6) fixes the subsequent binary symbols.
Here we list an arbitrary ternanry itinerary, and the corresponding binary sequence:

ternary

binary

The first 2 disks initialize the trajectory and its direction; 3 — 1 — 2 +— -

3121312321231323
10101101011010

Given a ternary

(11.7)

Due

to the 3-disk symmetry the six 3-disk sequences initialized by 12, 13, 21, 23, 31, 32
respectively have the same weights, the same size partitions, and are coded by a single
For periodic orbits, the equivalent ternary cycles reduce to binary
cycles of 1/3, 1/2 or the same length. How this works is best understood by inspection
of table 11.2, figure 11.6 and figure 22.3.

binary sequence.

The 3-disk game of pinball is tiled by six copies of the fundamental do-

main, a one-sixth slice of the full 3-disk system, with the symmetry axes
acting as reflecting mirrors, see figure 11.6 (b). Every global 3-disk trajec-
tory has a corresponding fundamental domain mirror trajectory obtained

by replacing every crossing of a symmetry axis by a reflection.

Depending

on the symmetry of the global trajectory, a repeating binary symbols block
corresponds either to the full periodic orbit or to an irreducible segment

ChaosBook.org/version11.9, Dec 4 2006
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Figure 11.6: The 3-disk game of pinball with the disk radius : center separation
ratio a:R = 1:2.5. (a) The three disks, with 12, 123 and 121232313 cycles indicated.
(b) The fundamental domain, i.e., the small 1/6th wedge indicated in (a), consisting
of a section of a disk, two segments of symmetry axes acting as straight mirror walls,
and an escape gap. The above cycles restricted to the fundamental domain are now

the two fixed points 0, 1, and the 100 cycle.

(examples are shown in figure 11.6 and table 11.2). An irreducible segment
corresponds to a periodic orbit in the fundamental domain. Table 11.2 lists
some of the shortest binary periodic orbits, together with the correspond-
ing full 3-disk symbol sequences and orbit symmetries. For a number
of reasons that will be elucidated in chapter 22, life is much simpler in
the fundamental domain than in the full system, so whenever possible our
computations will be carried out in the fundamental domain.

Inspecting the figure 11.3 we see that the relative ordering of regions
with differing finite itineraries is a qualitative, topological property of the
flow, so it makes sense to define a simple “canonical” representative par-
tition which in a simple manner exhibits spatial ordering common to an
entire class of topologically similar nonlinear flows.

& in depth:
‘g chapter 22, p. 387
11.3 Stretch and fold

Symbolic dynamics for N-disk game of pinball is so straightforward that one
may altogether fail to see the connection between the topology of hyperbolic
flows and their symbolic dynamics. This is brought out more clearly by
the 1-dimensional visualization of “stretch & fold” flows to which we turn
now.

Suppose concentrations of certain chemical reactants worry you, or the
variations in the Chicago temperature, humidity, pressure and winds affect
your mood. All such properties vary within some fixed range, and so do
their rates of change. Even if we are studying an open system such as the
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D P gp P P 8
0 12 012 000001 121212131313 093
1 123 Cs 000011 121212313131232323 C§
01 1213 0923 000101 121213 e

001 121232313 (s 000111 121213212123 012
011 121 323 013 001011 121232131323 023
0001 12121313 093 001101 121231323213 013
0011 121231312323 C:,? 001111 121231232312 313123 Cs
0111 12132123 012 010111 121312313231232123 C??
00001 | 121212323231313 | C3 011111 121321323123 13
00011 | 1212132323 013 0000001 | 121212123232323131313 | Cs
00101 | 1212321213 012 0000011 | 12121213232323 013
00111 | 12123 e 0000101 | 12121232121213 019
01011 | 121312321231323 | C3 0000111 | 1212123 e

01111 | 1213213123 0923

Table 11.2: (5, correspondence between the binary labeled fundamental domain
prime cycles p and the full 3-disk ternary labeled cycles p, together with the Cs,
transformation that maps the end point of the p cycle into the irreducible segment
of the p cycle, see sect. 22.2.2. Breaks in the ternary sequences mark repeats of the
irreducible segment. The degeneracy of p cycle is m, = 6n;/n,. The shortest pair of
the fundamental domain cycles related by time reversal (but no spatial symmetry) are
the 6-cycles 001011 and 001101.

3-disk pinball game, we tend to be interested in a finite region around the
disks and ignore the escapees. So a typical dynamical system that we care
about is bounded. If the price for keeping going is high - for example, we
try to stir up some tar, and observe it come to a dead stop the moment we
cease our labors - the dynamics tends to settle into a simple limiting state.
However, as the resistance to change decreases - the tar is heated up and
we are more vigorous in our stirring - the dynamics becomes unstable.

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded back.

At this juncture we show how this works on the simplest example: uni-
modal mappings of the interval. The erudite reader should skim through
this chapter and then take a more demanding path, via the Smale horse-
shoes of chapter 12. Unimodal maps are easier, but physically less mo-
tivated. The Smale horseshoes are the high road, more complicated, but
the right tool to generalize what we learned from the 3-disk dynamics, and
begin analysis of general dynamical systems. It is up to you - unimodal
maps suffice to get quickly to the heart of this treatise.

11.3.1 Temporal ordering: itineraries

In this section we learn how to nmame (and, in chapter 13, how to count)
periodic orbits for the simplest, and nevertheless very instructive case, for
1-dimensional maps of an interval.

Suppose that the compression of the folded interval in figure 11.7 is so
fierce that we can neglect the thickness of the attractor. For example, the
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a C
f(b)
—_—
X f@) ©
(a) a b C

Figure 11.7: (a) A recurrent flow that stretches and folds. (b) The “stretch & fold"

return map on the Poincaré section.

Rossler flow (2.14) is volume contracting, and an interval transverse to the
attractor is stretched, folded and pressed back into a nearly 1-dimensional
interval, typically compressed transversally by a factor of ~ 10" in one
Poincaré section return. In such cases it makes sense to approximate the
return map of a “stretch & fold” flow by a 1-dimensional map.

The simplest mapping of this type is unimodal; interval is stretched
and folded only once, with at most two points mapping into a point in
the refolded interval. A unimodal map f(x) is a 1-dimensional function
R — R defined on an interval M € R with a monotonically increasing (or
decreasing) branch, a critical point (or interval) z. for which f(z.) attains
the maximum (minimum) value, followed by a monotonically decreasing
(increasing) branch. Uni-modal means that the map is a one-humped map
with one critical point within interval M. A multi-modal map has several
critical points within interval M.

Example 11.5 Complete tent map, logistic map: The simplest examples of

unimodal maps are the complete tent map, figure 11.8 (a),

f)=1=2]y=1/2],
and the quadratic map (sometimes also called the logistic map)

2
Ty =1 —azxy,

with the one critical point at x. = 0. Furthe example is the repelling unimodal map

of figure 11.8 (b).

Such dynamical systems are irreversible (the inverse of f is double-valued), but,
as we shall show in sect. 12.2, they may nevertheless serve as effective descriptions of

invertible 2-dimensional hyperbolic flows.
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o1 110 101

Figure 11.8: (a) The complete tent map together with intervals that follow the
indicated itinerary for n steps. (b) A unimodal repeller with the remaining intervals
after 1, 2 and 3 iterations. Intervals marked siss - - - s, are unions of all points that
do not escape in n iterations, and follow the itinerary ST = s1s5 - - s,,. Note that the
spatial ordering does not respect the binary ordering; for example zgg < g1 < 11 <
210. Also indicated: the fixed points xg, 1, the 2-cycle 01, and the 3-cycle 011.

For the unimodal maps of figure 11.8 a Markov partition of the unit interval M
is given by the two intervals { Mo, M1}. We refer to (11.8) as the “complete” tent
map because its symbolic dynamics is complete binary: as both f(My) and f(Mj)
fully cover My and My, the corresponding transition matrix is a [2x 2] matrix with
all entries equal to 1, as in (11.3). As binary symbolic dynamics pops up frequently in
applications, we list the shortest binary prime cycles in table 11.1. % 113

page 182

The critical value denotes either the maximum or the minimum value
of f(x) on the defining interval; we assume here that it is a maximum,
f(ze) > f(x) for all z € M. The critical value f(z.) belongs neither to the
left nor to the right partition M, and is denoted by its own symbol s = C.
As we shall see, its preimages serve as partition boundary points.

The trajectory x1,x2,x3,... of the initial point z( is given by the it-
eration x,4+1 = f(z,). Iterating f and checking whether the point lands
to the left or to the right of x. generates a temporally ordered topological
itinerary (11.17) for a given trajectory,

1 it >,
Sp = { 0 ifx, <z - (11.10)
We shall refer to S*(zg) = .s1s983--- as the future itinerary. Our next

task is to answer the reverse problem: given an itinerary, what is the cor-
responding spatial ordering of points that belong to a given trajectory?
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11.3.2 Spatial ordering, 1-d maps

Suppose you have succeeded in constructing a covering symbolic dynamics,
such as for a well-separated 3-disk system. Now start moving the disks
toward each other. At some critical separation a disk will start blocking
families of trajectories traversing the other two disks. The order in which
trajectories disappear is determined by their relative ordering in space;
the ones closest to the intervening disk will be pruned first. Determin-
ing inadmissible itineraries requires that we relate the spatial ordering of
2y 129 trajectories to their time ordered itineraries.
page 204 . . . . .
The easiest point of departure is to start out by working out this rela-
tion for the symbolic dynamics of 1-dimensional mappings. As it appears
impossible to present this material without getting bogged down in a sea
of 0’s, 1’s and subscripted subscripts, we announce the main result before
embarking upon its derivation:

The admissibility criterion stated in sect. 11.4 eliminates all itineraries
that cannot occur for a given unimodal map.

The tent map (11.8) consists of two straight segments joined at x = 1/2.
The symbol s,, defined in (11.10) equals 0 if the function increases, and 1 if
the function decreases. The piecewise linearity of the map makes it possible
to analytically determine an initial point given its itinerary, a property that
we now use to define a topological coordinatization common to all unimodal
maps.

Here we have to face the fundamental problem of pedagogy: combina-
torics cannot be taught. The best one can do is to state the answer, and
then hope that you will figure it out by yourself. Once you figure it out, feel
free to complain that the way the rule is stated here is incomprehensible.
The tent map point y(S™) with future itinerary S™ is given by converting
the sequence of s,’s into a binary number by the following algorithm:

{wn if s, =0

Wbl = Y 1-w, ifs,=1 > W17
o
ST = Owiwgws... =Y wy/2". (11.11)
n=1
5 116 This follows by inspection from the binary tree of figure 11.9.

page 183

Example 11.6 Converting 7 to S7: v whose itinerary is ST = 0110000 - - - is
given by the binary number v = .010000---. Conversely, the itinerary of v = .01 is
s1=0, f(y)=1—=s2=1, f2(y) = f(1) =1 —s3 =1, etc..

We shall refer to y(S™) as the (future) topological coordinate. wy'’s are
the digits in the binary expansion of the starting point v for the complete
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Figure 11.9: Alternating binary tree relates
the itinerary labeling of the unimodal map fig- . .
ure 11.8 intervals to their spatial ordering. Dot- ° s it x
ted line stands for 0, full line for 1; the binary — _og.~

0.
0

1
sub-tree whose root is a full line (symbol 1) re- - i
000" 01. ~010 1.

11- . )
verses the orientation, due to the orientation ; i i 2
reversing fold in figures 11.7 and 11.8. TT T
tent map (11.8). In the left half-interval the map f(z) acts by multiplica-
tion by 2, while in the right half-interval the map acts as a flip as well as

multiplication by 2, reversing the ordering, and generating in the process
the sequence of s,,’s from the binary digits wy,.

The mapping ro — St(zo) — v = y(ST) is a topological
conjugacy which maps the trajectory of an initial point xy under iteration
of a given unimodal map to that initial point v for which the trajectory of
the “canonical” unimodal map (11.8) has the same itinerary. The virtue of
this conjugacy is that it preserves the ordering for any unimodal map in
the sense that if T > x, then 7 > ~.

11.4 Kneading theory

(K.T. Hansen and P. Cvitanovi¢)

The main motivation for being mindful of spatial ordering of temporal
itineraries is that this spatial ordering provides us with criteria that sep-
arate inadmissible orbits from those realizable by the dynamics. For 1-
dimensional mappings the kneading theory provides such criterion of ad-
missibility.

If the parameter in the quadratic map (11.9) is a > 2, then the iterates
of the critical point x. diverge for n — oo. As long as a > 2, any sequence
ST composed of letters s; = {0, 1} is admissible, and any value of 0 < vy < 1
corresponds to an admissible orbit in the non—wandering set of the map.
The corresponding repeller is a complete binary labeled Cantor set, the
n — oo limit of the nth level covering intervals sketched in figure 11.8.

For a < 2 only a subset of the points in the interval v € [0, 1] corresponds
to admissible orbits. The forbidden symbolic values are determined by
observing that the largest x,, value in an orbit x1 — z9 — x3 — ... has to
be smaller than or equal to the image of the critical point, the critical value
f(z.). Let K = St(z.) be the itinerary of the critical point z.., denoted the
kneading sequence of the map. The corresponding topological coordinate is
called the kneading value

k= (K) = /(S (2.)). (11.12)
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Figure 11.10: The “dike” map obtained by
slicing of a top portion of the tent map fig-
ure 11.8 (a). Any orbit that visits the primary
pruning interval (&, 1] is inadmissible. The ad-
missible orbits form the Cantor set obtained
by removing from the unit interval the primary
pruning interval and all its iterates. Any admis-
sible orbit has the same topological coordinate
and itinerary as the corresponding tent map fig-
ure 11.8 (a) orbit.

A map with the same kneading sequence K as f(z), such as the dike map
figure 11.10, is obtained by slicing off all v (ST (zg)) > &,

fo(v) =2y v € lp=1[0,k/2)
f()=4 f(v) =k yel.=[k/2,1-K/2] . (11.13)
fity) =21 —=v) ~veli=[1-k/21]

The dike map is the complete tent map figure 11.8 (a) with the top sliced
off. It is convenient for coding the symbolic dynamics, as those v values
that survive the pruning are the same as for the complete tent map fig-
ure 11.8 (a), and are easily converted into admissible itineraries by (11.11).

If v(S*) > v(K), the point x whose itinerary is ST would exceed the
critical value, x > f(x.), and hence cannot be an admissible orbit. Let

A(8T) = S;llpv(ffm(S’L)) (11.14)

be the mazimal value, the highest topological coordinate reached by the
orbit ;1 — x9 — x3 — .... We shall call the interval (k,1] the primary
pruned interval. The orbit ST is inadmissible if « of any shifted sequence
of ST falls into this interval.

Criterion of admissibility: Let k be the kneading value of the critical
point, and 4(S™) be the maximal value of the orbit S*. Then the orbit S™
is admissible if and only if ¥(S7) < k.

While a unimodal map may depend on many arbitrarily chosen param-
eters, its dynamics determines the unique kneading value x. We shall call
the topological parameter of the map. Unlike the parameters of the original
dynamical system, the topological parameter has no reason to be either
smooth or continuous. The jumps in x as a function of the map parameter
such as a in (11.9) correspond to inadmissible values of the topological pa-
rameter. Each jump in s corresponds to a stability window associated with
a stable cycle of a smooth unimodal map. For the quadratic map (11.9)
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increases monotonically with the parameter a, but for a general unimodal
map such monotonicity need not hold.

For further details of unimodal dynamics, the reader is referred to ap-
pendix E.1. As we shall see in sect. 12.4, for higher dimensional maps and
flows there is no single parameter that orders dynamics monotonically; as
a matter of fact, there is an infinity of parameters that need adjustment
for a given symbolic dynamics. This difficult subject is beyond our current
ambition horizon.

11.5 Markov graphs

11.5.1 Finite memory

In the complete N-ary symbolic dynamics case (see example (11.3)) the
choice of the next symbol requires no memory of the previous ones. How-
ever, any further refinement of the partition requires finite memory.

For example, for the binary labeled repeller with complete binary sym-
bolic dynamics, we might chose to partition the phase space into four re-
gions { Mg, Mo1, M9, Mi1}, a l-step refinement of the initial partition
{My, M1}. Such partitions are drawn in figure 11.4, as well as figure 1.9.
Topologically f acts as a left shift (12.7), and its action on the rectangle
[.01] is to move the decimal point to the right, to [0.1], forget the past, [.1],
and land in either of the two rectangles {[.10],[.11]}. Filling in the ma-
trix elements for the other three initial states we obtain the 1-step memory
transition matrix acting on the 4-state vector

T00,00 0 Too,10 0 ®00
T 0 T 0 o1

g 01,00 01,10
¢ ¢ 0 T10,01 0 Tho11 ®10
0 T1101 0 Ti111 P11

(11.15)

By the same token, for M-step memory the only nonvanishing matrix ele-
ments are of the form Tsysy...5011,5081..5000 SM+1 € {0,1}. This is a sparse
matrix, as the only non vanishing entries in the m = sgsy...sy column
of T, are in the rows d = s1...sy0 and d = s1...sy71. If we increase
the number of steps remembered, the transition matrix grows big quickly,
as the N-ary dynamics with M-step memory requires an [NM+1 x NM+1]
matrix. Since the matrix is very sparse, it pays to find a compact represen-
tation for T'. Such representation is afforded by Markov graphs, which are
not only compact, but also give us an intuitive picture of the topological
dynamics.

Construction of a good Markov graph is, like combinatorics, unexplain-
able. The only way to learn is by some diagrammatic gymnastics, so we
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Figure 11.11: (a) The self-similarity of the complete binary symbolic dynamics
represented by a binary tree (b) identification of nodes B = A, C' = A leads to the

finite 1-node, 2-links Markov graph. All admissible itineraries are generated as walks
on this finite Markov graph.

Figure 11.12: (a) The 2-step memory Markov graph, links version obtained by
identifying nodes A = D = E = F = G in figure 11.11(a). Links of this graph
correspond to the matrix entries in the transition matrix (11.15). (b) the 2-step
memory Markov graph, node version.
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work our way through a sequence of exercises in lieu of plethora of baffling
definitions.

To start with, what do finite graphs have to do with infinitely long
trajectories? To understand the main idea, let us construct a graph that
enumerates all possible itineraries for the case of complete binary symbolic
dynamics.

Mark a dot “” on a piece of paper. Draw two short lines out of the
dot, end each with a dot. The full line will signify that the first symbol
in an itinerary is “1”, and the dotted line will signifying “0”. Repeat the
procedure for each of the two new dots, and then for the four dots, and
so on. The result is the binary tree of figure 11.11(a). Starting at the top
node, the tree enumerates exhaustively all distinct finite itineraries

{0,1},{00,01, 10, 11}, {000, 001,010, - -}, - - - .

The M = 4 nodes in figure 11.11(a) correspond to the 16 distinct binary
strings of length 4, and so on. By habit we have drawn the tree as the
alternating binary tree of figure 11.9, but that has no significance as far
as enumeration of itineraries is concerned - an ordinary binary tree would
serve just as well.

The trouble with an infinite tree is that it does not fit on a piece of
paper. On the other hand, we are not doing much - at each node we
are turning either left or right. Hence all nodes are equivalent, and can
be identified. To say it in other words, the tree is self-similar; the trees
originating in nodes B and C are themselves copies of the entire tree. The
result of identifying B = A, C' = A is a single node, 2-link Markov graph of
figure 11.11(b): any itinerary generated by the binary tree figure 11.11(a),
no matter how long, corresponds to a walk on this graph.

This is the most compact encoding of the complete binary symbolic
dynamics. Any number of more complicated Markov graphs can do the
job as well, and might be sometimes preferable. For example, identifying
the trees originating in D, F/, F' and G with the entire tree leads to the 2-
step memory Markov graph of figure 11.12a. The corresponding transition
matrix is given by (11.15).

in depth: W fast track:
ﬂ chapter 12, p. 185 chapter 13, p. 205
11.6 Symbolic dynamics, basic notions

In this section we collect the basic notions and definitions of symbolic dy-
namics. The reader might prefer to skim through this material on first
reading, return to it later as the need arises.
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Figure 11.13: (a) The self-similarity of the _00_ pruned binary tree: trees originating
from nodes C' and E are the same as the entire tree. (b) Identification of nodes
A = C = E leads to the finite 2-node, 3-links Markov graph; as 0 is always followed

by 1, the walks on this graph generate only the admissible itineraries.

Shifts. We associate with every initial point x¢g € M the future itinerary, a
sequence of symbols S (zg) = s1s2s3 - - - which indicates the order in which
the regions are visited. If the trajectory 1, xo,x3, ... of the initial point xg
is generated by

Tnt+1 = f(xn)a (1116)
then the itinerary is given by the symbol sequence
Sp =8 if Ty € M. (11.17)

Similarly, the past itinerary S™(zp) = - -+ s_25_180 describes the history of
xg, the order in which the regions were visited before arriving to the point
xg. To each point z( in the dynamical space we thus associate a bi-infinite
itinerary

S(xo) = (sk)keZ = S_.SJF —= ++-85_95_150.518283 """ . (11.18)

The itinerary will be finite for a scattering trajectory, entering and then es-
caping M after a finite time, infinite for a trapped trajectory, and infinitely
repeating for a periodic trajectory.

The set of all bi-infinite itineraries that can be formed from the letters
of the alphabet A is called the full shift

AL = {(sp)pez 1 sp € Afor allk € Z}. (11.19)

The jargon is not thrilling, but this is how professional dynamicists talk to
each other. We will stick to plain English to the extent possible.
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We refer to this set of all conceivable itineraries as the covering symbolic
dynamics. The name shift is descriptive of the way the dynamics acts on
these sequences. As is clear from the definition (11.17), a forward iteration
x — x’ = f(x) shifts the entire itinerary to the left through the “decimal
point”. This operation, denoted by the shift operator o,

U(' ©+8_.95_.150.515283 - ) = +-5_95_-15051-8283 """, (11.20)

demoting the current partition label s; from the future S* to the “has
been” itinerary S~. The inverse shift o~! shifts the entire itinerary one
step to the right.

A finite sequence b = spSky1 - Sgtn,—1 Of symbols from A is called a
block of length n;. A phase space trajectory is periodic if it returns to its
initial point after a finite time; in the shift space the trajectory is periodic
if its itinerary is an infinitely repeating block p>. We shall refer to the set
of periodic points that belong to a given periodic orbit as a cycle

P =38182"8n, = {x8182"'8np7xSQ"'Snp817 T 7xsnps1---snp71} . (1121)

By its definition, a cycle is invariant under cyclic permutations of the sym-
bols in the repeating block. A bar over a finite block of symbols denotes
a periodic itinerary with infinitely repeating basic block; we shall omit the
bar whenever it is clear from the context that the trajectory is periodic.
Each cycle point is labeled by the first n), steps of its future itinerary. For
example, the 2nd cycle point is labeled by

Lsgrsnps1 — L2 5p, 51752 8nps1 -

A prime cycle p of length n, is a single traversal of the orbit; its label is a
block of n, symbols that cannot be written as a repeat of a shorter block
(in literature such cycle is sometimes called primitive; we shall refer to it
as “prime” throughout this text).

Partitions. A partition is called generating if every infinite symbol se-
quence corresponds to a distinct point in the phase space. Finite Markov
partition (11.4) is an example. Constructing a generating partition for a
given system is a difficult problem. In examples to follow we shall con-
centrate on cases which allow finite partitions, but in practice almost any
generating partition of interest is infinite.

A mapping f : M — M together with a partition A induces topological
dynamics (X,0), where the subshift

Y= {(sk)rez}, (11.22)

is the set of all admissible infinite itineraries, and o : ¥ — X is the shift
operator (11.20). The designation “subshift” comes form the fact that
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¥ C A? is the subset of the full shift (11.19). One of our principal tasks in
developing symbolic dynamics of dynamical systems that occur in nature
will be to determine X, the set of all bi-infinite itineraries S that are actually
realized by the given dynamical system.

A partition too coarse, coarser than, for example, a Markov partition,
would assign the same symbol sequence to distinct dynamical trajectories.
To avoid that, we often find it convenient to work with partitions finer than
strictly necessary. Ideally the dynamics in the refined partition assigns a
unique infinite itinerary ---s_ss_180.515983 - - - to each distinct trajectory,
but there might exist full shift symbol sequences (11.19) which are not
realized as trajectories; such sequences are called inadmissible, and we say
that the symbolic dynamics is pruned. The word is suggested by “pruning”
of branches corresponding to forbidden sequences for symbolic dynamics
organized hierarchically into a tree structure, as explained in sect. 11.5.

Pruning. If the dynamics is pruned, the alphabet must be supplemented
by a grammar, a set of pruning rules. After the inadmissible sequences have
been pruned, it is often convenient to parse the symbolic strings into words
of variable length - this is called coding. Suppose that the grammar can be
stated as a finite number of pruning rules, each forbidding a block of finite
length,

G ={bi,ba, by}, (11.23)

where a pruning block b is a sequence of symbols b = s159---5,,, s € A,
of finite length n,. In this case we can always construct a finite Markov
partition (11.4) by replacing finite length words of the original partition by
letters of a new alphabet. In particular, if the longest forbidden block is of
length M + 1, we say that the symbolic dynamics is a shift of finite type
with M-step memory. In that case we can recode the symbolic dynamics
in terms of a new alphabet, with each new letter given by an admissible
block of at most length M. In the new alphabet the grammar rules are
implemented by setting 7;; = 0 in (11.3) for forbidden transitions.

A topological dynamical system (X, o) for which all admissible itineraries
are generated by a finite transition matrix

S ={(sk)rez : Topsps, =1 for all k} (11.24)

is called a subshift of finite type. Such systems are particularly easy to han-
dle; the topology can be converted into symbolic dynamics by representing
the transition matrix by a finite directed Markov graph, a convenient visu-
alization of topological dynamics.

Markov graphs. A Markov graph describes compactly the ways in which
the phase-space regions map into each other, accounts for finite memory
effects in dynamics, and generates the totality of admissible trajectories as
the set of all possible walks along its links.
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b
(a) T — (1 1) (b) a

1 0

Figure 11.14: (a) The transition matrix for a simple subshift on two-state partition
A = {0,1}, with grammar G given by a single pruning block b = 11 (consecutive
repeat of symbol 1 is inadmissible): the state M, maps both onto M, and My,
but the state M; maps only onto M. (b) The corresponding finite 2-node, 3-links
Markov graph, with nodes coding the symbols. All admissible itineraries are generated

as walks on this finite Markov graph.

A Markov graph consists of a set of nodes (or vertices, or states), one
for each state in the alphabet A = {A, B,C,---,Z}, connected by a set of
directed links (edges, arcs). Node i is connected by a directed link to
node j whenever the transition matrix element (11.2) takes value Tj; = 1.
There might be a set of links connecting two nodes, or links that originate
and terminate on the same node. Two graphs are isomorphic if one can
be obtained from the other by relabeling links and nodes; for us they are
one and the same graph. As we are interested in recurrent dynamics, we
restrict our attention to irreducible or strongly connected graphs, i.e., graphs
for which there is a path from any node to any other node.

The simplest example is given in figure 11.14.
in depth:
Q chapter 12, p. 185

Commentary

Remark 11.1 Symbolic dynamics, history and good taste.  For a brief history of
symbolic dynamics, from J. Hadamard in 1898 onward, see Notes to chapter 1 of
Kitchens monograph [11.1], a very clear and enjoyable mathematical introduction
to topics discussed here. Finite Markov graphs or finite automata are discussed in
refs. [11.2, 11.3, 11.4, 11.5]. They belong to the category of regular languages. A
good hands-on introduction to symbolic dynamics is given in ref. [11.0].

The binary labeling of the once-folding map periodic points was introduced
by Myrberg [11.7] for one-dimensional maps, and its utility to two-dimensional
maps has been emphasized in refs. [3.7, 3.11]. For one-dimensional maps it is now
customary to use the R-L notation of Metropolis, Stein and Stein [11.8, 11.9],
indicating that the point z,, lies either to the left or to the right of the critical
point in figure 11.8. The symbolic dynamics of such mappings has been extensively
studied by means of the Smale horseshoes, see for example ref. [11.10]. Using letters
rather than numerals in symbol dynamics alphabets probably reflects good taste.
We prefer numerals for their computational convenience, as they speed up the
implementation of conversions into the topological coordinates (4, ) introduced in
sect. 12.3.1. The alternating binary ordering of figure 11.9 is related to the Gray
codes of computer science [2.8].
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Remark 11.2 Inflating Markov graphs. In the above examples the symbolic

dynamics has been encoded by labeling links in the Markov graph. Alternatively
one can encode the dynamics by labeling the nodes, as in figure 11.12, where the 4
nodes refer to 4 Markov partition regions { Moo, Mo1, M10, M11}, and the 8 links
to the 8 non-zero entries in the 2-step memory transition matrix (11.15).

Résumé

In chapters 14 and 15 we will establish that spectra of evolution operators
can be extracted from periodic orbit sums:

Z(spectral eigenvalues) = Z(periodic orbits) .

In order to implement this theory we need to know what periodic orbits
can exist, and the symbolic dynamics developed above and in chapter 12 is
an invaluable tool toward this end.

W fast track:
chapter 13, p. 205
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