
Chapter 20

Averaging

Why think when you can compute?
—Maciej Zworski

We discuss first the necessity of studying the averages of observables in
chaotic dynamics. A time average of an observable is computed by inte-
grating its value along a trajectory. The integral along trajectory can be

split into a sum of over integrals evaluated on trajectory segments; if exponenti-
ated, this yields a multiplicative weight for successive trajectory segments. This 
elementary observation will enable us to recast the formulas for averages in a mul-
tiplicative form that motivates the introduction of evolution operators and further 
formal developments to come. The main result is that any dynamical average mea-
surable in a chaotic system can be extracted from the spectrum of an appropriately 
constructed evolution operator.

20.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely specified ini-
tial condition, no matter how precise, will fill out the entire accessible state space
after a finite Lyapunov time (1.1). Hence for chaotic dynamics one cannot follow
individual trajectories for a long time; what is attainable, however, is a description
of the geometry of the set of possible outcomes, and the evaluation of long-time
averages. Examples of such averages are transport coefficients for chaotic dynam-
ical flows, such as escape rates, mean drifts and diffusion rates; power spectra; and
a host of mathematical constructs such as generalized dimensions, entropies, and
Lyapunov exponents. Here we outline how such averages are evaluated within the
evolution operator framework. The key idea is to replace the expectation values of
observables by the expectation values of exponential generating functionals. This
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associates an evolution operator with a given observable, and relates the expecta-
tion value of the observable to the leading eigenvalue of the evolution operator.

20.1.1 Time averages

Let a = a(x) b e a n observable, a function that associates a number to each point 
in state space. The observable reports on a property of the dynamical system. The 
observable is a device, such as a thermometer or laser Doppler velocitometer. The 
device itself does not change during the measurement. A temperature measured in 
an experiment at instant τ is an example of an observables. We define the inte-
grated observable A as the time integral of the observable a evaluated along the 
trajectory of the initial point x0,

A(x0, t) =
∫ t

0
dτ a(x(τ)) , x(t) = f t(x0) . (20.1)

If the dynamics are given by an iterated mapping and the time is discrete, the
integrated observable after n iterations is given by

A(x0, n) =
n−1∑
k=0

a(xk) , xk = f k(x0)) (20.2)

(we suppress vectorial indices for the time being).
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Figure 20.1: (a) A typical chaotic trajectory ex-
plores the state space with the long time visitation
frequency building up the natural measure ρ0(x).
(b) time average evaluated along an atypical tra-
jectory such as a periodic orbit fails to explore the
entire accessible state space. (A. Johansen)

(a)

x

M (b)

The integrated observable A(x0, t) and the time average a(x0) take a particu-
larly simple form when evaluated on a periodic orbit. Define

Ap =

⎧⎪⎪⎨⎪⎪⎩ apTp =
∫ Tp

0 dτ a(x(τ)) for a flow
apnp =

∑np

i=1 a(xi) for a map
, x ∈ Mp , (20.4)

where p is a prime cycle, Tp is its period, and np is its discrete time period in the
case of iterated map dynamics. The quantity Ap is a loop integral of the observable
along a single traversal of a prime cycle p, so it is an intrinsic property of the cycle,
independent of the starting point x0 ∈ Mp. If the trajectory retraces itself r times,
we just obtain Ap repeated r times. Evaluation of the asymptotic time average
(20.3) therefore requires only a single traversal of the cycle:

ap = Ap/Tp . (20.5)

20.1.2 Spatial averages

The space average of a quantity a evaluated over all state space trajectories x(t) at
time t is given by the d-dimensional integral over all initial points x0 at time t = 0:

〈a〉(t) = 1
|M|

∫
M

dx0 a(x(t)) , x(t) = f t(x0)

|M| =
∫
M

dx = volume of M . (20.6)

The space M is assumed to have finite volume.
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What is it we really do in experiments? We cannot measure the time average
(20.3), as there is no way to prepare a single initial condition with infinite preci-
sion. The best we can do is prepare an initial density ρ(x), perhaps concentrated on
some small (but always finite) neighborhood. Then we can abandon the uniform
space average (20.6) and consider instead the weighted spatial average

〈a〉ρ(t) =
∫
M

dx0 ρ(x0) a(x(t)) ,
∫

(20.7)

For ergodic mixing systems, any smooth initial density will tend to the asymptotic
natural measure in the t → ∞ limit ρ(x, t) → ρ0(x). This allows us to take any
smooth initial ρ(x) and define the expectation value 〈a〉 of an observable a as the
asymptotic time and space average over the state space M

〈a〉 = 1
|M|

∫
M

dx a(x) = lim
t→∞

1
|M|

∫
M

dx0
1
t

∫ t

0
dτ a(x(t)) . (20.8)

The expectation value is a space average of time averages, with every x ∈ M 
used as a starting point of a time average. The advantage of averaging over space 
is that it smears the starting points which were problematic for the time average 
(such as periodic points). While easy to define, the expectation value 〈a〉 turns out 
not to be particularly tractable in practice.

Here comes a simple idea that is the basis of all that follows: Such averages 
are more conveniently studied by investigating instead of 〈a〉 the space averages 
of form

〈eβ·A〉 = 1
|M|

∫
M

dx eβ·A(x,t) . (20.9)

In the present context β is an auxiliary variable of no physical significance whose
role is to enable us to recover the desired space average by differentiation,

〈Ai〉 =
∂

∂βi
〈eβ·A〉

∣∣∣∣∣
β=0

.

If the time average limit a(x0) (20.3) exists for ‘almost all’ initial x0’s and the
system is ergodic and mixing (in the sense of sect. 1.3.1), we expect the time av-
erage along almost all trajectories to tend to the same value a, and the integrated

average - 25mar2015 ChaosBook.org version15.8, Oct 18 2016

http://youtube.com/embed/H5Vk6bbHvzQ


CHAPTER 20. AVERAGING 368

observable A to tend to t a. The space average (20.9) is an integral over exponen-
tials and hence also grows (or shrinks) exponentially with time. So as t → ∞ we
would expect the space average of exp(βA(x, t)) to grow exponentially with time

〈eβA〉 → (const) ets(β) ,

and its rate of growth (or contraction) to be given by the limit

s(β) = lim
t→∞

1
t

ln〈eβA〉 . (20.10)

Now we understand one reason for why it is smarter to compute 〈exp(βA)〉
rather than 〈a〉: the expectation value of the observable (20.8), the (generalized)
diffusion tensor, and higher moments of the integrated observable (20.1) can be
computed by evaluating the derivatives of s(β)

∂s
∂β j

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t
〈A j〉 = 〈aj〉 ,

∂2s
∂βiβ j

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t

(
〈AiA j〉 − 〈Ai〉〈A j〉

)
= lim

t→∞

1
t
〈(Ai − t 〈ai〉)(A j − t 〈aj〉)〉 = Δi j ,

(20.11)

and so forth. 

If we can compute the function s(β), we have the desired expectation value 
without having to estimate any infinite time limits from finite time data.
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20.3 Evolution operators

For it, the mystic evolution;
Not the right only justified
– what we call evil also justified.

—Walt Whitman,
Leaves of Grass: Song of the Universal

The above simple shift of focus, from studying 〈a〉 to studying 〈exp(βA)〉 is the
key to everything that follows. Make the dependence on the flow explicit by
rewriting this quantity as

〈eβA〉 = 1
|M|

∫
M

dx
∫
M

dy δ
(
y − f t(x)

)
eβA(x,t) . (20.22)

Here δ
(
y − f t(x)

)
is the Dirac delta function: for a deterministic flow an initial

point x maps into a unique point y at time t. Formally, all we have done above is
to insert the identity

1 =
∫
M

dy δ
(
y − f t(x)

)
, (20.23)
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Figure 20.2: Space averaging pieces together the
time average computed along the t → ∞ orbit
of figure 20.1 by a space average over infinitely
many short t trajectory segments starting at all ini-
tial points at once. x1

x2 x2

x1

ρ(x) [Lt ◦ ρ] (x)

into (20.9) to make explicit the fact that we are averaging only over the 
trajectories that remain in M for all times. However, having made this 
substitution we have replaced the study of individual trajectories ft(x) by studying 
the evolution of the density of the totality of initial conditions. Instead of trying to 
extract a temporal average from an arbitrarily long trajectory which explores the 
state space ergodically, we can now probe the entire state space with short (and 
controllable) finite time pieces of trajectories originating from every point in M

We shall refer to the kernel of the operation (20.22) as the evolution operator

Lt(y, x) = δ
(
y − f t(x)

)
eβA(x,t) . (20.24)

The simplest example is the β = 0 case, i.e., the Perron-Frobenius operator intro-
duced in sect. 19.2. The action of the evolution operator on a function φ is given 

by

[
Ltφ

]
(y) =

∫
M

dx δ
(
y − f t(x)

)
eβA(x,t)φ(x) . (20.25)

By its definition, the integral over the observable a is additive along the trajectory

x(t1+t2)

x(0) = x(0)
x(t1)

+

x(t1+t2)

x(t1)

A(x0, t1 + t2) =
∫ t1

0
dτ a( f τ(x)) +

∫ t1+t2

t1
dτ a( f τ(x))

= A(x0, t1) + A( f t1 (x0), t2) .

As A(x, t) is additive along the trajectory, the evolution operator generates a semi-
group
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Lt1+t2 (y, x) =
∫
M

dz Lt2 (y, z)Lt1 (z, x) , (20.26)

as is easily checked by substitution[
Lt2Lt1a

]
(y) =

∫
M

dx δ(y − f t2 (x))eβA(x,t2)
[
Lt1 a

]
(x) =

[
Lt1+t2 a

]
(y) .

This semigroup property is the main reason why (20.22) is preferable to (20.8) as
a starting point for evaluation of dynamical averages: it recasts averaging in form
of operators multiplicative along the flow.

In terms of the evolution operator, the space average of the moment-generating
function (20.22) is given by

〈eβA〉 = 1
|M|

∫
M

dx
∫
M

dy φ(y)Lt(y, x)φ(x) .

where φ(x) is the constant function φ(x) = 1. If the linear operator Lt can be
thought of as a matrix, high powers of a matrix are dominated by its fastest grow-
ing matrix elements, and the limit (20.10)

s(β) = lim
t→∞

1
t

ln〈Lt〉 . (20.27)

yields the leading eigenvalue s0(β), and, through it, all desired expectation values
(20.11).
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Résumé

The expectation value 〈a〉 of an observable a(x) integrated, At(x) =
∫ t

0
dτ a(x(τ)),

and time averaged, At/t, over the trajectory x → x(t) is given by the derivative

〈a〉 = ∂s
∂β

∣∣∣∣∣
β=0

of the leading eigenvalue ets(β) of the evolution operator Lt.

The next question is: How do we evaluate the eigenvalues of L? In example 
20.4, we saw a piecewise-linear example where these operators reduce to finite 
matrices L, but for generic smooth flows, they are infinite-dimensional linear 
operators, and finding smart ways of computing their eigenvalues requires some 
thought. In chapter 14 we undertook the first step, and replaced the ad hoc parti-
tioning (19.11) by the intrinsic, topologically invariant partitioning. In chapter18 
we applied this information to our first application of the evolution operator for-
malism, evaluation of the topological entropy, and the growth rate of the number 
of topologically distinct orbits. In chapters 21 and 22, this small victory will be 
refashioned into a systematic method for computing eigenvalues of evolution 
operators in terms of periodic orbits.
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Example 20.4 Escape rate for a piecewise-linear repeller: (continuation of exam-
ple 19.1) What is gained by reformulating the dynamics in terms of ‘operators’? We
start by considering a simple example in which the operator is a [2×2] matrix. Assume
the expanding 1-dimensional map f (x) of figure 20.3, a piecewise-linear 2–branch re-
peller (19.37). Assume a piecewise constant density (19.38). There is no need to
define ρ(x) in the gap between M0 and M1, as any point that lands in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game: f
is the simplest model for the pinball escape, figure 1.8, with f0 and f1 modelling its two
strips of survivors.

As can be easily checked using (19.9), the Perron-Frobenius operator acts on
this piecewise constant function as a [2×2] ‘transfer’ matrix (19.39)(

ρ0

ρ1

)
→ Lρ =

[ 1
|Λ0 |

1
|Λ1 |

1
|Λ0 |

1
|Λ1 |

] (
ρ0

ρ1

)
,

stretching both ρ0 and ρ1 over the whole unit interval Λ, and decreasing the density at
every iteration. In this example the density is constant after one iteration, so L has only
one non-zero eigenvalue es0 = 1/|Λ0| + 1/|Λ1| ≤ 1, with constant density eigenvector
ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respectively, the sizes of the |M0|, |M1|
intervals, so the exact escape rate (1.3) – the log of the fraction of survivors at each
iteration for this linear repeller – is given by the sole eigenvalue of L:

γ = −s0 = − ln(1/|Λ0| + 1/|Λ1|) . (20.41)

Voila! Here is the rationale for introducing operators – in one time step we have 
solved the problem of evaluating escape rates at infinite time. 
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