
Chapter 32

Complex universality

In its original form, the existence of δ seems a technical
analytic result. Now it proves to be an aspect of a broader
property of fractal scaling.

—Benoit B. Mandelbrot

The easy part of dynamical systems theory is the regular, “ordered” motions;
attracting fixed points and limit cycles, integrable “elliptic” regions. As
we now know, fully chaotic dynamics is often not much harder: it can be

described by Smale horseshoes, finite grammars and unstable periodic orbits. The
hard part lies in between, the dynamics to which we shall refer to here as the
“border of order” - trajectories that are neither stable nor unstable.

The closer to the border of order, the harder it is to decide whether a given
trajectory is stable or unstable. We need to inspect the trajectory with a higher and
higher resolution, for longer and longer times, as in figure32.1. In general this is a
hopeless undertaking. However, there are situations where the border of order is a
self-similar fractal. By a magnification of spatial scales and a replacement of time
by logarithmic time, the dynamics close to the border of order can be turned into a
clean, uniformly hyperbolic dynamics, and described to exponential accuracy by
techniques developed for nice chaotic sets. Not only that, but the fine structure of
the border turns out to be topologically and quantitatively universal, i.e., common
to large classes of dynamical systems.

In this chapter we illustrate the key concepts underlying the renormalization
theory of transitions to chaos by studying sequences of period n-tuplings for com-
plex maps. We have chosen this example for its beauty and simplicity; here you
should be able to visualize the renormalization transformations and the univer-
sal scalings as encodings of the self-similar patterns generated by deterministic
dynamics.
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CHAPTER 32. COMPLEX UNIVERSALITY 613

Figure 32.1: Renormalization is the process of
magnifying a neighborhood of the border of order,
and inspecting closer and closer returns for longer
and longer times. RE
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32.1 Holomorphic dynamics

We shall study properties of the asymptotic iterates of

zn+1 = f (zn) , (32.1)

where f (z) is a polynomial in the complex variable z with a quadratic critical
point, i.e., with Taylor series expansion of the form

f (z) = a0 + a2(z − zc)2 + . . . .

Typical model mappings of this type are the Fatou and Julia maps, respectively:

f (z) = λ − z2 (32.2)

f (z) = λ z(1 − z) . (32.3)

When such mappings are used to model dynamical systems with z a real variable
and the “nonlinearity” parameter λ real, the asymptotic attractor is conveniently
represented by a “bifurcation tree” of figure 31.13, i.e., by a 2-dimensional plot
with λ as one axis and values of the asymptotic iterates for given λ plotted along
the other axis.

It is not possible to visualize asymptotics of complex iterations in this way,
as their iteration space has two (real) dimensions, and period n-tuplings are indu-
ced by tuning a pair of (real) parameters. To describe the asymptotic iterates of
complex maps we proceed in two steps.

First, we describe the parameter space by its Mandelbrot set M. The Mandel-
brot set is the set of all values of the mapping parameter (parameter p in the model
mapping (32.2)) for which iterates of the critical point do not escape to infinity. A
critical point zc is a value of z for which the mapping f (z) has vanishing deriva-
tive, f ′(zc) = 0. For example z = 0 in (32.2) is the critical point. The Mandelbrot
set for the mapping (32.2) is plotted in figure 32.2.
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CHAPTER 32. COMPLEX UNIVERSALITY 614

Figure 32.2: (a) The Mandelbrot set. Gray: cri-
tical point trajectory converges to an attractive pe-
riodic orbit of period 1, 2, . . . , 6. White: the criti-
cal point trajectory escapes to infinity. Julia sets
for the quadratic map zk+1 = λ − z2 parameter
values (b) λ = 0.5, (c) λ = 0.8, (d) λ = 1.42,
(e) λ = 0.5 + 0.7i, (f) λ = 0.123 − 0.745i, (g)
λ = 0.0315 − 0.7908i, (h) λ = −0.282 + 0.530i, (i)
λ = 1.16 + 0.25i. (from ref. [3])

Figure 32.3: The basin of attraction for the su-
perstable 3-cycle of mapping (32.3), λ = 0.123 −
0.745i. Any initial z from the black region conver-
ges toward the superstable 3-cycle, denoted by the
three white dots. The basin of attraction for map-
ping (32.2) superstable 3-cycle is the same, up to
a coordinate shift and rescaling.

Second, we characterize the asymptotic iterates for a given value of the pa-
rameter either by their basin of attraction, or by their attractor. The basin of
attraction K is the set of all values of z which are attracted toward the attractor
under iteration by f (z). A typical basin of attraction is plotted in figure32.3.

The boundary of K, or the Julia set J, is the closure of all unstable fixed points
of all iterates of f (z).

Theorem. For parameter values within the Mandelbrot set M, the Julia set J is
connected. If all critical points iterate to infinity, J is a Cantor set.

If the nth iterate of f (z) equals z, the set of points zk = f k(z0), k = 0, 1, 2, ..., n−
1 form a periodic orbit (or cycle) of length n. If

|d f n(zk)/dz| < 1 (32.4)

the cycle is attractive, with the attractor L the periodic orbit z0, z1, ..., zn−1. If the
derivative (32.4) is vanishing, the orbit is superstable, and (by the chain rule) a
critical point is one of the periodic points. For polynomial mappings z = ∞ plays
a special role; it is always a superstable fixed point. The following theorem eases
attractor searches:

Theorem. The basin of attraction K contains at least one critical point.
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CHAPTER 32. COMPLEX UNIVERSALITY 615

Figure 32.4: The Mandelbrot cactus for the Julia
mapping (32.3). Inside the big circle (left open
for clarity) iterations converge to a fixed point.
The full region has two symmetry axes, Re λ = 1
and Im λ = 0, so only one quarter is shown.
The period-doubling sequence is on the real axis.
The winding numbers of the periodic orbits corre-
sponding to larger leafs of M are indicated. See
ref. [10] for detailed scans of the set.

The precise shape of the Mandelbrot set M depends on f (z), but it always
resembles a cactus, see figure 32.4. Here we are not so much interested in the
entire M, as in the Mandelbrot cactus, the set of components of M generated from
a single fixed point by all possible sequences of all possible period n-tuplings.

To summarize, the parameter dependence of asymptotic iterates of mapping
f (z) is described by the Mandelbrot set M. For each point inside M, the asymptotic
iterates are characterized by their basin of attraction K, the Julia set J and the
attractor L.

32.2 Mandelbrot cactus

Now that the general setting is established, we can turn to a detailed study of
the way in which a fixed point of the complex mapping (32.1) branches into an
n-cycle. The fact that the same analysis applies to period n-tupling of any k-
cycle into an nk-cycle will be seen to be the origin of the self-similarity of the
Mandelbrot cactus.

Denote the stability of a fixed point by

Λ =
d
dz

f (z) . (32.5)

Example 32.1 Border of fixed-print stability: Fixed point condition for map (32.2),
z2 + z − λ = 0 yields fixed points. The one of interest here is

with stability (32.5)

Λ = f ′(z∗) = −2z∗ = 1 −
√

1 + 4λ

The fixed point loses its stability on the marginal stability curve Λ = eiϕ. In the complex
λ parameter plane, ϕ = [0, 2π] traces cut a cardioid

λ =
1
4

(ei2φ − zeid) , (32.6)

the border of the central component of the Mandelbrot set in figure 32.2.
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We take, without loss of generality, the fixed point to be at z = 0, and f (z) a
power series expansion

f (z) = Λz +
∞∑
j=2

ajz
j . (32.7)

To bring the map into a normal form, we change the variable

w = z +
∞∑
j=2

hjz
j , (32.8)

and “flatten” out the mapping close to the fixed point by choosing successively
h2, h3, . . . in such a way that as many leading nonlinear terms as possible vanish
in (32.7).

Example 32.2 Smooth conjugacies of a fixed point: The idea is to perform a
smooth nonlinear change of coordinates that flattens out the vicinity of a fixed point
and makes the map linear in an open neighborhood. This can be implemented only for
an isolated nondegenerate fixed point (as we shall see here, higher terms will contribute
to the normal form expansion around the point), and only in a finite neighborhood of
a point, as the conjugating function in general has a finite radius of convergence. For
example, a quadratic map has two zeros, and there is no global linear map that can
capture more one zero.

Let the fixed point of analytic function f (z) be z = 0 and the stability of that point
be Λ = f ′(0). If |Λ| � 1, there exists a smooth conjugation h(x) satisfying h(0) = 0 such
that:

f (z) = h(Λh−1(z)) . (32.9)

In several dimensions, Λ is replaced by the Jacobian matrix, and one has to check that
its eigenvalues are non-resonant, that is, there is no integer linear relation between
their logarithms. If h(z) is a conjugation, so is any scaling h(αz) of the function for a
case number α. Hence the value of h′(0) is not determined by the functional equation
(32.9); we shall set h′(0) = 1.

To compute the conjugation h we use the functional equation h(Λz) = f (h(z))
and the expansions

f (z) = Λz + z2 f2 + z3 f3 + . . .

h(z) = z + z2h2 + z3h3 + . . . . (32.10)

In the present context absorbing the factorials into the definition of expansion coef-
ficients turns out to be more convenient than the usual Taylor expansion. Equating
recursively coefficients in expansions in terms of z=h(u)

h(Λu) − Λh(u) =
∞∑

m=2

fm (h(u))m

∞∑
n=2

(Λn − Λ)hnun =

∞∑
m=2

fmum

⎛⎜⎜⎜⎜⎜⎝1 + ∞∑
k=2

hkuk−1

⎞⎟⎟⎟⎟⎟⎠m

(32.11)

yields

h2 =
f2

Λ(Λ − 1)
, h3 =

2 f 2
2 + Λ(Λ − 1) f3

Λ2(Λ − 1)(Λ2 − 1)
, · · · (32.12)
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As long as |Λ| � 1, all is well. But if Λ is n-th root of unity Λ = e2π prefactor in
the conjugation (32.11) vanishes, un can not be eliminated, justify the local normal for
(32.14).

We find it convenient to factorize hn as

hn =
bn

Dn
, Dn =

(
1 − 1
Λ

) (
1 − 1
Λ2

)
· · ·

(
1 − 1
Λn−1

)
Λ

(n+2)(n−1)
2 .

Computer algebra then yields

b2 = f2
b3 = 2 f 2

2 + Λ (Λ − 1) f3 (32.13)

b4 = (5 + Λ) f 3
2 − Λ(5 − 2Λ − 3Λ2) f2 f3 + Λ

2(Λ − 1)(Λ2 − 1) f4 .

If Λ is sufficiently close to nth root of unity, ω = exp(i2πm/n), and z is close to 0,
the typical behavior of the new iteration function is the same as

f (z) = Λz + zn+1 . (32.14)

The normal function (32.14) has an n-cycle

z j = ω
jz0 , zn

0 = ω − Λ . (32.15)

For Λ = ω this n-cycle coincides with the fixed point z = 0. In the neighborhood
of Λ = ω we have

dzn

dz0
= f ′(z0) f ′(z1)... f ′(zn−1) =

(
Λ + (n + 1)zn

0

)n

= 1 − (Λ − ω)n2/ω + ... . (32.16)

For Λ = (1 + ε)ω the n-cycle (32.15) of the mapping (32.14) is stable if

|1 − n2ε| < 1 , (32.17)

while the fixed point is stable if

|1 + ε| < 1 . (32.18)

The mapping (32.14) is equivalent to (32.7) only for small z, so the above analysis
of how a fixed point of (32.7) becomes unstable and branches into the n-cycle is
valid only for infinitesimal nε.

In conclusion, whenever a fixed point becomes unstable at Λ = nth root of
unity, it branches into an n-cycle which immediately becomes stable. As any
stable cycle becomes unstable in the same fashion, branching into a new stable
cycle with a multiple of the original cycle length, and as any such cycle is stable
inside a disklike region in the complex parameter plane, the union of all these
stability regions form a self-similar Mandelbrot cactus of figure32.4.
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CHAPTER 32. COMPLEX UNIVERSALITY 618

Next we turn to a study of infinite sequences of period n-tuplings, each bran-
ching characterized by the same ratio m/n.

As discussed above, a stable nk-cycle becomes unstable and branches into an
nk+1-cycle when the parameter λ passes through a value such that the stability
Λk(λ) (as defined in (32.5)) is the nth root of unity,

Λ(λ) = ω = ei2πm/n .

For λ sufficiently close to this value the system is modeled by (32.14). From
(32.16) it follows that near the transition from an nk-cycle to an nk+1-cycle

Λk+1 = 1 − (Λk − ω)n2/ω + · · · , (32.19)

hence

dΛk+1

dλ

∣∣∣∣∣
Λk+1=1

= −
n2

ω

dΛk

dλ

∣∣∣∣∣∣
Λk=ω

, (32.20)

and at the transition there is a scale change by the complex factor −n2/ω which is
independent of k.

32.3 Renormalization and universality

Each leaf of the Mandelbrot cactus figure 32.4 corresponds to an m/n cycle, and
the parameter value for the superstable m/n cycle corresponds to the center of the
leaf. The above argument suggests that the leaf is approximately n2 times smaller
than the cactus, and that it is rotated by a phase factor −1/ω. The very geome-
try of the Mandelbrot cactus, figure 32.4, suggests such scaling. This scaling is
not exact, because the above analysis applies only to the infinitesimal neighbor-
hood of the junction of a leaf to the cactus; however, the evaluation of the exact
scaling numbers shows that this is a rather good approximation to the exact sca-
ling. Numerical evaluation of δm/n’s supports the conjecture that δm/n → −n2/ω

as m/n → 0, exactly.

The exact scaling is obtained by comparing values of the parameter λ corre-
sponding to successive (m/n)k superstable cycles, i.e., λ values such that Λk(λk) =
0. As each cactus leaf is similar to the entire cactus, the ratios of the sizes of the
successive stability regions corresponding to successive (m/n)k-cycles tend to a
limit as k → ∞:

δm/n = lim
k→∞

λk − λk−1

λk+1 − λk
. (32.21)

The scaling number δ tells us by how much we have to change the parameter λ
in order to cause the next m/n period n-tupling. δ1/2 = 4.669... is the Feigen-
baum δ for the period doublings in the real 1-dimensional mappings, discussed in
chapter 31.
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Figure 32.5: The basin of attraction for the super-
stable 9-cycle for iterates of the model mapping
(32.3). The scaled down version of the 3-cycle ba-
sin of attraction, figure 32.3, is visible in the cen-
ter.

Scaling in the parameter space (generalized Feigenbaum δ) is a consequence
of the self-similarity of the Mandelbrot cacti. In the same way the self-similarity
of the Julia sets (or the asymptotic attractors) suggests a scaling law in the iteration
space z, which we discuss next. This law will characterize the scales of successive
trajectory splittings (generalized Feigenbaum α).

The self-similarity we are alluding to can be seen by comparing the basin
of attraction for the superstable 3-cycle, figure 32.3, and for the superstable 9-
cycle, figure 32.5. In the latter figure the 3-cycle basin of attraction is visible
in the center, rotated and scaled down by a factor whose asymptotic limit is the
generalization of Feigenbaum α to period triplings.

This scaling number α can be computed by comparing the successive super-
stable cycles, at successive parameter values λk, λk+1. As k → ∞, the sequence of
λ’s converges to λ∞, and the superstable nk-cycles converge to an n∞-cycle. The
attractor is self-similar: the orbits on succeeding levels are related by rescaling
and rotation by a complex number which asymptotically approaches

exercise 32.1

αm/n = lim
k→∞

znk − z0

znk+1 − z0
. (32.22)

α characterizes the scale of trajectory splitting at each period n-tupling. For m/n =
1/2 this is the Feigenbaum α = −2.5029 . . .,

So period n-tuplings are self-similar both in the iteration space and in the pa-
rameter space: not only does the asymptotic orbit resembles itself under rescaling
and rotation by α, but also each leaf of the Mandelbrot cactus resembles the entire
cactus under rescaling and rotation by δ.

These self-similarities can be described by means of the following three ope-
rations:

The first operation is a rescaling of the parameter and iteration spaces:

[R f ]p(z) = a fp/d(z/a) . (32.23)
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Figure 32.6: The unstable manifold method illus-
trated by period triplings. The parameter is shifted
from the center of a cactus leaf to its 1/3 leaf, the
1/3 leaf is rescaled and rotated by δ, and the basin
of attraction of third iterates is rescaled and rota-
ted by α. The Mandelbrot cactus and the basin of
attraction for the unstable manifold gp(z) is self-
similar under such shifting and rescaling.

With the appropriate choice of complex numbers d and a, a leaf of the Mandelbrot
cactus (a part of the attractor) can be rescaled and rotated to approximately overlap
the entire cactus (entire attractor, respectively).

We fix the origin of p and z by requiring that z = 0 be a critical point of the
mapping fp(z), and, for the parameter value p = 0, a superstable fixed point as
well. Mapping (32.2) is an example. We fix the scale of p and z by requiring that
the superstable m/n cycle occurs for the parameter value p = 1 and that

f1(0) = 1 . (32.24)

The second operation shifts the origin of the parameter space to the center of the
m/n-leaf of the Mandelbrot cactus (p corresponding to the superstable m/n cycle):

[S f ]p(z) = f1+p(z) . (32.25)

The third operation iterates fp(z) n times:

[N f ]p(z) = f n
p (z) . (32.26)

By definition, [S f ]0(z) = f1(z) has a superstable m/n cycle, so its nth iterate has a
superstable fixed point, [NS f ]0(0) = 0.

The parameter shift S overlays the Mandelbrot cactus over its m/n leaf, and
the Julia set for [N f ]1(z) resembles the Julia set for the superstable fixed point
f0(z) (compare figure 32.3 with figure 32.5, for example). Finally we adjust the
scale of the new M, J sets by requiring that the scale factors a, d in (32.23) are
such that [RNS f ]p(z) satisfies the same normalization condition (32.24) as the
initial function f0(z). This shifting and rescaling is illustrated in figure32.6.

The combined effect of the rescaling, parameter shift and iteration is summa-
rized by the operator T∗ = RNS

[T ∗ f ]p(z) = a f n
1+p/d(z/a) . (32.27)
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If we take a polynomial fp(z) and act on it with T∗, the result will be a longer
polynomial with similar M and J sets. For a finite number of T∗ operations the
scaling numbers d and a depend on the choice of the initial mapping fp(z). If we
apply T∗ infinitely many times, a and d converge to the universal numbers α and
δ, and T ∗ fp(z) converges to a one-parameter family of universal functions which
is the fixed line of the operator T∗:

gp(z) = [T∗g]p(z) = αgn
1+p/δ(z/α) . (32.28)

This universal equation determines both gp(z) and the universal numbers α and
δ. The 1-dimensional family of universal functions gp(z) parameterized by p is
called the unstable manifold.

To summarize, the T∗ operation encodes simultaneously the self-similarity
of the parameter space (Mandelbrot cacti) and of the iteration space (Julia sets).
Being no more than a redefinition of variables, it is an explicit implementation
of the above self-similarities; T∗ magnifies the nth iterate of the (m/n)k+1-cycle
and overlays it onto the (m/n)k-cycle (see figure 32.6). Asymptotically the self-
similarities are exact, and the procedure converges to the unstable manifold, a
1-dimensional line of universal functions gp.

Not only are the N, S , R operations the natural encoding of the complex uni-
versality, but they also turn out to be powerful computational tools.

The universal equation (32.28) can be solved numerically by approximating
the unstable manifold by a truncation of the double power series expansion

gp(z) =
N,M∑
j,k≥0

c jkz2 j pk . (32.29)

We start with (32.2) as a two term approximation to gp(z). Repeated applications
of the T∗ operation (32.27) generate a longer and longer double polynomial in z
and p; this procedure converges asymptotically to the unstable manifold gp(z). We
implement the shifting and iteration operations S and N as numerical polynomial
substitution routines, truncating all polynomials as in (32.29). The T ∗ operation
is completed by the rescaling operation R, equation (32.23). The scaling numbers
d and a are fixed by the normalization conditions (32.24). We use the Newton
method to find the parameter value corresponding to the superstable m/n-cycle.
This determines d, and a then follows directly from the condition (32.24). The
result is a new approximation to gp(z). Asymptotically d’s converge to δ and a’s
converge to α. We keep applying the truncated T∗ operation until the coefficients
in (32.29) stabilize to desired accuracy.

The self-similar structure of the Mandelbrot cactus, figure 32.4, suggests a
systematic way of presenting the universal numbers that we have computed in
the previous section. Observe that roughly halfway between any two large leafs
on the periphery of a Mandelbrot cactus (such as 1/2 and 1/3) there is the next
largest leaf (such as 2/5). Furthermore, we know from (32.20) that the size of
the “cactus leaf” corresponding to period n-tupling is of order n−2. Hence the
natural hierarchy is provided by an interpolation scheme which organizes rational
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numbers m/n into self-similar levels of increasing period lengths n. Such scheme
is provided by Farey numbers.

Implicit in the Farey numbers are scaling laws that relate the universal num-
bers. It turns out that the same Farey structure is a very useful tool for the study
of mode-locking intervals for circle maps. We shall discuss this at length in chap-
ter 33.

Exercises

32.1. Approximate period tripling renormalization:
Implement an approximate renormalization for period-
tripling sequence of figure 32.6, using the approxi-
mate period-doubling renormalization scheme of exam-
ple 31.3, applied to the complex polynomial

zn+1 = λ − z2
n .

The idea is to drop from fλ ◦ fλ ◦ fλ(z) all terms hig-
her than z2 in each period-tripling step. Evaluate nume-
rically the complex coordinate and parameter rescaling
universal constants α1/3 and δ1/3.

(O.B. Isaeva and S.P. Kuznetsov)
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