
Chapter 15 Waves

1.Exercise 15.3 Ship Waves
(a) Consider a plane wave with frequency !0 and wave vector k0 as measured in the water’s

frame, and ! and k as measured in the boat’s frame. For an observer with position x0 in the water’s
frame and x in the boat’s frame, the phase he measures is:

k0 ! x0 !!0t in terms of water’s frame variables
and k ! x ! !t in terms of boat’s frame variables
Since the phase is invariant under the change of reference frame, we can equate the above two

expressions and then differentiate both sides with respect to t, noting that for an observer moving
together with the boat, dx0/dt ! u ,dx /dt ! 0, we get:

! ! !0 ! k0 ! u
By looking at Fig 15.3 and use k to denote the wave vector as measured in the water’s frame(as

the text does), we get
! ! !0 " ukcos"
(b) # is the angle between Vg0 ! u and u , elementary trigonometry then gives(see the sketch on

the right),
tan# ! Vg0 sin"/"u " Vg0 cos"#
For stationary wave pattern ! ! 0, using the !"k# we got in part (a), we see that
!0"k# ! !ukcos"
(c) For capillary waves, !0 " "$/%#k3 ,Vg0 ! #!0/#k ! "3/2# "$/%#k
Plugging these and u ! !!0/"kcos"# into the expression for tan#, we get
tan# ! "3 tan"#/"1 ! 2 tan2"#
Capillary wave pattern for a given # exists only when we can find some " $ "&/2,&# (i.e. only

forward waves can contribute to the pattern) satisfying the above equation. And it’s easy to show that
indeed for any # we can find such a " given by:

tan" ! "!3 ! 9 " 8 tan2# #/"4 tan## when # # &/2
and tan" ! "!3 " 9 " 8 tan2# #/"4 tan## when # $ &/2
For gravity waves, !0 " gek , and Vg0 ! "1/2# ge/k , and we get
tan# ! "! tan"#/"1 " 2 tan2"#
Only when # # arcsin"1/3# can we find some " $ "&/2,&# satisfying this equation, which is:
tan" ! "!1 % 1 ! 8 tan2# #/"4 tan## (both solutions are valid)
This means that the gravity-wave pattern is confined to a trailing wedge with an opening angle

#gw ! 2arcsin"1/3#.
Q.E.D.

2.Tsunamis from Japan
We can treat this as a 2-dimensional problem, i.e., only consider the horizontal components of

the velocity, which are almost independent of z. In what follows, % is the 2-dimensional derivative
operator.

(a) The mass per unit area is %"D " '#, and the mass flux per unit length is %"D " '#v " %Dv , to
the first order in perturbation. Then by mass conservation,

#$%"D " '#%/#t " % ! "%Dv # ! 0
& #'/#t " % ! "Dv # ! 0 (i) ( assuming constant %)



The Navier-Stokes equation in this case is: #v /#t ! !%P/% " g , whose vertical component tells
us P ! %g"' ! z#, and whose horizontal components then tell us #v /#t ! !g%' (ii)

Applying #t to both sides of eqn. (i) and then plugging in eqn (ii), we get
#2'/#2t ! g% ! "D%'#
(b) By plugging in a plane wave solution to the wave equation, we find the dispersion relation:
! ! k gD 1 ! i"%D/D# ! "k /k2# " k gD $1 ! "i/2#"%D/D# ! "k /k2#%
The imaginary part of ! only affects the decaying(or growing) of the the wave amplitude but not

it’s propagation direction, and furthermore it’s smaller than the real part by a factor of (/l & 1
(where ( is the wave length and l is the scale over which D varies). Thus we take ! " k gD .

Using the Hamilton’s equations of motion introduced in Chapter 6 Geometrical Optics, we get
dx /dt ! % k! ! gD "k /k#

and dk /dt ! !% x! ! !"k/2# g/D % x D
Thus we see the direction of wave propagation is always deflected towards the shollower part of

the ocean.
(c) Create in the bottom of the Pacific Ocean a ridge going from Japan to LA(with equi-depth

contours being elliptical curves and LA being at the focus)! This ridge will act as a lens, focusing
those Tsunamis towards LA. Note that only very slight deflection(ver slight difference in ocean
depth) is sufficient: Assume Japan extends 500km long, and the distance between Japan and LA is
about 10,000km. Then only about 500km/10000km ' 5% change in the ocean depth is needed. .

Q.E.D.

3.Solitary Waves in a Deformable Conduit
(a) Assuming that a vary slowly with height, the solution for this part can be found in Section

12.4.5 Blood Flow B&T. The only difference between there and here is that here we no longer
neglect gravity. By adding a %1g term to the driving force, we get [see eqn.(12.72) Poiseuille’s Law
B&T],

Q ! !&a4"#p1/#z " %1g#/"8)1#
(b) The force per unit area on the conduit wall applied by fluid-2 consists of two parts: the

pressure contribution p2 and the viscous contribution fviscous. Since fluid-2 has no vertical motion, we
have p2 !constant!%2gz. Now let’s calculate fviscous in cylindrical coordinates.

The velocity field due to the change in a is: v ! vrer, with vr ! "a/r#"#a/#t#
fviscous ! Trr ! !2)2*rr ! !2)2$"2/3##vr/#r ! "1/3#vr/r% !# 2)2"a/r2#"#a/#t# where we have

used formulas analogous to those in Box 10.2 B&T
fviscous"r ! a# ! 2)2"1/a#"#a/#t#
Thus the force per unit area applied by fluid-2 on the wall is constant!%2gz " 2)2"1/a#"#a/#t#,

and similarly the force per unit area applied by fluid-1 on the wall is p1 " 2)1"1/a#"#a/#t#.Equating
these two forces and noting that )2 ( )1, we get

p1 ! !%2gz " 2)2"1/a#"#a/#t# "constant
Thus the PDE relating Q and a is:

Q ! "&a4/8)1#&%2g ! %1g ! #$2")2/a#"#a/#t#%/#z'
The other PDE relating Q and a is given by mass conservation(i.e. volume conservation,

assuming constant %) for fluid-1 as follows,
d
dt )z1

z2 &a2dz ! Q"z1# ! Q"z2# & 2&a"#a/#t# ! !#Q/#z
(c) 2&a"#a/#t# ! #"&a2#/#t ! !#Q/#z

let Q ! Q0 " Q1f"z ! ct#, then &a2 ! "Q1/c#f"z ! ct# , where we’ve set the additive constant to
zero without loss of generality.



Now Q ! &a0
2v0 far away from the solitary wave

Define f * 1 far away from the solitary wave.
Then &a0

2 ! Q1/c,&a0
2v0 ! Q0 " Q1, so Q01 ! &a0

2"v0 ! c#
Now Q ! "&a4/8)1#'%g ! "&a4/8)1#)2#$"#a2/#t#/a2%/#z

! "&a4/&a0
4#v0&a0

2 ! "&a4/8)1#)2#$"#a2/#t#/a2%/#z
So
&a0

2"v0 ! c# " &a0
2cf ! &a0

2v0f2 " "&)2/8)1#cf2"f (/f# (
where f ( means df/d', ' * z ! ct
Divide by &a0

2v0
"1 ! c/v0# " "c/v0#f ! f2 " kf2"f (/f# (
where we have absorbed a bunch of constants into k.
but f2"f (/f# ( * "f3/2#d$"f (#2/f2%/df
thus "1 ! c/v0#/f3 " c/"v0f2# ! 1/f ! "k/2#d$"f (#2/f2%/df
Now f ( ! 0 at f ! A(peak of the wave) and f ! 1(far away from the wave)
Therefore
"1 ! c/v0# )1

A df/f3 " "c/v0# )1

A df/f2 ! )
1

A df/f ! 0
"1 ! c/v0#"1 ! 1/A2#/2 " "c/v0#"1 ! 1/A# ! lnA ! 0
So c/v0 ! 2"lnA ! 1/2 " 1/2A2#/"1 ! 2/A " 1/A2#

Q.E.D.
4. Kursk Submarine Disaster
(a) Consider the total energy Etotal of the system consisting of the bubble and the surrounding

water.
Etotal ! U " Ewater , where U is the internal energy of the gas in the bubble, and Ewater

is the kinetic energy of the surrounding water(the kinetic engery of the gas is negligible).
Assuming a spherically sysmetric velocity field for the water: v ! vrer ! "a2/r2#"da/dt#, and

integrating the velocity field from r ! a to r ! +, we find Ewater ! 2&%0a3"da/dt#2

Now this bubble-water system does work ”on the infinity” at a rate 4&a2"da/dt#P0, where P0 is
the ambient pressure.

Then by engergy conservation,
!4&a2"da/dt#P0 ! dEtotal/dt ! "#U/#V#s4&a2"da/dt# " 2&%0$3a2"da/dt#3 " 2a3"da/dt#"d2a/dt2#%

Using "#U/#V#s ! !P with P being the pressure of the gas, and simplifying the above eqn., we
get

$P"a# ! P0% ! "1/2#%0$3"da/dt#2 " 2a"d2a/dt2#%
Linearizing the above equation around the equilibrium, a ! a0 " +a, where a0 satisfies

P"a0# ! P0, we get the equation for small oscillation of the radius,
d2+a/dt2 " "c2/a0

2#"3%g/%0#+a ! 0, where c ! $"#P/#%g#s%1/2

Thus the frequency of small oscillation is given by
! ! "c/a0#"3%g/%0#1/2

(b) At a depth of ' 100m, P0 ' 11atmosphere, take %g ' 1kg/m3,c ' 340m/s , we solve for a0
from the above expression with ! ! 1.45Hz and get ,0 ' 13m.And the work that must be done to
create it is ' "4&a0

3/3#P0 ' 8 ) 1016ergs ' 2 metric tons of TNT equivalent, which agrees with the
”expert” estimates.

Q.E.D.


