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Due, Monday March 5

As usual, if any problem is trivial for you, do not do it – simply state that it
is trivial and pick some other problem or make up your own. Contact me
(djs@gps.caltech.edu) if you have a question or concern about the problems,
all three of which are new.

1. The China Syndrome

This refers to a 1979 movie of the same name, and concerns the possible
consequences of a nuclear reactor melt down. The proposed scenario is silly,
but the underlying fluid dynamical problem is interesting and has relevance
to the formation of metal cores in solid planets.

Consider a spherical body, radius R, that is melting its way down into the
solid Earth. It does so by melting the column of rock in its path. This melt
then flows as thin layer around the surface of the sphere. It is assumed that
the sphere remains intact and has a density ρm > ρr, the density of the
neighboring rock. The energy required to melt the rock is dominated by the
latent heat L  and the source of heat is (possibly) an intrinsic heat flux
provided at the surface of the sphere (F)  plus gravitational energy release as
the sphere sinks. This is a complex problem and we will seek only order of
magnitude understanding. The other relevant parameters are:  ∆T1 = the
difference between the ambient rock temperature and its melting point,  ∆T2

= a typical temperature difference within the melt film, i.e. k∆T2/δ is the
heat flow outwards across the film of thickness δ and thermal conductivity
k; Cp  = specific heat of the material (liquid or solid), η = dynamical
viscosity of the melt layer, g = gravitational acceleration.

(a) Explain why it is plausible that

[ρCp (∆T1+∆T2) + ρL]u0
 ~ k∆T2/δ ~ ηu2/δ +F

where u0 is the velocity of the sphere (positive downwards) and u is the
mean velocity of the melt within the film (upwards). Because I’m basically



giving you the answer, take particular care to understand and explain the
(often hidden) assumptions that lie behind these estimates.

(b)Write down the other equations that complete specification for the
problem (one that relates u to the known pressure gradient in the melt layer
and one that relates u to u0). Show that there is a critical sphere radius above
which there exist solutions even when F =0 . These are “runaway” solutions
in which gravitational energy release is sufficient to cause lubricated descent
of the sphere. What is the critical size? (Use L ~ 4 x 109 erg/g, ρm ~8 g/cm3,
ρr~4 g/cm3,  g ~ 103cm/sec2 and ignore the ∆T terms.)

(c)Estimate the time it takes for the sphere to sink to the core ( ~3 x 103 km
away) and the thickness of the melt layer, in two cases: (i) The nuclear
reactor case:R=104 cm, F = 108 erg/cm2.sec ; (ii) the core formation case:
F=0 and R = twice the critical size found in (b).

A paper on this subject is Turcotte and Emerman,  J. Geophys. Res. 88
Suppl. B91-B96 (1983).

2. Boundary Layer theory for High Viscosity Convection

For simplicity, consider free slip top and bottom boundary conditions with
heat flow F. At large Prandtl number and high Rayleigh number (but not so
high that the convection becomes chaotic), a simple “conveyor belt” picture



describes the fluid motions. Consider, for example, the bottom of the
convecting  layer. Material flows along the bottom boundary for a horizontal
distance of order the depth of the fluid layer = D , and heat diffuses up into a
thermal boundary layer of thickness δ. This hot sheet of fluid then rises to
the top boundary, where it releases its heat and becomes colder than the
interior fluid. The fluid, now cooled, then sinks under negative buoyancy
and the entire cycle is repeated. The only significant vertical temperature
gradients are in the top and bottom boundary layers; nearly all the rest of the
fluid in between is neutrally buoyant.
(a) By considering the diffusion of heat into the bottom or out of the top,

derive a relationship between δ, the typical fluid velocity v, the size of
the system L and thermal diffusivity κ.

(b) By considering the gravitational forces and drag forces for upwelling
(hot) or downwelling (cold) sheets of thickness ~δ, derive an
approximate  relationship involving v, L, δ, ν (the kinematic viscosity of
the fluid), the temperature difference driving the convection,
gravitational acceleration g and coefficient of thermal expansion α.

(c) At the top or bottom, the heat flux F must be entirely conductive. Hence
show that the heat flux for the system as a whole is larger than k∆T/D
(the value if conduction alone operated through the entire layer) by a
factor of ~Ra1/3 where Ra= gα∆TD3/νκ.

(d) Estimate the convective velocities for Earth, assuming ν~1021 cm2/sec,
α~2 x 10-5K-1, κ~10-2 cm2/sec, D~3 x 108 cm, ∆T~103 K and compare
with plate motions (few cm/year).

This is a standard scaling analysis and can be found, for example in the
textbook Geodynamics by Turcotte and Schubert.

3. Inviscid Convection with Rotation

Consider a fluid in which the vertical temperature gradient deviates from
adiabaticity by an amount β, defined so that a positive value means
superadiabatic (i.e., potentially unstable to convection). In other words, the
linearized energy equation takes the form

∂θ/∂t = βuz



where thermal diffusion has been neglected, uz is the vertical component of
fluid motion and θ is the temperature difference relative to the adiabat. The
fluid is rotating , so the linearized, inviscid equation of motion takes the
form

∂u/∂t + 2  x u = - p/ρ - gαθ

where   is the angular velocity, p is  hydrodynamic pressure, ρ is the
constant density of the incompressible fluid (excluding the effect of thermal
expansion),  g is the gravity vector (vertically downwards), and α is the
coefficient of thermal expansion. Assume incompressibility. For
disturbances in the variables of the form exp[i(σt + k.r)], show that

σ2 = gαβ(kx
2+ky

2)/k2 - (2 .k)2/k2

In the case of rapid rotation defined as Ω2 >>gαβ (a common situation for
large scale convection in giant planets and stars), show that the unstable
modes must take the form of fluid motions in which the scale length of
variation perpendicular to the rotation vector is much smaller than the scale
parallel to the rotation vector. In other words, Taylor columns.




