
Solution Set for Chapter 21
(Xinkai)

1. Ex. 21.4 Landau Contour Deduced Using Laplace Transforms

(a) This part is nothing but a definition of Laplace transformation.
(b) The z-dependence is eikz, giving !/!z "! ik. Also integration by parts gives

#
0

$ dte"pt!Fs1/!t " "Fs1!v, 0" # p #
0

$ dte"ptFs1!v, t"
Noticing the above facts, we get by Laplace transforming the Vlasov equation:
0 " "Fs1!v, 0" # p

~
Fs1 !v,p" # vik

~
Fs1 !v,p" # !qs/ms"Fs0

$
~
E !p" where s " p,e

Laplace transforming % # E " !/"0 gives us a second equation:
ik

~
E !p" " &s!qs/"0" #"$

$ dv$Fs0!v"/p #
~

Fs1 !v,p"% " &s!qs/"0" #"$
$ dv

~
Fs1 !v,p"

Where to get the last equality we’ve used the fact that the unperturbed charge density is
zero, i.e. the contribution from Fs0!v" vanishes.

Combining these two equations we easily get (21.41).
(c) Setting ip " #, and plugging (21.41) into (21.42), we immediately get (21.26) without

that overall minus sign(I guess that sign is a typo)
Q.E.D.

2.Ex. 21.6 Dispersion Relations for a Non-Maxwellian Distribution Function

This problem is quite instructive in that it clarifies what approximations we are making
when considering Langmuir waves and ion acoustic waves, respectively.

Now the distribution function is given by F!v" " Fe!v" # !me/mp"Fp!v", where
Fe!v" " nv0e/$$!v0e

2 # v2"%, and Fp!v" is obtained by replacing v0e with v0p. Note that these
distribution functions are normalized so that n is the electron(and also proton) density.

We then plug this F!v" into the general expression (21.30) for "!#,k". Let’s first assume
that Im!#/k" ! 0. Thus we take the Landau contour to be the real axis in the v-plane.
Closing the contour in the lower half plane and evaluating the residues carefully we get:
"!#,k" " 1 # e2n&"0k2mev0e

2 $1 " i#/!kv0e"%2'"1 # e2n&"0k2mpv0p
2 $1 " i#/!kv0p"%2'"1

Obviously the above expression for "!#,k" can be analytically continued to the whole
#-plane. Note that so far no approximation has been made.

(a) For Langmuir waves, Te~Tp,!i.e.mev0e
2 ~mpv0p

2 ", and #/k !! v0e !! v0p, thus we can
ignore the third term in "!#,k", namely the contribution from the protons. Then by letting
"!#,k" " 0, we easily get # " #pe " ikv0e

(b) For ion acoustic waves, Te !! Tp,!i.e.mev0e
2 !! mpv0p

2 ", and v0e !! #/k !! v0p. Thus
we have to include both electron and proton contribution. We expand the electron
contribution to the first power of #/!kv0e", and the proton contribution to the leading order of
v0pk/#. When solving "!#,k" " 0 for #!k", we will assume #i %% #r, which we expect for the
case of weak damping.

Im!"!#,k"" " 0 gives #i " "!mp/me"$#r
4/!kv0e"3%

Plugging the above relation into the equation Re!"!#,k"" " 0, we turn the equation
Re!"!#,k"" " 0 into:

1



0 " 1 # $#pe/!kv0e"%2&1 # !mp/me"$2#r/!kv0e"%4 " !me/mp"!kvoe/#r"2'
The ratio between the second and the third term in &. . . .' is ~!mp/me"2$#r/!kv0e"%6, which

will be very small when Te is very high(i.e. v0e very large compared with #r/k). Thus we can
neglect the second term. After making this approximation, we readily get #r, and in turn #i.
The # we get is precisely the same as given in (21.45), excpet that we use v0e instead of
v0(which is just a difference in notation).

Q.E.D.

3. Ex 21.7 Penrose Criterion

We can set u"1, i.e. choose u to be the unit of velocity. Solving this problem involves
some straightforward but tedious algebra, but using Mathematica saves us all the trouble:)

We find that F $!v" vanishes at three values of v, namely
v1 " 0,v2,3 " & "v0

2 " 1 # 2v0 v0
2 # 1 , where v2,3 are real only when v0 ! 1/ 3 .

Then we go on to calculate F $$!v" and find that F $$!v1" is positive if and only if v0 ! 1/ 3 ,
while F $$!v2,3" is always negative when v0 ! 1/ 3 (i.e. when v2,3 are real).

Thus we have shown that F!v" possesses a minimum if and only if v0 ! 1/ 3 , and this
minimum, when it exists, is located at vmin " 0.

Carrying out the integration defined in (21.49) we find that
Zr!vmin" " 2$!"1 # v0

2"/!1 # v0
2"2, which is positive when v0 ! 1.

So by Penrose criterion we see that when v0 ! u, there will be instability in our plasma.
Here we give a few plots of F!v" with different v0 parameters.
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Q.E.D.

4. Ex.21.10 Correlations in a Tokamak Plasma
Plugging the relevant numbers for the Tokamak plasma as given in table 19.1 into the

expression (21.74) for the two-point correlation function, we find:
(a) %12!&D"~10"9

(b) %12!n"1/3"~10"6

Q.E.D.
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