
Physics 136b
(The instructor is now Dave Stevenson, through the remainder of this quarter)

Homework associated with Chapter 14, Turbulence
Handed out Jan 31, 2001
Due, Feb 7
To be graded by Alexander Putilin

As usual, if any problem is trivial for you, do not do it – simply state that it
is trivial and pick some other problem or make up your own. Problems 1 & 2
are really a single problem with and without turbulence. Problem 4 is
completely new (i.e., not in the book), which means that it might have some
ambiguity or error; contact me (djs@gps.caltech.edu) if you have a question
or concern about it. Problem 3 is the only one that requires any significant
grunge; do one of the earlier problems in the same set if you’ve ever
numerically integrated equations with this kind of behavior before.

1. Ex. 14.1,  B & T
2. Ex  14.4,  B & T
3. Ex 14.12, B & T

4. Earth has normal modes of oscillation, many of which are in the
milliHertz frequency range. Large earthquakes occasionally but strongly
excite these modes, but the quakes are usually widely spaced in time
compared to the ring down time of a particular mode (which is typically a
few days). However, there is now evidence that there is a background
level of continuous excitation of these modes, so that there is typically
around  10-10 cm/sec2  rms ground acceleration per mode at seismically
“quiet” times. Stochastic forcing by the pressure fluctuations associated
with atmospheric turbulence is suspected. This question deals with some
aspects of this hypothesis.

(a) Barometric records at Earth’s surface show that P(f) ~ 1/f, where P(f)
is the characteristic pressure fluctuation at frequency f (you can think
of P(f) as the  rms pressure spectrum integrated over a frequency
window of width f, and centered on f, so P has units of pressure). P(f
= 1 mHz) ~ 0.5 Pa, which is about 5 x 10-4 of atmospheric pressure.
Show that this power law is consistent with a Kolmogorov spectrum.

(b) The low frequency cut-off for this pressure spectrum is about 0.5
mHz. Assuming this corresponds to the largest eddies which have a



length scale ~ few km (a little less than the scale height of the
atmosphere), derive an estimate for the eddy viscosity (or,
equivalently, diffusivity) of the lowermost atmosphere. By how many
orders of magnitude does this exceed molecular values for diffusive
transport? What fraction of the solar energy input (~106 erg/cm2.sec)
goes into maintaining this turbulence (assumed to be distributed over
the lowermost 10km of the atmosphere only)?

(c) At 1mHz, what is the characteristic spatial scale of the relevant
normal modes? The relevant modes have few or no nodes in the radial
direction. All you need to answer this is a typical wave speed for
seismic shear waves, which you can take to be 5km/sec.  What is the
characteristic spatial scale of the pressure fluctuations at the same
frequency? (Assume isotropic turbulence). Suggest a plausible
estimate for the rms amplitude of the pressure fluctuation averaged
over a surface area equal to the mode wavelength squared. (You must
keep in mind the spatially and temporally random fluctuating
character of the turbulence.)

(d) Using your answer from (c), and a characteristic modulus for Earth
deformation of ~ 1012 dynes/cm2, comment on how the observed rms
acceleration (10-10 cm/sec2) compares with that expected by stochastic
forcing due to turbulence. You may need to go back to earlier
chapters (10 & 11) and think about the relationship between surface
force and surface deformation. [Note: There are several issues in
doing this assessment accurately that I’ve not spelled out (e.g. number
of modes in a given frequency range); don’t expect to be able to get
an accurate answer.]

The background literature for this problem includes Tanimoto and Um, J.
Geophys. Res.  104 28723-28739 (1999). Related helioseismological
classic reference is Goldreich and Keeley, Astrophys. J.  212 243-251
(1977).


