
1
Continuous matter

The everyday experience of the smoothness of matter is an illusion. Since the
beginning of the twentieth century it has been known with certainty that the
material world is composed of microscopic atoms and molecules, responsible for
the macroscopic properties of ordinary matter. Long before the actual discovery
of molecules, chemists had inferred that something like molecules had to exist,
even if they did not know how big they were. Molecules are small — so small
that their existence may be safely disregarded in all our daily doings. Although
everybody possessing a powerful microscope will notice the irregular Brownian
motion of bacteria, it took quite some mental effort and a big step away from the
everyday manipulation of objects to recognize that this is a sign that molecules
are really there.

Continuum physics deals with the systematic description of matter at length
scales that are large compared to the molecular scale. Most macroscopic length
scales occurring in practice are actually huge in molecular units, typically in the
hundreds of millions. This enormous ratio of scales isolates continuum theories
of macroscopic phenomena from the details of the microscopic molecular world.
There might in principle be many different microscopic models leading to the
same macroscopic physics. Sir Isaac Newton (1642–

1727). English physicist who
founded classical mechanics
on three famous laws. Possi-
bly the greatest genius of all
time.

This chapter paints in broad outline the transition from molecules to continu-
ous matter, or mathematically from particles to fields. It is emphasized that any
continuum description must necessarily be of statistical nature, but that random
statistical fluctuations are strongly suppressed by the enormity of the number of
molecules in any macroscopic material object. A short review of Newton’s second
laws for point particles is also presented in this chapter as a prelude to the basic
themes of this book: the recasting of Newton’s laws into a systematic theory of
continuous matter, and the application of this theory to the wealth of exotic and
everyday phenomena of the macroscopic material world.
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2 1. CONTINUOUS MATTER

1.1 Molecules

The microscopic world impinges upon the macroscopic almost only through ma-
terial constants characterizing the interactions between macroscopic amounts of
matter, such as coefficients of elasticity and viscosity. It is of course an important
task for the physics of materials to derive the values of these constants, but this
task lies outside the realm of continuum physics. In continuum physics it is nev-
ertheless sometimes instructive to consider the underlying atomic or molecular
structure in order to obtain a qualitative understanding of the origin of macro-
scopic phenomena and of the limits to macroscopic continuum descriptions.

Molecular weight

Chemical reactions such as 2H2 +O2 → 2H2O are characterized by simple integer
coefficients. Two measures of hydrogen plus one measure of oxygen yield two
measures of water without anything left over of the original ingredients. What
are these measures? For gases at the same temperature and pressure, it is simply

H2

H2

+
H2O

H2O

→O2

The meaning of a chemical
formula.

the volume, so that for example two liters of hydrogen plus one liter of oxygen
yield two liters of water vapor, assuming that the water vapor without condensing
can be brought to the same temperature and pressure as the gases had before
the reaction. ount Avogadro of Italy proposed already in 1811 that the simpleLorenzo Romano Amadeo

Carlo Avogadro di
Quaregna e Cerretto 1776–
1856 (Italian philosopher,
lawyer, and physicist.). C

integer coefficients in chemical reactions between gases could be explained by the
rule that equal volumes of gases contain equal numbers of molecules (at the same
temperature and pressure).

The various measures do not weigh the same. A liter of oxygen is roughly 16
times heavier than a liter of hydrogen at the same temperature and pressure. The
weight of a liter of water vapor must — of course — be the sum of the weights
of the ingredients, hydrogen and oxygen, and from the formula it now follows
that this becomes roughly (2 × 1 + 1 × 16)/2 = 9 times the weight of a liter of
hydrogen. Such considerations lead early to the introduction of the concept of
relative molecular weight or mass in the ratio 1:16:9 (or equivalently 2:32:18) for
hydrogen, oxygen and water.

In the beginning there was no way of fixing an absolute scale for molecular
mass, because that would require knowledge of the number of molecules in a
macroscopic amount of a substance. Instead, a unit, called a mole, was quite
arbitrarily fixed to be one gram of atomic hydrogen (H). Such a scale is practical
for the chemist at work in his laboratory, and the ratios of molecular masses
obtained from chemical reactions could then determine the mass of a mole of
any other substance. Thus the molar mass of molecular hydrogen (H2) is 2
grams and that of molecular oxygen (O2) 32 grams, whereas water has a molar
mass of (2 × 2 + 1 × 32)/2 = 18 grams. This system could be extended to all
chemical reactions allowing the determination of molar mass for any substance
participating in chemical reactions.
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1.1. MOLECULES 3

Avogadro’s number

We now know that chemical reactions actually describe microscopic interactions
between individual molecules built from atoms and that molecular mass is sim-
ply proportional to the mass of a molecule. The constant of proportionality was
called Avogadro’s number by Perrin, who in 1908 carried out the first modern
determination of its value from Brownian motion experiments. errin’s experi- Jean-Baptiste Perrin 1870–

1942 (French physicist, re-
ceived the Nobel prize for his
work on Brownian motion in
1926.). P

ments relying on Einstein’s recent (1905) theory of Brownian motion were not
only seen as a confirmation of this theory but also as the first direct evidence
for the reality of atoms and molecules. Today, Avogadro’s number is defined to
be the number of atoms in exactly 12 gram of the fundamental carbon isotope
(12C), and its value is NA = 6.022137(3)× 1023 molecules per mole. Notice that
in this book, the absolute error on the last digits of a quantity is indicated by
means of a parenthesis following the mantissa.

The molecular scale

Consider a substance with mass density ρ and molar mass Mmol. A mole of
the substance occupies a volume Mmol/ρ, and the volume per molecule becomes
Mmol/ρNA. A cube with this volume would have sides of length

Lmol =
(

Mmol

ρNA

) 1
3

, (1-1)

which may be called the molecular scale. For iron we get Lmol ≈ 0.24 nm, for
water Lmol ≈ 0.31 nm, and for air at normal temperature and pressure Lmol ≈
3.6 nm. For liquids and solids, where the molecules touch each other, this length
is roughly the size of a molecule, whereas in gases it may be much larger. There
is a lot of vacuum in a gas.

Molecular forces
Johannes Diederik van der
Waals (1837–1923). Dutch
physicist, received the Nobel
Prize in 1910 for his work
on fluids and gases.

Apart from the omnipresent gravitational interaction between all bodies, molecu-
lar interactions are entirely electromagnetic in nature, from the fury of a tornado
to the gentlest kiss. A deeper understanding of the so-called van der Waals forces
acting between neutral atoms and molecules requires quantum theory and falls
outside the scope of this book.
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attractive

V

Sketch of the intermolecular
potential energy V as a
function of intermolecular
distance x. It is attractive at
moderate range and strongly
repulsive at close distance.

Generally, however, the forces between neutral atoms and molecules are short-
ranged and barely reach beyond nearest molecular neighbors. They are strongly
repulsive if the atoms are forced closer than their natural sizes allow and mod-
erately attractive when they are moved apart a little distance, but farther away
they quickly die out. When two molecules are near each other, this tug of war
between repulsion and attraction leads to a minimum in the potential energy
between the molecules. The state of matter depends, broadly speaking, on the
relation between the depth of this minimum, called the binding energy, and the
average kinetic energy due to the thermal motion of the molecules.
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4 1. CONTINUOUS MATTER

Solids, liquids and gases

In solid matter the minimum lies so deep that thermal motion cannot overcome
the attraction. Each individual atom or molecule is tied to its neighbors by
largely elastic forces. The atoms constantly undergo small-amplitude thermal
motion around their equilibrium positions, but as long as the temperature is not
so high that the solid melts, they are bound to each other. If external forces are
applied, solids may deform elastically with increasing force, until they eventually
become plastic or even fracture. Most of the work done by external forces in
deforming elastic solids can be recovered as work when the forces disappear.

In fluid matter, liquids and gases, the minimum is so shallow that the thermal
motion of the molecules is capable of overcoming the attractive forces between
them. The molecules effectively move freely around between collisions, more so in
gases than in liquids where molecular conglomerates may form. External forces
make fluids flow — in liquids a kind of continual fracturing — and a part of the
work done by such forces is dissipated into random molecular motion, or heat,
which cannot directly be recovered as work when the forces cease to act.

1.2 The continuum approximation

Whether a given number of molecules is large enough to warrant the use of a
smooth continuum description of matter depends on the precision desired. Since
matter is never continuous at sufficiently high precision, continuum physics is
always an approximation. But as long as the fluctuations in physical quantities
caused by the discreteness of matter are smaller than the desired precision, matter
may be taken to be continuous. Continuum physics is, properly viewed, a branch
of statistical physics with all macroscopic quantities such as mass density and
pressure being understood as averages over microscopic molecular variables.

Luckily, it is only rarely necessary to exploit this connection. In a few cases,
such as in the example given just below, it is useful to look at the molecu-
lar underpinnings of continuum physics. In doing so, we shall use the simplest
“molecular” description possible. A quite general meta-law of physics says that
the physical laws valid at one length scale are not very sensitive to the details of
what happens at much smaller scales. Without this law, physics would in fact be
impossible, because we never know what lies below our currently deepest level of
understanding.

Precision and continuity

Suppose that we want to determine the mass density ρ = mN/V of a gas to a
certain relative precision r, say r = 1 %, by counting the number of molecules
N of mass m in a small volume V . Due to random motion of the gas molecules,
the number N will fluctuate and yield a different value if measured again. In
order for the relative precision on the density to be r, we must require that
the typical fluctuation ∆N in the number of molecules obeys ∆N . rN . If
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1.2. THE CONTINUUM APPROXIMATION 5
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Figure 1.1: Measured density as a function of volume size. A 3-dimensional “universe”
consistinig of 20 × 20 × 20 = 8000 cells is randomly filled with as many “molecules”.
On average each of the 8000 cells should receive a single molecule, corresponding to a
density of ρ = 1. A “material particle” consisting of V cells will in general not receive
precisely V molecules, and thus get an actual density that deviates from unity. The plot
shows the actual density of a random collection of V cells as a function of V . The fully
drawn curves, ρ = 1± 1/

√
V , indicate the expected fluctuations.

the time between measurements is large compared to the time between atomic
collisions, the molecules in the volume V will all be replaced by other molecules,
and be essentially a random collection of molecules from the gas at large. Since .......................................................................................................................................

......................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.................

...................
.........................

.....................................................................................................................................................................................................................................................................................................¡
¡

¡ª

-

¡
¡¡µ

A
A
A
AU

HHY

©©*

In a gas the molecules move
rapidly in and out of a
small volume with typical
velocities of the order of the
speed of sound.

the fluctuation in such a random process is of order ∆N ≈ √
N (see fig. 1.1

and problem 1.1 ), the condition becomes
√

N . rN or N & r−2. The linear
dimension of the volume occupied by the smallest allowed number of molecules
is Lmin ≈ N1/3Lmol ≈ r−2/3Lmol. At a precision level of r = 1 %, the smallest
volume under consideration should contain more than 104 molecules, and the
dimensions of such a volume must be greater than Lmin ≈ 22Lmol.

In a solid, the molecules do not move around much but oscillate instead
randomly around more or less fixed positions. At the surface of the volume,
V , there is of the order of N2/3 molecules that may randomly be in or out of
the volume when measurements are done. The corresponding fluctuation in N
becomes ∆N ∼

√
N2/3 = N1/3, and we must require N & r−3/2 in order to

obtain the desired precision. For r = 1%, the smallest volume must contain more
than 1000 molecules and be of linear dimension greater than Lmin ∼ r−1/2Lmol ≈
10Lmol.
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In a solid the molecules tend
to oscillate around fixed
positions which gives rise
to some fuzziness at the
surface of a small volume.

From these two examples we learn that there is a minimal continuum length
scale, Lmin, which separates the microscopic description from the macroscopic.
This scale must satisfy the inequalities

Lmol ¿ Lmin ¿ L , (1-2)
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6 1. CONTINUOUS MATTER

where L is a typical length scale of the physical system, for example the size
of a cup of water or the size of a hurricane. The continuum scale will always
depend on the relative precision r to which our continuum description should
apply. In the examples above we found Lmin ∼ r−αLmol with α = 2/3 for a
gas and α = 1/2 for a solid. Since r−α diverges for r → 0, we have obtained
a quantitative substantiation of the claim that it is impossible to maintain a
continuum description to arbitrarily small relative precision.

Mean free path

There may be further conditions on the continuum length scale. A smooth con-
tinuum description requires that molecules interact with each other in order to
“iron out” strong differences in velocities. If there were no interactions, a molecule
with a given velocity would keep on moving with that velocity forever. In a gas
the mean free path λ between collisions is a measure of the scale at which this
smoothing occurs. At normal temperature and pressure the mean free path is
typically about 100 times larger than the molecular size, i.e. λ ≈ 30 nm, and the
continuum length scale should also be chosen much larger than that.Check this number

Material particles

In continuum physics we shall generally permit ourselves to speak about material
particles as the smallest objects that may consistently be considered part of the
continuum description within the required precision. A material particle will
always contain a large number of molecules but may in the continuum description
be thought of as infinitesimal or point-like.

Although we usually shall think of material particles as being of the same
kind in different types of matter, they are in fact quite different. In solids, we
may with some reservation think of solid particles as containing a fixed number
of molecules, whereas in fluids and especially in gases we should not forget that
the molecules making up a fluid particle at a given instant will shortly after be
replaced by other molecules.

Continuum mechanics

In Newtonian mechanics the basic material object is a point particle. Newton’s
second law is the fundamental equation of motion, and states that mass times
acceleration equals force. Mathematically, it is expressed as a second order dif-
ferential equation in time t,

M
d2x

dt2
= F . (1-3) eNewtonSecondLaw

Here M is the mass of the particle, x its instantaneous position, and F the force
acting on it. In chapter 2 we shall introduce vector calculus to handle quantities
like x and F in a systematic way, but for now any understanding of the meaning
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1.3. FIELDS 7

of a vector will work fine. Since the force on any given particle can depend on
the positions and velocities of the particle itself and other particles, as well as
on external parameters, the dynamics of a collection of particles becomes a web
of coupled ordinary second order differential equations in time. These equations
and the global quantities that may be defined for such collections of particles are
reviewed in section 1.4.

Even if macroscopic bodies are huge collections of atoms and molecules, it is
completely out of question to solve the resulting web of differential equations. In
addition there is the problem that molecular interactions are quantum mechanical
in nature, and Newtonian mechanics strictly speaking does not apply at the
atomic level. This knowledge is, however, relatively new and has as mentioned
earlier some difficulty in making itself apparent at the macroscopic level. So even
if quantum mechanics rules the world of atoms, its special character is rarely
amplified to macroscopic proportions.

In continuum mechanics a macroscopic body is seen as a huge collection of
tiny material particles each and everyone obeying Newton’s second law. The
density of a physical quantity such as mass is calculated by dividing the the total
mass of all the molecules in the small region of space occupied by the material
particle with the volume of this region. Provided the mass density only varies
a little between neighboring regions, it may at any instant of time be replaced
by a smooth (“continuous”) function of the spatial position. In the extreme
mathematical limit, the material particles are taken to be truly infinitesimal and
all physical properties of the particles as well as the forces acting on them are
described by smooth functions of the spatial position and time.

1.3 Fields

Continuum physics is therefore a theory of fields. Mathematically, a field f is
simply a real-valued function f(x, y, z, t) of spatial coordinates x, y, z, and of
time t, representing the value of a physical quantity in this point of space at the
given time, for example the mass density ρ or ρ(x, y, z, t). Sometimes a collection
of such functions is also called a field and the individual real-valued members
are called its components. Thus, the most fundamental field of fluid mechanics,
the velocity field v = (vx, vy, vz), has three components, one for each of the
coordinate directions.

Besides fields characterizing the state of the material, such as mass density
and velocity, it is convenient to employ fields that characterize the forces acting
on and within the material. The gravitational acceleration field g is a body force
field, which penetrates bodies from afar and acts on their mass. Some force fields
are only meaningful for regions of space where matter is actually present, as for
example the pressure field p, which acts across the imagined contact surfaces
that are used to separate neighboring volumes of a fluid at rest. Pressure is,
however, not the only contact force. For fluids in motion, and for solids and
more general materials, contact forces are described by the 9-component stress
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8 1. CONTINUOUS MATTER

field, σσσ = {σij}, which is a 3× 3 matrix field with rows and columns labelled by
coordinates: i, j = x, y, z.

Mass density, velocity, gravity, pressure, and stress are the usual fields of
continuum mechanics and will all be properly introduced in the chapters to come.
Some fields are thermodynamic, like the temperature T . Others, for example the
electric charge density ρc and current density jc, characterize the electromagnetic
state of matter, whereas electromagnetic forces are mediated by the electric field
strength E and the magnetic field strength B. The gravitational field g and the
electromagnetic fields determine the forces that would act on a material particle
at any point of space, independently of whether there is an actual particle present
there or not. These fields are thought to exist even in regions of space completely
devoid of matter.

There are also fields that refer to material properties, for example the coeffi-
cient of shear elasticity, µ, of a solid and the coefficient of shear viscosity, η, of a
fluid. Such fields are usually constant within homogeneous bodies, i.e. indepen-
dent of space and time, and are mostly viewed as material constants rather than
true fields.

Field equations

Like all physical variables, fields evolve with time according to certain dynam-
ical laws, called field equations. In continuum mechanics, the most important
equations of motion descend directly from Newton’s second law applied to every
material particle. Other field equations are not directly related to Newtonian
particle dynamics. Mass conservation which is all but trivial and most often
tacitly incorporated in elementary mechanics turns into an equation of motion
for the mass density when applied to continuous matter. Still other field equa-
tions such as Maxwell’s equations for the electromagnetic fields have completely
different and non-mechanical origins.

Mathematically field equations are partial differential equations in both space
and time. This makes continuum mechanics considerably more difficult than par-
ticle mechanics where the equations of motion are ordinary differential equations
in time. On the other hand, this greater degree of mathematical complexity also
leads to a plethora of new and sometimes quite unexpected phenomena.

In some field theories, for example Maxwell’s electromagnetism, the field
equations are linear in the field variables, but this is not the case in contin-
uum mechanics. The non-linearity of the field equations, in particular for fluid
mechanics, adds a further layer of mathematical difficulty to this subject, making
it very different from linear theories. The non-linearity creates dynamic instabil-
ities and gives rise to the chaotic and as yet not fully understood phenomenon of
turbulence, so well-known from our daily dealings with water and air.
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1.3. FIELDS 9

Physical reality of force fields

Whereas the mass density only has meaning in a volume containing mass and
may be defined to be zero in the vacuum, the gravitational field is assumed to
exist and take non-vanishing values even in the vacuum. It specifies the force
that would be exerted on a unit mass particle at a given point, but the field is
assumed to be there, even if no particles are present.

In non-relativistic Newtonian physics, the gravitational field has no inde-
pendent physical meaning and may be completely eliminated and replaced by
non-local forces acting between material bodies. The true physical objects ap-
pear to be the material bodies, and the gravitational field just a mathematical
convenience for calculating the gravitational force exerted by these bodies. There
are no independent dynamical equations that tell us how the Newtonian field of
gravity changes with time. Except that when material bodies move around or
change their mass distributions, the field will change instantaneously with them.

In relativistic mechanics, on the other hand, fields take on a completely dif-
ferent meaning. The reason is that instantaneous action-at-a-distance cannot
take place. If matter is moved, the current view is that it will take some time
before the field adjusts to the new positions, because no signal can travel faster
than light. Due to relativity, fields travel independently, obey their own equa-
tions of motion, and carry physical properties such as energy and momentum.
Electromagnetic waves bringing radio and tv signals to us, are examples of force
fields thus liberated from their origin. Gravitational waves have not yet been
observed directly, but indirectly they have been observed in binary neutron star
systems which can only be fully understood if gravitational radiation is taken
into account.

Even if we shall not deal with relativistic theories of the continuum, and
therefore may consider the gravitational field to be merely a mathematical con-
venience, it may nevertheless be wise, at least in the back of our minds, to think
of the field as having an independent physical existence. Then we shall have no
philosophical problem endowing it with physical properties, even in matter-free
regions of space.

Is matter really discrete or continuous?

Although continuum physics is always an approximation to the underlying dis-
crete atomic level, this is not the end of the story. At a deeper level it turns out
that matter is best described by another continuum formalism, relativistic quan-
tum field theory, in which the discrete particles — electrons, protons, neutrons,
nuclei, atoms, and everything else — arise as quantum excitations. Relativistic
quantum field theory without gravitation emerged in the first half of the twen-
tieth century as the basic description of the atomic world, but in spite of its
enormous success, it is still not clear how to include gravity.

Just as the continuity of macroscopic materials is an illusion, the quantum
field continuum may itself one day become replaced by even more fundamental
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10 1. CONTINUOUS MATTER

discrete or continuous descriptions of space, time, and matter. It is by no means
evident that there could not be a fundamental length in nature setting an ultimate
lower limit to distance and time, and theories of this kind have in fact been
proposed. It appears that we do not know, and perhaps will never know, whether
matter at its deepest level is truly continuous or truly discrete.

∗ 1.4 Newtonian mechanics

In Newtonian mechanics, a physical system or body is understood as a collection
of a certain number N of point particles numbered n = 1, 2, . . . , N . If Mn denotes
the (constant) mass of the n’th particle, xn its instantaneous position, and Fn

the instantaneous force acting on the particle, Newton’s second law for each and
every particle becomes

mMn
d2xn

dt2
= Fn , (1-4) eNewtonEqMotion

for n = 1, 2, . . . , N . Due to the particles’ mutual interactions the forces may
depend on the instantaneous positions and velocities of all the particles, including
themselves,

Fn = Fn

(
x1, . . . , xN ,

dx1

dt
, . . . ,

dxN

dt
, t

)
, (1-5)

but not on higher time derivatives. If the body is not isolated, but also interacts
with the external environment, for example Earth’s gravity, the forces will fur-
thermore depend on parameters describing these external influences. The explicit
dependence on t in the last argument of the force usually derives from such time
dependent external influences. It is, however, often possible to view the envi-
ronment as just another collection of particles and include it in a larger isolated
body consisting of the original body and its original environment.

The dynamics of a collection of particles thus becomes a web of coupled second
order differential equations in time. In principle these equations may be solved
numerically for all times t, given initial positions and velocities for all particles
at a definite instant of time, say t = t0. Unfortunately, the large number of
molecules in any macroscopic body usually presents an insurmountable obstacle
to such an endeavor. Even for smaller numbers of particles, deterministic chaos
may effectively prevent any long-term numeric integration of the equations of
motion.

Total mass and total force

A number of quantities describe the system as a whole. The total mass of the
system is defined to be

M =
∑

n

Mn , (1-6) eNewtonTotalMass
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1.4. NEWTONIAN MECHANICS 11

and the total force

F =
∑

n

Fn . (1-7) eNewtonTotalForce

Notice that these are truly definitions. Nothing in Newton’s laws tells us that
it is physically meaningful to add masses of different particles, or worse, forces
acting on different particles. As shown in problem 1.3, there is nothing in the
way for making a different definition of total force. But the choice made here is
particularly convenient for particles moving in a constant field of gravity, such as
we find on the surface of the Earth, because the gravitational force on a particle
is directly proportional to the mass of the particle. With the above definition,
the total gravitational force is consequently proportional to the total mass.

Having made these definitions, the form of the equations of motion (1-4) tells
us that we should also define the average of the particle positions weighted by
the corresponding masses

xM =
1
M

∑
n

Mnxn . (1-8)

For then the equations of motion imply that

M
d2xM

dt2
= F . (1-9) eNewtonCMMotion

Formally, this equation is of the same form as Newton’s second law for a single
particle (1-3), so the center of mass moves like a point particle under influence
of the total force. But before we get carried completely away, it should be re-
membered that the total force depends on the positions and velocities of all the
particles, not just on the center of mass position xM and its velocity dxM/dt.
The above equation is in general not a solvable equation of motion for the center
of mass.

Total momentum, angular momentum, and kinetic energy

Three other global quantities are useful to define. The total momentum of the
system,

P =
∑

n

Mn
dxn

dt
, (1-10)

is the sum over the individual momenta mndxn/dt of each particle. The equations
of motion (1-4) imply that the total momentum obeys the equation

dP
dt

= F , (1-11) eNewtonMomentumBalance
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12 1. CONTINUOUS MATTER

which is evidently equivalent to (1-9).
Similarly, the total angular momentum is defined to be

L =
∑

n

Mn xn × dxn

dt
. (1-12)

and is the sum over individual angular momenta xn×mndxn/dt of each particle.
Differentiating after time we find

dL
dt

=
∑

n

Mn

(
dxn

dt
× dxn

dt
+ xn × d2xn

dt2

)
.

The first term in the parenthesis vanishes because the cross product of a vector
with itself always vanishes. Using the equations of motion in the second term we
obtain

dL
dt

= M , (1-13) eNewtonAngularMomentumBalance

where

M =
∑

n

xn ×Fn (1-14)

is the total moment of force acting on the system, calculated as the sum of the
individual moments of force acting on the particles.

Finally, we define the total kinetic energy

T =
1
2

∑
n

Mn

(
dxn

dt

)2

, (1-15)

as the sum of individual kinetic energies of each particle. Differentiating after
time and making use of the equations of motion (1-4), we find

dT
dt

= P , (1-16) eNewtonKineticEnergyBalance

where

P =
∑

n

Fn · dxn

dt
, (1-17)

is the rate of work or power of all the individual forces. Notice that there is a
dot-product between the force and the velocity.

The three framed equations state for any collection of point particles that

• the rate of change of momentum equals force (1-11)
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1.4. NEWTONIAN MECHANICS 13

• the rate of change of angular momentum equals moment of force (1-13)

• the rate of change of kinetic energy equals power (1-16)

These are not vacuous definitions but represent seven individual constraints on
the motion of any system of point particles, independently of how complex it
is. In particular, we shall later see (chapter 16) that they are equally valid for
continuous systems, with the added complication that the number of particles in
a body may change with time.

Hierarchies of interacting particles

Under what circumstances can a collection of point particles itself be viewed as a
point particle? The dynamics of the solar system may to a good approximation
be described by a system of interacting point particles, although the planets and
the sun in no way are point-like at our own scale. At the scale of the whole
universe, even galaxies are sometimes treated as point particles.

A point particle approximation may be in place as long as the internal co-
hesive forces that keep the interacting bodies together are much stronger than
the external forces. In addition to mass and momentum, such a point particle
may also have to be endowed with an intrinsic angular momentum (spin), and
an intrinsic energy. The material world appears in this way as a hierarchy of
approximately point-like interacting particles, from atoms to galaxies, at each
level behaving as if they had no detailed internal structure. Corrections to the
ideal point-likeness can later be applied to add more detail to this overall picture.
Over the centuries this extremely reductionist method has shown itself to be very
fruitful, but it is an open (scientific) question whether it can continue indefinitely.

Copyright c© 1998–2002, Benny Lautrup Draft 7.5, November 25, 2002



14 1. CONTINUOUS MATTER

Problems

1.1 Consider a small volume of a gas which is a fraction p of a larger volume containing
M molecules. The probability for any molecule to find itself in the small volume may
be taken to be p.

a) Calculate the probability that the small volume contains n molecules.

b) Show that the average of the number of molecules in the small volume is N ≡
〈n〉 = pM .

c) Show that the variance is ∆N2 ≡ 〈(n− 〈n〉)2〉 = p(1− p)M ≈ N for p ¿ 1.

1.2 Consider a material gas particle containing N identical molecules. Write the
velocity of the n-th molecule as vn = v+un where v is the center of mass velocity and
un is a random contribution from thermal motion. It may be assumed that the average
of the random component of velocity vanishes 〈un〉 = 0, that all random velocities are
uncorrelated, and that their fluctuations are the same for all particles 〈u2

n〉 = v2
0 . Show

that the average of the center of mass velocity for the fluid particle is 〈vc〉 = v and that
its fluctuation due to thermal motion is ∆vc = v0/

√
N .

1.3 Try to define the total force to be F ′ =
P

n Mnfn rather than (1-7), and investi-
gate what this entails for the global properties of a system. Can you build a consistent
mechanics on this definition?

1.4 Show that the total momentum is P = MdxM/dt where xM is the center of mass
position.

1. Get better index entries
2. Get all Mathematica figures to same size (so that letters get the same size)
3. Maybe divergence should generally be replaced by nabla. Would be system-
atic.
4. Write something about part and whole. And emergence.
5. Say something about economy of symbols.
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