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Computational
elastostatics

Historically almost all of the insights into elasticity were obtained by means of analytic calcu-
lations, carried out by some of the best scientists of the time using the most advanced methods
available to them, sometimes even inventing new mathematical concepts and methods along
the way. Textbooks on the theory of elasticity are often hard to read because of their demands
on the reader for command of mathematics.

In the last half of the twentieth century, the development of the digital computer changed
the character of this field completely. Faced with a problem in elastostatics, modern engineers
quickly turn to numerical computation. The demand for prompt solutions to design problems
has over the years evolved these numerical methods into a fine art, and numerous commercial
and public domain programs are now available.

In this short chapter we shall illustrate how it is possible to solve a concrete problem
numerically, providing sufficient detail that a computer program can be implemented. It is
not the intention here to expose the wealth of tricks of the trade, but just present the basic
reasoning behind the numerical approach and the various steps that must be carried out. First,
one must decide on the field equations and boundary conditions that are valid for the problem
at hand. Second, the infinity of points in continuous space must be replaced by a finite set of
points or volumes, often organized in a regular grid, and the fundamental equations must be
approximated on this set. Third, a method must be adopted for an iterative approach towards
the desired solution, with convergence criteria that enable one to monitor the progress of the
computation and calculate error estimates.

11.1 Theory of the numeric method
As we do not, from the outset, know the solution to the problem we wish to solve by numer-
ical means, we must begin by making an educated guess about the initial displacement field.
Unless we are incredibly lucky this guess will fail to satisfy the mechanical equilibrium equa-
tions and the boundary conditions, resulting in a non-vanishing effective body force, as well
as a violation of Newton’s third law on the boundary. The idea is now to create an iterative
procedure which through a sequence of tiny changes in displacement will proceed from the
chosen initial state towards the equilibrium state.
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178 PHYSICS OF CONTINUOUS MATTER

Basic equations
Given an arbitrary (infinitesimal) displacement field u.x/, the fundamental equations under-
lying computational elastostatics are,
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; Cauchy’s strain tensor (7.20) (11.1a)
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rj�ij ; effective body force (6.15) : (11.1c)

In numeric computation there is no reason to limit the formalism to isotropic materials, so we
have used the most general form of Hooke’s law. If somebody presents you with a displace-
ment field for a body, these equations represent a “machine” or “program” that through purely
local operations (i.e. differentiation) allows you to calculate the effective body force acting in
each and every point of the body. In mechanical equilibrium the effective body force f � must
of course vanish everywhere in the volume V of the body, but since we do not know the equi-
librium displacement field — otherwise the numerical computation would be unnecessary —
f � will in general not vanish while we are seeking the solution.

The solution must also satisfy boundary conditions on the surface S of the body. We shall
assume that part of the surface, S0, is permanently “glued” to undeformable and unmoveable
external bodies such that the displacement has to vanish here. In the remainder of the body
surface, SP D S � S0, the surface stress is under “user control” and fixed to be P.x/. The
solution must in other words satisfy,

f �.x/ D 0 for x 2 V ; (11.2a)
u.x/ D 0 for x 2 SU ; (11.2b)

���������.x/ � n.x/ D P.x/ for x 2 SP : (11.2c)

where n.x/ is the normal to the surface in x. Where the external surface stresses vanish,
P.x/ D 0, the body surface is said to be free.

Virtual work and potential energy
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Every material particle can be
kept in place by means of an addi-
tional virtual force, f 0 D �f �,
that balances the effective inter-
nal body force on the particle.
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At every point of the surface SP

we must add a virtual stress P 0 D

��������� � n � P to secure continuity
of the stress vector, demanded by
Newton’s third law.

Starting with an educated guess for the displacement field, u.x/, that vanishes on S0, there is
no guarantee that the effective force f � vanishes nor that the boundary condition ��������� �n D P is
fulfilled. To prevent the material particles from beginning to move we must as in section 7.4
add a virtual body force f 0 D �f � to the material particles and a virtual surface stress
P 0 D ��������� � n � P to secure that Newton’s third law is fulfilled in each point in SP . If we now
change the displacement field by a tiny field, ıu.x/, which also vanishes at S0, the work of
the virtual forces becomes,

ıW D �

Z
V

f � � ıu dV C

Z
SP

ıu � .��������� � n �P/ dS: (11.3)

Carrying out a partial integration as in section 7.4, but using that ıu D 0 only on S0, leads to,

ıW D �

Z
V

f � ıu dV C

Z
V

X
ij

�ij ıuij dV �

Z
SP

ıu �P dS: (11.4)

The first term is the virtual work against the external body forces, the second the virtual work
against the internal stresses, and the last the virtual work against the external surface forces.
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11. COMPUTATIONAL ELASTOSTATICS 179

Since neither f nor P depend on u, the infinitesimal virtual work may immediately be
integrated to yield the (potential) energy of any displacement (see for example [Doghri 2000,
p. 35] for a more rigorous treatment),

E D �
Z

V

f � u dV C
1

2

Z
V

X
ij

�ijuij dV �

Z
SP

u �P dS: (11.5)

Here the first term is the energy of the external body forces (gravity), the second the elastic
energy of the deformation, and the last the energy of the external surface forces. Notice
that the potential energy of the displacement field always contains the last term, even if the
boundary condition (11.2c) is fulfilled. In section 7.4 we did not get this term because we
assumed that the displacement was fixed, ıu D 0, on all of the body surface S .

Relaxing towards equilibrium
The potential energy (11.5) is a positive definite quadratic form in the displacement field,
and has consequently a unique minimum. At this minimum the energy must be stationary
ıE D ıW D 0 under any variation ıu that vanishes on S0, and it follows immediately
from (11.3) that f � D 0 in V and ��������� � n D P on SP . The unique minimum of the energy
is therefore the desired equilibrium solution. This result forms the basis for obtaining the
numerical solution.

Starting with an arbitrary displacement field satisfying u D 0 on S0, the iterative relax-
ation procedure consists in designing a sequence of small displacement steps that all drain
energy away from the body. In each iteration the total energy of the body will decrease until
it reaches the unique minimum. Thus, in the end the relaxation procedure will arrive at the
desired equilibrium state.

Gradient descent

A common relaxation procedure is to choose the displacement change in a step to be,

ıu D �f � in V ; ıu D ��.��������� � n �P/ on SP (11.6)

where � is a positive quantity, called the step-size. Relaxing the displacement in this way
guarantees that the integrands in both terms of eq. (11.3) are manifestly negative everywhere
in the volume V and on the surface SP , and thus drains energy away from every material par-
ticle in the body that is not already in equilibrium. Since the displacement incessantly “walks
downhill” against the gradient of the total energy (in the space of all allowed displacement
fields), it is naturally called gradient descent.

Gradient descent is not a foolproof method, even when the energy (as in linear elastic
media) is a quadratic function of the displacement field with a unique minimum. In particular
the step-size � must be chosen judiciously. Too small, and the procedure may never seem
to converge; too large, and it may overshoot the minimum and go into oscillations or even
diverge. Many fine tricks have been invented to get around these problems and speed up
convergence [Press et al. 1992, Braess 2001], for example increasing the step-size when the
field changes are too small, and decreasing it when they are too large. Another, rather effective
method, is conjugate gradient descent in which the optimal step-size is calculated in advance
by searching for a minimum of the total energy along the chosen direction of descent. Having
found this minimum, the procedure is repeated in the new direction of steepest descent which
necessarily must be orthogonal to the old one. However, in the remainder of this chapter we
shall just use the straightforward technique of the dedicated downhill skier, always selecting
the steepest gradient for the next “step”.
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11.2 Discretization of space
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A two-dimensional .10 � 10/

square grid. There are 36 points
at the boundary and 64 inside.
Small grids have a lot of bound-
ary.

The infinity of points in space cannot be represented in a finite computer. In numerical simula-
tions of the partial differential equations of continuum physics, smooth space is often replaced
by a finite collection of points, a grid or lattice, on which the various fields “live” (see for
example [Anderson 1995, Griebel et al. 1998]). In Cartesian coordinates the most convenient
grid for a rectangular volume a�b�c is a rectangular lattice with .NxC1/�.NyC1/�.NzC1/

points that are equally spaced at coordinate intervals �x D a=Nx , �y D b=Ny , and
�z D c=Nz . The grid coordinates are numbered by nx D 0; 1; : : : ; Nx , ny D 0; 1; : : : ; Ny

and nz D 0; 1; : : : ; Nz , and the various fields can only exist at the positions .x; y; z/ D
.nx�x; ny�y; nz�z/.

There are many other ways of discretizing space besides using rectangular lattices, for example
triangular, hexagonal or even random lattices. The choice of grid depends on the problem itself, as
well as on the field equations and the boundary conditions. The coordinates in which the system
is most conveniently described may not be Cartesian but curvilinear, and that leads to quite a
different discretization. The surface of the body may or may not fit well with the chosen grid, but
that problem may be alleviated by making the grid very dense at the cost of computer time and
memory. When boundaries are irregular, as they usually are for real bodies, an adaptive grid that
can fit itself to the shape of the body may be the best choice. Such a grid may also adapt to put
more points where they are needed in regions of rapid variation of the displacement field.

Finite difference operators with first-order errors
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Forward and backward finite dif-
ferences can be very different,
and may as here even have oppo-
site signs.

In a discrete space, coordinate derivatives of fields such asrxf .x; y; z/must be approximated
by finite differences between the field values at the allowed points. Using only the nearest
neighbors on the grid there are two basic ways of forming such differences at a given internal
point of the lattice, namely forwards and backwards,

brCx f .x/ D f .x C�x/ � f .x/

�x
; br�x f .x/ D f .x/ � f .x ��x/

�x
: (11.7)

Here and in the following we suppress for clarity the “sleeping” coordinates y and z and
furthermore assume that finite differences in these coordinates are defined analogously.

According to the rules of differential calculus, both of these expressions will in the limit
of �x ! 0 converge towards rxf .x/. Inserting the Taylor expansion

f .x C�x/ D f .x/C�xrxf .x/C
1
2
�x2
r

2
xf .x/C

1
6
�x3
r

3
xf .x/C � � � ;

we find indeed

br˙x f .x/ D rxf .x/˙
1
2
�xr2

xf .x/C � � � ;

with an error (the second term) that is of first order in the interval �x.
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The central difference is insen-
sitive to the value at the cen-
ter. The two curves shown here
have the same symmetric differ-
ence but behave quite differently.

Finite difference operators with second-order errors
It is clear from the above expression that the first-order error may be suppressed by forming
the average of forward and backward difference operators, called the central difference,

brxf .x/ D
1

2

�brCx C br�x �f .x/ D f .x C�x/ � f .x ��x/

2�x
: (11.8)

Expanding the function values to third order we obtain

brxf .x/ D rxf .x/C
1
6
�x2
r

3
xf .x/C � � � ;
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11. COMPUTATIONAL ELASTOSTATICS 181

with errors of second order only. The central difference does not involve the field value at the
central point x, so one should be wary of possible “leapfrog” or “flipflop” numeric instabilities
in which half the points of the lattice behave differently than the other half.

On a boundary, the central difference cannot be calculated, and we are forced to use one-
sided differences. On the left boundary one must use the forward difference and on the right
the backward one. In order to consistently avoid O .�x/ errors one may instead of one-step
differences (11.7) use one-sided two-step difference operators (see problem 11.1),

brCx f .x/ D �f .x C 2�x/C 4f .x C�x/ � 3f .x/2�x
; (11.9a)

br�x f .x/ D f .x � 2�x/ � 4f .x ��x/C 3f .x/

2�x
: (11.9b)

The coefficients are chosen here such that the leading order corrections vanish. Expanding to
third order we find indeedbr˙x f .x/ D rxf .x/�

1

3
�x2
r

3
xf .x/C � � � ;

which shows that the one-sided differences represent the derivative at the point x with leading
errors of O

�
�x2

�
only.

Other schemes involving more distant neighbors to suppress even higher order errors are
of course also possible, but here we shall only use the second order expressions.

Numeric integration
In simulations it will also be necessary to calculate various line, surface and volume integrals
over discretized space. Since the fields are only known at the points of the discrete lattice, the
integrals must be replaced by suitably weighted sums over the lattice points.
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The interval 0 � x � a has four
subintervals of size �x num-
bered n D 0; 1; 2; 3.

Consider, for example, a one-dimensional integral over an interval 0 � x � a along the
x-axis. Divide the interval into a set of N sub-integrals over the lattice spacing �x D a=N ,
we may write the integral as an exact sum of sub-integrals,Z a

0

f .x/ dx D

N�1X
nD0

Z xnC1

xn

f .x/ dx; (11.10)

where xn D n�x. By means of the Taylor expansion at x, we find for a single subintervalZ xC�x

x

f .x0/dx0 D �xf .x/C
1

2
�x2
rxf .x/C

1

6
�x3
r

2
xf .x/C � � � : (11.11)

In the lowest order of approximation we replace the first order derivative by the forward
difference operator (11.7a), and getZ xnC1

xn

f .x0/dx0/ D �xf .x/C
1

2
�x2brxf .x/CO
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�x3
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D
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�
CO

�
�x3

�
:

Finally, adding the N contributions, we arrive atZ a

0

f .x/ dx D
1

2

�
f .0/C f .a/

�
�x C

N�1X
nD1

f .xn/�x CO
�
�x2

�
: (11.12)

This is the well-known trapezoidal rule [Press et al. 1992, p. 131].
In higher dimensions one may integrate each dimension according to this formula. Again

there exist schemes for numerical integration on a regular grid with more complicated weights
and correspondingly smaller errors, for example Simpson’s famous formula [Press et al. 1992,
p. 134] which is correct to O

�
�x4

�
.
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11.3 Gravitational settling in two dimensions
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Expected shape of two-
dimensional gravitational
settling. When the wall at x D a

is removed, the elastic material
will bulge out, because of its own
weight.

One of the simplest non-trivial problems that does not seem to admit an exact analytic solution
is the gravitational settling of an infinitely long, horizontal block of elastic material with a
rectangular cross section of dimensions a � b. When one of the vertical sides is removed the
material bulges out (see the margin figure). In this somewhat academic case we follow the
conventions normally used in two dimensions and take the y-axis to be vertical. The wall that
is removed is situated at x D a whereas the wall at x D 0 remains in place. It is reasonable to
assume that there can be no displacement in the z-direction direction, i.e. uz D 0 everywhere,
because it would have to move infinitely much material. It is also reasonable to assume that
the displacements ux and uy only depend on x and y, but not on z. The problem has become
effectively two-dimensional, although there are vestiges of the three-dimensional problem,
for example the non-vanishing stress along the z-direction, but that can be ignored.

Equations
The components of the two-dimensional strain tensor are

uxx D rxux ; (11.13a)
uyy D ryuy ; (11.13b)

uxy D
1
2
.rxuy Cryux/: (11.13c)

The corresponding stresses are found from Hooke’s law (8.9) ,

�xx D 2�uxx C �.uxx C uyy/; (11.14a)
�yy D 2�uyy C �.uxx C uyy/; (11.14b)
�xy D �yx D 2�uxy : (11.14c)

Finally, the components of the effective force are

f �x D rx�xx Cry�xy ; (11.15a)
f �y D rx�xy Cry�yy � �0g0: (11.15b)

Note that only first-order partial derivatives are used in these equations. This makes it trivial
to convert the equations to the discrete lattice by replacing the derivatives by finite difference
operators.

Boundary conditions

-

6

x

y

uy D 0, �xy D 0

�yy D �xy D 0

ux D 0
�yx D 0 �yx D 0

�xx D 0

Boundary conditions for the rect-
angular block.

The boundary consists of the two fixed surfaces at x D 0 and y D 0 and the free surfaces at
x D a and y D b. We shall adopt the following boundary conditions,

�xx D 0; �yx D 0 free surface at x D a; (11.16a)
�yy D 0; �xy D 0 free surface at y D b; (11.16b)
ux D 0; �yx D 0 fixed wall at x D 0; (11.16c)
uy D 0; �xy D 0 fixed wall at y D 0: (11.16d)

Here we have assumed that the fixed surfaces are slippery, so that the shear stress must vanish.
That is however not the only choice.

Had we instead chosen the fixed walls to be sticky so that the elastic material were unable
to slip along the sides, the tangential displacements at these boundaries would also have to
vanish, i.e. uy D 0 at x D 0 and ux D 0 at y D 0. The tangential stress �xy D �yx would,
on the other hand, be left free to take any value determined by the field equations.
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Shear-free solution
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The shear-free solution sinks
partly into the bottom of the
box. An extra vertical pressure
is needed from below in order to
fulfill the boundary conditions.

Since the shear stress vanishes at all boundaries, it is tempting to solve the equations by
requiring the shear stress also to vanish throughout the block, �xy D �yx D 0, as we did for
the three-dimensional settling in section 9.2. One may verify that the following field solves
the field equations,

ux D
�

1 � �

.b � y/x

D
; uy D �

b2 � .b � y/2

2D
C

�

1 � �

3x2 � a2

6D
; (11.17)

where the characteristic deformation scale is

D D
4�.�C �/

.2�C �/�0g0

D
E

.1 � �2/�0g0

: (11.18)

The solution is of the same general form as in the three-dimensional case (9.15) on page 145,
but the dependence on Poisson’s ratio � is different because of the different geometry. As
before, this solution also fails to meet the boundary conditions at the bottom, here y D 0. The
arbitrary constant in uy has been chosen such that

R a

0
uy dx D 0 at x D 0.

Convergence measures
The approach towards equilibrium may, for example, be monitored by means of the integral
over the square of the effective force field which should converge towards zero, if the algo-
rithm works. We shall choose the monitoring parameter to be

� D
1

�0g0

s
1

ab

Z a

0

dx

Z b

0

dy
�
f �x

2
C f �y

2
�
: (11.19)

It is normalized such that � D 1 in the undeformed state where ux D uy D 0 and thus
f �x D 0 and f �y D ��0g0. The integrals are calculated using the trapezoidal rule. The
iterative process can then be stopped when the value of � falls below any desired accuracy,
say � . 0:01.

Another possibility is to calculate the potential energy (11.5) with P D 0,

E D
Z a

0
dx

Z b

0
dy

�
1

2
.uxx�xx C uyy�yy C 2uxy�xy/C �0g0uy

�
: (11.20)

This quantity should decrease monotonically from E D 0 in the undeformed state towards its
(negative) minimum. Since it — like � — is well-defined in the continuum, its value should
be relatively independent of how fine-grained the discretization is, as long as the lattice is large
enough. It is, however, harder to determine the relative accuracy attained.

Iteration cycle
Assuming that the discretized displacement field on the lattice .ux ; uy/ satisfies the boundary
conditions, we may calculate the strains .uxx ; uyy ; uzz/ from (11.13) by means of the dis-
crete derivatives, and the stresses .�xx ; �yy ; �xy/ from Hooke’s law (11.14) . Stress boundary
conditions are then imposed and the effective force field .f �x ; f

�
y / is calculated from (11.15) .

At this point the monitoring parameter � may be checked and if below the desired accuracy,
the iteration process is terminated. If not, the corrections

ıux D �f
�

x ; ıuy D �f
�

y (11.21)

are added into the displacement field, boundary conditions are imposed on the displacement
field, and the cycle repeats.
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Figure 11.1. Computed deformation of a square two-dimensional block. On the left the equilibrium
displacement field is plotted by means of little arrows (not to scale). On the right is plotted the outline
of the deformed block. The displacement vanishes as it must at the fixed walls. The protruding material
(solid line) has a slightly convex shape rather than the concave shape in the shear-free approximation
(dashed lines).

The iteration process may be viewed as a dynamical process which in the course of (computer)
time makes the displacement field converge towards its equilibrium configuration. The true dy-
namics of deformation (see chapter 25) go on in real time and are quite different. Since dissipation
in solids is not included here, the true dynamics are unable to eat away energy and make the system
relax towards equilibrium. Releasing the block from the undeformed state, as we do here, would
instead create vibrations and sound waves that would reverberate forever throughout the system.

Choice of parameters
Since we are mostly interested in the shape of the deformation, we may choose convenient
values for the input parameters. They are the box sides a D b D 1, the lattice sizes Nx D

Ny D 20, Young’s modulus E D 2, Poisson’s ratio � D 1=3 and the force of gravity �0g0 D

1. The step-size is chosen of the form

� D
!

E

�x2�y2

�x2 C�y2
(11.22)

where ! is called the convergence parameter. The reason for this choice is that the effective
force is proportional to Young’s modulus E and (due to the second-order spatial derivatives)
to the inverse squares of the grid spacings, say 1=�x2C 1=�y2 D .�x2C�y2/=�x2�y2.
The convergence parameter ! is consequently dimensionless and may be chosen to be of
order unity to get fastest convergence. In the present computer simulation, the largest value
that could be used before numeric instabilities set in was ! D 1.

Programming hints
The fields are represented by real arrays, containing the field values at the grid points, for
example

UXŒi; j �, ux.i�x; j�y/; UY Œi; j �, uy.i�x; j�y/; (11.23)

and similarly for the strain and stress fields. Allocating separate arrays for strains and stresses
may seem excessive and can be avoided, but when lattices are as small as here, it does not
matter. Anyway, the days of limited memory are over.
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Figure 11.2. The computed vertical pressure excess, �py D py � p0 with py D ��yy and p0 D

�0g0b, is plotted on the left for y D 0 as a function of the displaced x. On the right, the corresponding
shear stress is plotted at y D 0:5. The pressure is higher in the central region than the shear-free estimate
p0, and the shear stress is negative (but small) and thus adds to the force exerted by gravity on the central
part. The curves have been linearly interpolated between the data points. The small kink in �py just
beyond x D 1 is an artifact of the coarse lattice.

The iteration cycle is implemented as a loop, containing a sequence of calls to subroutines
that evaluate strains, stresses, effective forces and impose boundary conditions, followed by
a step that evaluates the monitoring parameters and finally updates the displacement arrays
before the cycle repeats. The iteration loop is terminated when the accuracy has reached the
desired level, or the number of iterations has exceeded a chosen maximum.

Results
After about 2000 iteration cycles the monitoring parameter � has fallen from 1 to about 0.01
where it seems to remain without further change. This is most probably due to the brute
enforcing of boundary values. The limiting value of � diminishes with increasing lattice
volume N D NxNy , in accordance with the lessened importance of the boundary which
decreases like 1=

p
N relative to the volume.

The final displacement field and its influence on the outline of the original box is shown in
figure 11.1. One notes how the displacement does not penetrate into the fixed bottom wall as it
did in the shear-free approximation. In figure 11.2 the vertical pressure excess�py D py�p0

where py D ��yy and p0 D �0g0b is plotted as a function of x at the bottom of the block
(y D 0). Earlier we argued that there would have to be an extra normal reaction from the
bottom in order to push up the sagging solution to the shear-free equations. This is also borne
out by the plot of �py which has roughly the same shape throughout the block. Since the
vertical pressure in the central region is now larger than the weight of the column of material
above (p0), we expect that there must be a negative shear stress on the sides of the column to
balance the extra vertical pressure, as is also evident from figure 11.2.

Problems
11.1 Show that the coefficients in the one-sided two-step differences (11.9) are uniquely determined.
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