
10
Slender rods

The regular object geometries analyzed in the preceding chapter were all three-dimensional,
meaning that their sizes in different directions were comparable. Some of the recurring prob-
lems in elasticity concern bodies with widely different sizes in different directions. A rod
is much thinner than it is long and thus effectively one-dimensional. A plate is much thin-
ner than it is wide, making it effectively two-dimensional. In the mathematical limit a rod
becomes a curve described by a vector function of one parameter, while a plate becomes a
surface described by a vector function of two parameters.

Mathematics is, however, not physics. The mechanical properties of a rod depend on the
shape and size of its cross section and the material from which it is made. The Euler-Bernoulli
law for bending and the Coulomb–Saint-Venant law for twisting provide the connection be-
tween the mathematical description of a rod’s curvature and torsion and the physical forces
and moments at play. As long as the radius of curvature and the torsion length of a rod are
much larger than the effective diameter of its cross sections, all the components of the strain
tensor will be small. This does, however, not guarantee that the deflection of a rod from its
initial shape will be small in comparison with the radius of curvature and the torsion length.
Thus, for example, the deflection of a longbow is always comparable to its radius of curvature.

The present chapter opens with a discussion of bending with small deflection and no
torsion, resulting in a differential equation that can be solved analytically in nearly all practical
situations. The chapter continues with an analysis of the famous buckling instability which
is encountered when a straight rod is compressed longitudinally and suddenly, spontaneously
deviates from it straight shape. Finite deflection without torsion is also tractable and allows
us, for example, to calculate the shape of a relaxed stringed bow. Finally, the combination of
bending and twisting of rods is analyzed and applied to the case of a coiled spring.

10.1 Small deflections without torsion
Pure bending is an ideal which is rarely met in practice where initially straight beams can
be bent and twisted by a multitude of forces. Some forces act locally, like the supports that
carry a bridge, others are distributed all over the beam, like the weight of the beam itself. In
this section we shall only consider a straight beam or rod, that is bent—but not twisted—by
a tiny amount. The beam is, as before, initially placed along the z-axis between z D 0 and
z D L, and bent in the direction of the y-axis by external forces acting only in the yz-plane
and external moments only in the direction of the x-axis.
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164 PHYSICS OF CONTINUOUS MATTER

If the beam cross section is not circular, the principal axes of the cross section must be
aligned with the x- and y-axes, for otherwise an internal moment will arise along the y-axis
(see page 148), which complicates matters. The deformed rod is described by the displace-
ment, y D y.z/, of its centroid, also called the deflection of the rod. We shall in this section
assume that the deflection varies slowly along the rod, or so that its derivative is small every-
where, ˇ̌̌̌

dy

dz

ˇ̌̌̌
� 1: (10.1)

Provided there is a point on the rod which is not deflected, the maximal deflection will always
be small compared to the length of the rod, because jyj . jdy=dzjmaxL � L. Similarly,
since jdy=dzj .

ˇ̌
d2y=dz2

ˇ̌
maxL ' L=Rmin where Rmin is the minimal radius of curvature,

this condition also implies that the minimal radius of curvature of the rod should be much
larger than its length, Rmin � L.
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Consider now the cross section of the bent rod at z. By the assumption of planar bending, the
internal stresses in the material makes the part of the rod above this cross section act on the
part below with a total transverse force Fy.z/ and a total longitudinal force Fz.z/, as well as
a total moment of force Mx.z/, calculated around the centroid of the cross section. Besides
these internal forces, there are external forces and moments of force acting on the rod. Some
of these act locally in a point, like the pillars of a bridge or the weight of a car on the bridge,
others are distributed along the rod, such as the weight of the bridge’s material.
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Everywhere between the points of attack of external point forces and moments, it is fairly
simple to set up the local balance of forces and moments that secure mechanical equilibrium.
IfKy.z/dz denotes the transverse resultant of the distributed external forces acting on a small
piece dz of the rod, the y-component of the total force on this small piece must vanish, leading
to (see the margin figure),

Fy.z C dz/ � Fy.z/CKy.z/ dz D 0;

and similarly for the longitudinal distributed force Kz . Dividing by dz we get

dFy
dz
D �Ky ;

dFz
dz
D �Kz : (10.2)

The total moment of force around the the centroid of the cross section at z must also vanish,

Mx.z C dz/ �Mx.z/C Fz.z/dy � Fy.z/dz D 0;

and dividing by dz, this equation becomes

dMx

dz
D Fy � Fz

dy

dz
: (10.3)

By the assumption, jdy=dzj � 1, so that the last term on the right may be disregarded,
unless the longitudinal force Fz is much larger than the transverse force Fy . Everything else
being equal, it is the transverse forces Fy that are important in bending the rod (see also
eq. (9.31) on page 150), so for now we drop the longitudinal term on the right, effectively
setting Fz D 0.
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10. SLENDER RODS 165

Figure 10.1. Simulation of cantilever bent by its own weight. The undeformed shape is outlined in
dark. The cantilever has length L D 6 and a quadratic cross section with unit side lengths, yielding
an area moment I D 1=12. Young’s modulus is E D 104 and the weight per unit of length K D 3.
The contours indicate the values of longitudinal stress, �zz , and clearly show that the rod’s material
is stretched on the upper side and compressed at the lower. The dashed white line, which follows the
central ray perfectly, is the slender rod prediction (10.8) .

Bending moment
The hypothesis due to Saint-Venant is now that the local bending moment may be obtained
from the Euler-Bernoulli law (9.25) with the local curvature given by � D d2y=dz2, an
expression which is correct to order jdy=dzj2. Combining it with force balance (10.2) and
moment balance (10.3) (without the longitudinal term), we get the rod equations,

Mx D �EI
d2y

dz2
; Fy D

dMx

dz
; Ky D �

dFy
dz

: (10.4)

Given the transverse distributed force Ky together with suitable boundary conditions, these
equations can be solved for the transverse deflections y.z/ of a rod. Note that they are valid
even if the cross section, the area moment or the material properties change along the rod.

Case: Horizontal uniform rod
For simplicity we now assume that the rod has constant cross section A, constant flexural
rigidity EI , and constant mass density �. Taking the z-axis to be horizontal and the y-axis
pointing downwards along the direction of constant gravity g0, the transverse force distribu-
tion becomes Ky � K D �Ag0 and Kz D 0. Combining the preceding equations we obtain
an amazing fourth-order ordinary differential equation for the deflection,

EI
d4y

dz4
D K: (10.5)

The solution to this equation is a fourth-order polynomial in z with four unknown coefficients,

y D aC bz C cz2 C dz3 C
K

24EI
z4: (10.6)

Evidently we need four boundary conditions to determine a solution. We shall now discuss
how this works out for a few well-known constructions. �

�
�
�
�
�
�
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The cantilever is clamped to the
wall at one end, but free to move
at the other end.

Cantilever bent by its own weight: A cantilever is a horizontal rod that is clamped to a
wall at z D 0 but free to move at z D L. Cantilevers are found in many constructions, for
example flagpoles, jumping boards and cranes. At z D 0 the clamped state demands that
there is no deflection and that the rod is horizontal, such that y D 0 and y0 D 0. In the free
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166 PHYSICS OF CONTINUOUS MATTER

state at z D L there can be no forces or moments, such that Fy D 0 and Mx D 0. Since
Mx � y

00 and Fy � y000, the full set of boundary conditions are,

y.0/ D 0; y0.0/ D 0; y00.L/ D 0; y000.L/ D 0; (10.7)

with a prime denoting differentiation with respect to z. One may directly verify that the
solution is,

y D
K

24EI
z2.z2 � 4Lz C 6L2/ (10.8)

The free end bends down by y.L/ D KL4=8EI . As seen in figure 10.1, the slender-rod
approximation is quite good even for a not very slender rod.

q qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqq qqqq qqqq qqqq qqqqq qqqq qqqq qqqq qqqqq qqqq qqqq qqqq qqqqt t
?

- z

y

Bridge supported by hinges at the
ends.

Bridge with hinged supports: A bridge is supported at its ends by pylons with hinges that
fix the ends but allow them to rotate. In this case the boundary conditions are that there is no
displacement and no moments at the ends,

y.0/ D 0; y00.0/ D 0; y.L/ D 0; y00.L/ D 0: (10.9)

The solution is

y D
K

24EI
z.L � z/.L2 C Lz � z2/: (10.10)

In the middle the bridge bends down by y.L=2/ D 5KL4=384EI .
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Yoke with two equal weights W
supported in the middle. Each
arm of the yoke has length L.

Light yoke with heavy loads: Yokes have been used since time immemorial for carrying
fairly heavy loads across the shoulders. We idealize the yoke in the form of a straight rod
with weight much smaller than the weight of the loads at the extreme ends. These loads must
have nearly equal weight W , or the yoke will tip. Disregarding the gravity of the yoke itself
(K � 0) we can view each half of the yoke as a cantilever with boundary conditions

y.0/ D 0; y0.0/ D 0; y00.L/ D 0; y000.L/ D �
W

EI
: (10.11)

The last condition was obtained from the rod equations (10.4) applied to the end point, W D
Fy.L/ D �EIy000.L/. The solution is

y.z/ D
W

6EI
z2.3L � jzj/ for �L � z � L: (10.12)

Notice that the third derivative jumps from CW=EI to �W=EI when passing upwards
through z D 0. Something like this actually has to happen. For if there were no jump,
the fourth order curve would be completely continuous at z D 0, and that is not possible be-
cause that would imply no external forces and thus belie the upwards supporting point force
2W acting at z D 0.

10.2 Buckling instability
A walking stick must be chosen with care. Too sturdy, and it will be heavy and unyielding; too
slender, and it may buckle or even collapse under your weight when you lean on it. Stability
against buckling and sudden collapse is of course of great technologically importance, con-
sidering all the struts, columns and girders that are found in human buildings and machines
(see figure 10.2). Luckily, however, buckling does not happen until the compressive forces on
the beam terminals exceed a certain threshold. First determined by Euler, this threshold load
can be used to estimate the point of failure of a column and to set safety limits. Sometimes the
buckled rod itself is of technological interest, for example the longbow which may be viewed
as a rod brought beyond the buckling threshold and captured in its bent shape by a taught
string between its ends.
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10. SLENDER RODS 167

Figure 10.2. Impact buckling of a steel support column in Cortland St./WTC Station (New York City)
after the collapse of the World Trade Center on Sept. 11, 2001. Photo by MTA New York City Transit.
Permission to be obtained.
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In the preceding section we found that the longitudinal force on the rod, Fz , is only important
for small deflections when it is much larger than the transverse force Fy . In the absence
of distributed forces Kx D Ky D 0, it follows from (10.2) that Fy and Fz are constants
along the rod. For simplicity we assume that Fy D 0, so that the rod is only subject to a
longitudinal compression force, Fz D �F , imposed on the upper terminal of the rod (see the
margin figure). Integrating local moment balance (10.3) once, we then obtain,

EI
d2y

dz2
D �F y: (10.13)

This relation simply expresses the vanishing of the total moment on the part of the rod below
the cross section at z, because the external moment is �Fy and the internal moment Mx D

�EId2y=dz2.
The above is nothing but the standard harmonic equation with wave number k D

p
F=EI ,

and its general solution is y D A sin kz C B cos kz where A and B are constants. Applying
the boundary conditions that y.0/ D y.L/ D 0, the buckling solution becomes,

y D A sin kz; k D
n�

L
; (10.14)

where n is an arbitrary integer. Since k D
p
F=EI , we arrive at the following expression for

the force,

F D k2EI D n2
�2EI

L2
; for n D 0; 1; 2; : : :: (10.15)

Strangely, buckling solutions only exist for certain values of the applied force, corresponding
to integer values of n. How should this be understood?
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Everyday experience tells us that we can normally lean quite heavily on a walking stick
without danger of it buckling. A small force cannot bend the beam but only compress it
longitudinally, an effect we have not taken into account in the above calculation. As the
applied force F increases, it will eventually reach the threshold value corresponding to n D 1
above, called the Euler threshold,

FE D
�2EI

L2
: (10.16)

At this point the longitudinal compression mode becomes unstable and the first buckling so-
lution takes over at the slightest provocation. To prove that this is indeed what takes place
requires a stability analysis, which we shall carry out below. In practice only the lowest mode
is seen, unless a strong force is rapidly applied, in which case the rod may become perma-
nently deformed, or even crumple and collapse. The buckled column in figure 10.2 appears
approximatively to be a solution with n D 2, permanently frozen into the steel because the
yield stress was surpassed in the violent event.

Example 10.1 [Wooden walking stick]: A wooden walking stick has length L D 1 m and
circular cross section of diameter 2a D 2 cm. Taking Young’s modulus E D 1010 Pa and using
(9.27) , the buckling threshold becomes FE D 775 N, corresponding to the weight of 79 kg. If
you weigh more, it would be prudent to choose a slightly thicker stick. Since the area moment I
grows as the fourth power of the radius, increasing the diameter to one inch (2:54 cm) raises the
Euler threshold to the weight of 206 kg which should be sufficient for most people.

Stability analysis
Suppose the rod initially is already compressed with a longitudinal terminal force F and now
has the length L. Let us now perturb the straight rod by bending it ever so slightly such that
the centroid falls on a chosen curve y D y.z/. To do that we need to impose extra (virtual)
forces on the rod, and we shall now show that the work of these forces is,

W D
1

2
EI

Z L

0

y00.z/2 dz �
1

2
F
Z L

0

y0.z/2 dz: (10.17)

The first term is easy, because it represents the pure bending energy of the perturbation ob-
tained from eq. (9.30) with the bending moment Mx D �EIy

00. This energy must of course
be provided by the work of the virtual forces. The second term arises from the increase in
length of the rod due to the perturbation, which releases a bit of the compression energy ini-
tially present, and therefore diminishes the amount of work that the virtual forces have to do.
Since the perturbation is infinitesimal, we can calculate the (negative) work as �F�L where
�L is the increase in length of the perturbed rod. Using that the line element in the yz-plane
is

d` D
p
dy2 C dz2 D dz

p
1C y0.z/2 � dz C

1

2
y0.z/2dz; (10.18)

the total increase in length becomes �L D
R L
0
.d` � dz/ which leads to the second term.

As long as the virtual work W is positive, the undeformed beam is stable when left on its
own, because there are no external “agents” around to perform the necessary work. This is
evidently the case for F D 0. If, on the other hand, the virtual work W is negative for some
choice of y.z/, the undeformed beam is unstable and will spontaneously deform without the
need of work from any external “agent”. Since the second term of (10.17) is always negative
for positive F , the rod will always become unstable for a sufficiently large value of F . The
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Figure 10.3. English wooden bow. Being visibly thinner towards the ends, this bow does not cor-
respond perfectly to any of the ideal shapes calculated in the text. Reproduced here under Wikimedia
Commons License.

lowest possible value, F D Fc , where this can happen, is called the critical load. At this
point it takes no work to begin to deform the beam.

The shape of the critical perturbation is determined by that choice of y.z/ which yields
smallest value of W for a given F . It can be determined by variation of the perturbation in
W , and leads—not unsurprisingly—to the Euler perturbation y D A sin kz with k D n�=L.
Inserting this solution into (10.17) , the integrals are now trivial and we get

W D
n2�2A2

4L
.n2FE � F/; (10.19)

where FE is the Euler threshold (10.16) . For F < FE the work is positive for all n � 1,
so that the undeformed beam is stable against any such perturbation. The smallest value of
F at which the work can become zero corresponds to n D 1, and this shows that the Euler
threshold is the critical load. At this point, the amplitude of the perturbation can grow without
requiring us to perform any work on the system. The approximation of small perturbations
will, however, soon become invalid, and the rod finds an equilibrium in which it is bent by a
finite amount.

10.3 Large deflections without torsion

A stringed bow (see figure 10.3) may be viewed as a straight rod that has been brought beyond
the buckling threshold and is kept in mechanical equilibrium by the tension in the unstretch-
able bowstring. In this case, the deflection of the rod is not small compared to the dimension
of the bow, but the strains in the material are still small as long as the radius of curvature of
the bow is much larger than the transverse dimensions of the beam. In this section we shall
develop the formalism for large deflections of the central ray, without torsion and with all
bending taking place in a plane. For simplicity we assume that there is no compression or
shear in the rod. In the following section we turn towards the general theory of rods with
torsion.

Planar deflection

The balance of forces in the yz-plane (10.2) and the bending moment along the x-axis (10.3)
are also valid for large planar deflections, where the length and radius of curvature of the rod
are comparable. To describe the curved planar rod we use the formalism already introduced
for bubble shapes in chapter 5 (page 84) in which the curve is described by the curve length s
from one end and the elevation angle, � D �.s/, here chosen relative to the z-axis. From the
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planar geometry we immediately get the relations (see the margin figure),

dz

ds
D cos �;

dy

ds
D sin �;

d�

ds
D �

Mx

EI
; (10.20)

where we have also used the Euler-Bernoulli law (9.25) to eliminate the radius of curvature,
taking into account that a positive moment along x generates a negative curvature.
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Differentiating once more with respect to s, and making use of (10.3) , it follows that

EI
d2�

ds2
D �Fy cos � C Fz sin �: (10.21)

If there are no distributed forces, both Fy and Fz are constants. In that case, this equation is
a variant of the equation for a mathematical pendulum (page 85). Multiplying by d�=ds, this
equation can immediately be integrated to yield,

1

2
EI

�
d�

ds

�2
D �Fy sin � � Fz cos � C C (10.22)

where C is an integration constant, determined by the boundary conditions. This equation can
always be solved by quadrature.

Case: Shape of an ideal stringed bow
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The stringed bow (see the margin figure) is kept in mechanical equilibrium by the string force,
Fz D �F , whereas Fy D 0. The ends are hinged such that d�=ds � Mx D 0 for z D 0

and z D L. Denoting the opening angle, � D ˙˛, at the ends, this fixes the constant in the
integrated equation (10.22) , which becomes�

d�

ds

�2
D 2k2.cos � � cos˛/: (10.23)

where as before k D
p
F=EI . Since the angle decreases with s, so that d�=ds < 0, we find,

s D
1

k

Z ˛

�

d� 0p
2.cos � 0 � cos˛/

; (10.24)

which is an elliptic integral that is easy to evaluate numerically. For � D �˛ the left hand
side becomes equal to the length of the bow L, and this equation provides a relation betweenp
F=FE D Lk=� and ˛.

Finally, we may calculate dy=d� and dz=d� and integrate to obtain the Cartesian coordi-
nates as functions of the elevation angle � ,

y D
1

k

p
2.cos � � cos˛/; z D

1

k

Z ˛

�

cos � 0p
2.cos � 0 � cos˛/

d� 0: (10.25)

Together these expressions define the shape of the bow parameterized by � . In figure 10.4
some shapes are plotted for various opening angles.

Example 10.2 [Wooden longbow]: A certain longbow is constructed from a circular wooden
rod of length L D 150 cm and diameter 2a D 15 mm. The bow is stringed with an opening angle
of ˛ D 20 ı. The maximal string distance from the bow becomes d � 16 cm and the stringed
height h � 145 cm. The moment of inertia becomes I � 2:5� 10�9 m4, and taking E D 10 GPa
the Euler threshold becomes FE � 109:0 N, corresponding to a weight of 11 kg which is quite
manageable for most people. From the numeric integration we get F D 110:6 N, which is very
close to the Euler threshold.
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Figure 10.4. Ideal bow shapes (left) for various opening angles . At ˛ � 130ı, the ends of the “bow”
cross. Bow parameters (right) as functions of the opening angle. Here h is the distance between the end
terminals, d the maximal deflection, and Rmin the smallest radius of curvature (at maximal deflection).
All lengths are relative to the length L of the bow.

10.4 Mixed bending and twisting
The analysis in the preceding sections can be generalized to arbitrary three-dimensional de-
formations of rods, including both bending and twisting. We shall again for simplicity assume
that the rod is made from a homogeneous, isotropic material, but now we also assume that it
has constant circular cross section with radius a and area A D �a2. The radius is as before
assumed to be so much smaller than the lengthL of the rod that stretching and shearing can be
disregarded, leaving only room for bending and twisting. Since the area moment for twisting
is twice the area moment for bending J D 2I D �

2
a4, we obtain the relationEI D .1C�/�J

between the flexural and torsional rigidities.

Gustav Robert Kirchoff (1824–
1887). German physicist. Devel-
oped the famous laws of electri-
cal circuit theory. Founded spec-
trum analysis (with Bunsen) and
applied it to sunlight, using the
dark absorption lines to deter-
mine its composition. Published
a much used 4-volume “Lectures
on Mathematical Physics”.

The three-dimensional theory of slender rods goes back to Kirchoff (1859). The pre-
sentation in this section owes much to [Landau and Lifshitz 1986]. A modern presentation,
including rods with non-circular cross sections, can be found in [Bower 2010, ch. 10].

Local balance of forces and moments
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Let the actual shape of the rod’s central ray be given by the vector function x D x.s/ of the
curve length s (the so-called natural parametrization). In each circular cross section at s there
are internal stresses that integrate up to a total internal force F .s/ and moment of force M.s/.
We may as before without loss of generality assume that point-like external forces and mo-
ments only act on the end terminals of the rod, because forces or moments acting somewhere
between the terminals can be handled by dividing the rod into pieces and imposing suitable
continuity conditions where they join. Distributed external forces, for example gravity or vis-
cous drag, act with a vector force K .s/ ds on any infinitesimal piece of the curve between s
and s C ds. We assume that there are no distributed moments of force.

The balance of forces on a small piece of the rod at rest (see the margin figure) then
becomes F.s C ds/ �F.s/CK .s/ ds D 0, or after division with ds,

dF
ds
D �K : (10.26)

Similarly, the balance of moments around the center of the cross section at s takes the form,
M.s C ds/ �M.s/C dx � F.s C ds/ D 0, and to first order in ds we find,

dM
ds
D �

dx

ds
�F : (10.27)

These are the basic equations that determine the rod shape from the external forces and mo-
ments, together with the Euler-Bernoulli and Coulomb-Saint-Venant constitutive equations
relating the internal moments to curvature and torsion.
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The Frenet-Serret basis
Jean Frédéric Frenet (1816–
1900). French mathematician.
Only published a few papers
and a book. Directed the as-
tronomical observatory in
Lyon, and made meteorological
observations.

Joseph Alfred Serret (1819–
1885). French mathematician.
Worked on differential geometry,
number theory, and calculus.
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The Frenet-Serret basis consists
of the tangent vector t, the nor-
mal n and the binormal b. The
normal points towards the center
of curvature C. As the point x

moves along the curve, the basis
turns around b and twists around
t to reflect the geometric curva-
ture and torsion of the oriented
curve.

At this point we need to make a small excursion into an efficient mathematical description
of the geometry of three-dimensional (spatial) curves, due to Frenet in 1847 (and indepen-
dently to Serret in 1851). At every point of a curve, a local so-called Frenet-Serret basis is
established, starting with the unit tangent vector (see the margin figure),

t D
dx

ds
: (10.28)

The two other unit vectors in this basis are the normal n which points towards the local center
of curvature and the binormal b D t � n orthogonal to both. We shall now show that these
vectors satisfy the relations,

d t

ds
D � n;

db

ds
D �� n;

dn

ds
D � b � � t: (10.29)

where � D �.s/ is the local curvature and � D �.s/ the local torsion of the curve.

Proof: As the point s moves a distance ds along the curve with local curvature � D 1=R, the
tangent vector rotates towards the center of curvature through an angle d� D ds=R, such that the
change in the tangent vector is d t D n d� D �n ds. The change db in the binormal is orthogonal
to b because b is a unit vector, but since db D d t�nC t�dn D t�dn, it is also orthogonal to t.
Consequently, db rotates around t in the direction �n, such that db D �nd where d D �ds

is the angle of twist over the distance ds. The last equation follows from n D b � t.

Whereas the curvature � by definition is never negative, the torsion � can take both signs.
If the curvature vanishes everywhere, �.s/ D 0, the tangent is constant and the curve becomes
straight. In that case torsion can be anything we want and it loses its geometric meaning. If the
torsion vanishes everywhere, �.s/ D 0, it follows that b is a constant, implying that the curve
lies in a plane orthogonal to b. This case was discussed in the preceding section. Generally, it
may be shown (see problem 10.8) that the curvature �.s/ and the torsion �.s/ are sufficient to
determine the shape x.s/ of the curve, given suitable boundary conditions.

Moments of bending and twisting
Since bending corresponds to a rotation around the binormal and twisting to a rotation around
the tangent, we shall assume that the internal moment can only have components along these
directions,

M DMb bCMt t: (10.30)

This is of course the same as saying that the normal component vanishes, Mn DM � n D 0.
For a rod with non-circular cross section, Mn would generally be non-vanishing, even for
pure bending.

From moment balance (10.27) , we obtain

dMb

ds
bC

dMt

ds
t C .�Mt � �Mb/n D �t �F :

and projecting this equation on the local basis, we get

dMb

ds
D �Fn;

dMt

ds
D 0; �Mt � �Mb D Fb : (10.31)

Evidently Mt must be constant along rod with circular cross section, as long as there are only
internal bending and twisting moments. If Mt is non-zero, the only way that the rod can be
twisted is by applying external torsion moments �Mt and Mt on the start and end terminals
to compensate for the missing internal moments.
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Constitutive equations for small deflections
Common experience with highly bendable elastic beams—thin metal wires, electrical cables,
garden hoses—tells us that unrestricted twisting and bending can lead to highly contorted
shapes. Conversion of twist energy into bending energy may lead to torsional buckling where
a part of the rod loops back and writhes around itself [GPL05]. The theory of large deflections
of three-dimensional rod shapes is a difficult subject and has been under intense study by
physicists and mathematicians since Kirchoff opened the ball.

Paperclips, discussed in example 9.5, and coiled springs like the ones shown in figure 10.5
are examples of slender rods given permanently bent and twisted equilibrium shapes by forces
strong enough to overcome the yield stress of the material. The elasticity of such objects under
further small deformations around the relaxed equilibrium shapes is often what makes them
practically useful: for paperclips to hold sheets of paper together, and for coiled springs to
dampen the influence of bumps in the road on the passenger compartments of vehicles, or to
slam a mousetrap shut.

Let �.s/ and �.s/ be the geometric curvature and torsion of the relaxed rod with no ex-
ternal load. Under the influence of external forces and moments, the rod deforms into a new
equilibrium state, but we assume that the external load is so small that the deflection �x.s/

is everywhere small compared to the radius of curvature 1=� and the torsion length 1=� . The
constitutive equations are (without proof) assumed to be given by the Euler-Bernoulli law
(9.25) and the Coulomb-Saint-Venant law (9.38) ,

Mb D EI��; Mt D �J��: (10.32)

where ��.s/ and �� are the (small) changes in curvature and torsion, caused by the external
load. The preceding analysis tells us that �� must be constant, even if the relaxed state has a
frozen-in geometric torsion that varies with s.

10.5 Application: The helical spring
Here we shall only analyze the deformation of a slender circular rod for which the central
ray has been permanently shaped into a perfect helix. The helix is uniquely defined by having
constant geometric curvature and torsion. It has a beautiful non-trivial regularity that may well
be the reason for the fascination it evokes. Everybody has probably made a, not quite perfect,
permanent helix by winding a copper wire around a cardboard cylinder, and then removing
the cylinder. Helices are found ubiquitously in natural objects—from carbon nanotubes, DNA
and bacteria, to horns and vines of large animals and plants— as well as in artificial structures
from screws to staircases [CGM06].

Geometry of a perfect helix
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A piece of a right-handed helix
with constant radius a and con-
stant elevation angle ˛, spiraling
up along the z-axis. The tangent
and binormal of the Frenet-Serret
basis are shown.

A perfect helix is an infinitely long curve that winds around an imaginary cylinder with con-
stant radius a and constant elevation angle ˛ (see the margin figure). In cylindrical coordinates
r , � and z (see appendix D) the natural parametrization of the helix becomes,

r D a; � D s
cos˛
a

z D s sin˛ .�1 < s <1/: (10.33)

In Cartesian coordinates this may be written more compactly,

x.s/ D a Oer C s sin˛ Oez ; (10.34)

where Oer D .cos�; sin�; 0/, Oe� D .� sin�; cos�; 0/, and Oez D .0; 0; 1/ are the usual basis
vectors for cylindrical coordinates.
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Figure 10.5. Two kinds of helical springs. On the left, an extension/compression spring, and on the
right a torsion spring. Courtesy Spring Solutions Pty Ltd (Australia). Permission to be obtained.

Using that d Oer=d� D Oe� and d Oe�=d� D �Oer we find the Frenet-Serret basis,

t D cos˛ Oe� C sin˛ Oez ; b D � sin˛ Oe� C cos˛ Oez ; n D �Oer ; (10.35)

with curvature and torsion,

� D
cos2 ˛
a

; � D
cos˛ sin˛

a
: (10.36)

Both of these are constant along the helix. The helix is in fact the only curve for which they
are both constant (see problem 10.7).

In practice, we would rather describe a finite helical spring of length L by the total turning
angle  and the height h. These parameters are found by setting s D L in eq. (10.33) ,

 D
L cos˛
a

; h D L sin˛: (10.37)

The finite spring thus covers the intervals 0 � s � L, 0 � � �  and 0 � z � h. In these
variables the curvature and torsion become

� D
 

L

r
1 �

h2

L2
; � D

 h

L2
(10.38)

where we have used that cos˛ D
p

1 � sin2 ˛ D
p
1 � h2=L2.

Small perfectly helical deflections
The relaxed helix is now deformed by suitable terminal loads to be discussed below. We shall
insist that these loads are chosen such that the deformed helix is also a perfect helix with
constant parameters aC�a and ˛ C�˛. Expressed in terms of the change in turning angle
� and the change in height �h, we find from (10.38) the following first-order changes in
curvature and torsion,

�� D
� 

L
cos˛ �

�h

aL
sin˛; �� D

� 

L
sin˛ C

�h

aL
cos˛: (10.39)

Inserting these into the constitutive equations the bending and twisting moments become,

Mb D EI��; Mt D �J��; (10.40)

expressed in terms of � and �h.
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Projecting M DMbbCMt t on the cylindrical directions Oez and Oe� , we get,

Mz DMb cos˛ CMt sin˛; M� D �Mb sin˛ CMt cos˛: (10.41)

In terms of the changes in turning angle and height, we have

Mz D A
� 

L
� C

�h

aL
; M� D B

�h

aL
� C

� 

L
; (10.42)

where

A D EI cos2 ˛ C �J sin2 ˛; (10.43a)

B D EI sin2 ˛ C �J cos2 ˛; (10.43b)
C D .EI � �J / cos˛ sin˛ (10.43c)

All three constants are positive definite because EI � �J D ��J for a circular rod.

Implementation

6
z

q qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq . ................ ............... .............. ......................................................................................................................................................................................................................................................................
...... ........ .......... . .......... ........

. ....... . ....... . ....... . ....... . ....... . ....... . ....... r
s

a

a

6
F

............................... ...... ....... ........ ................. ................. ........ ....... ...... ...................
...........YM tt

A possible implementation of the
load on the end terminal of a he-
lical spring. The external force
F exerts a pull along the z-
axis and the external moment M
wrenches the spring around the z-
axis.

Since Mz and M� are both independent of s, they determine the external moments that must
be applied to the end terminal of the rod at s D L. We assume that the start terminal at s D 0
is clamped in such a way that it can provide all the necessary reaction forces. The symmetry
of the helix indicates that the only possible external load that may lead to a perfectly helical
deformation consists of a force F D F Oez and a moment M DM Oez , both acting along the
z-axis.

One way of implementing such loads is shown in the margin figure, where a stiff lever
transmits both the central external force F and the central external moment M to the end
terminal. The external force creates a terminal moment M� D aF , but it appears that the
external moment creates a terminal force F� DM=a. That cannot be right because the total
force F D Fz Oez C F� Oe� has to be constant along the rod according to (10.2) (when there
is no distributed load). We shall appeal to Saint-Venant’s principle and assume that some
diameters away from the rod’s terminals we obtain the perfect helix with M� D aF and
Mz DM.

Finally, putting it all together, we obtain expressions of the form,

F D kF�h �m� ; M D kM� �m�h; (10.44)

with spring constants kF for extension, kM for torsion and m for “cross-over”,

kF D
B

a2L
; kM D

A

L
; m D

C

aL
: (10.45)

Note that for small ˛ the force is dominated by the torsional rigidity whereas the moment is
dominated by the flexural rigidity. Paradoxically, the elasticity of a coiled compression spring,
like the shock absorber in your car, depends mainly on twisting the rod, whereas the elasticity
of a torsion spring, like the one in a mousetrap, functions primarily by bending the rod.

Example 10.3 [Locked compression spring]: A helical spring is fixated so that its end
terminals cannot turn with respect to each other. Using the expressions for circular rods with rod
radius b and � D 0, we get

kF D
Eb4

8Na3
1C � sin2 ˛
1C �

cos˛; m D �
Eb4

8Na2
�

1C �
cos2 ˛ sin˛: (10.46)

where N D  =2� is the number of turns of the spring.
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The four suspension springs in a certain car have diameter 2a D 10 cm, rod diameter 2b D
1 cm, number of turns N D 5, and elevation angle ˛ D 15ı. The length is L D 163 cm
and the relaxed height h D 42 cm. Taking EE D 200 GPa, and � D 1=3, we find the spring
constant kF D 18:6 kN=m and the cross-over constantm D �75N. If the passenger compartment
(including passengers) has total mass 1000 kg and is suspended by four such springs, we find the
compression �h D �13 cm and the reaction moment M D �10 Nm.

Problems
10.1 Calculate the buckling threshold for a rod which is only clamped at one end so that it can neither
move nor turn.

10.2 Calculate the buckling threshold for a vertical rod, clamped at the bottom and only subject to its
own weight.

10.3 Show that (10.21) can always be cast as the equation for the mathematical pendulum when the
forces are constants.

10.4 Estimate the shortening of the stringed bow and show that it is negligible for a slender rod.

10.5 Calculate the general shape of a clamped stalk bent by a terminal force.

10.6 Show that the Frenet-Serret basis rotates as a solid body with rotation vector per unit of curve
length, � D � bC � t.

10.7 Prove that if both curvature � and torsion � are constants (independent of s), the curve becomes
a perfect helix.

10.8 Show that the following fourth-order ordinary differential equation is satisfied by any curve x.s/,

d

ds

 
1

�

d

ds

 
1

�

d2x

ds2

!!
C
�

�

d2x

ds2
C
d

ds

�
�

�

dx

ds

�
D 0; (10.47)

where � D �.s/ and � D �.s/ are the curvature and torsion functions. Discuss the boundary conditions
(for, say, s D 0) that will determine a unique solution.

10.9 Calculate the elastic behavior of locked torsion spring (with �h D 0). Estimate the numeric
values of forces and moments involved for a typical mousetrap.

10.10 Show by variation of x.z/ that the equation for the minimum of the work functional W is

EI
d4x

dz4
D �F

d2x

dz2
; (10.48)

which is a version of the Euler-Bernoulli equation. Show that this leads to solutions of the form (10.14) .
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