
7
Strain

All materials deform when subjected to external forces, but different materials react in differ-
ent ways. Elastic materials bounce back again to the original configuration when the forces
cease to act. Others are plastic and retain their shape after deformation. Viscoelastic materials
behave like elastic solids under rapid deformation, but creep like viscous liquid over longer
periods of time. Elasticity is itself an idealization, limited to a certain range of forces. If
the external forces become excessive, all materials become plastic and undergo permanent
deformation or may even fracture.

When a body is deformed, its material is displaced away from its original position. Small
deformations are mathematically much easier to handle than large deformations where parts
of a body become greatly and non-uniformly displaced relative to other parts, as for example
when you crumple a piece of paper. A rectilinear coordinate system embedded in the original
body and deformed along with the material of the body becomes a curvilinear coordinate
system after the deformation. It can therefore come as no surprise that the general theory
of finite deformation is mathematically at the same level of difficulty as general curvilinear
coordinate systems. Luckily, our buildings and machines are rarely subjected to such violent
treatment, and in most cases the deformation may be assumed to be tiny.

Although displacement is naturally described by a vector field, the description of defor-
mation inevitably leads to the introduction of a new tensor quantity, the strain tensor which
characterizes the state of local deformation or strain in a material. It can come as no surprise
that material strain causes tension or stress—as do strained relations among people. In this
chapter we shall focus exclusively on the description of strain, and postpone the discussion of
the stress-strain relationship for elastic materials to chapter 8.

7.1 Displacement

Uniform dilatation. The arrows
indicate how material particles
are displaced.

The prime example of deformation is a uniform scaling in which the coordinates of all material
particles in a body are multiplied with the scale factor �. A material particle originally situated
in the point X is thus displaced to the point,

x D �X : (7.1)

It is emphasized that bothX and x refer to the same coordinate system. Uniform scaling with
� > 1 is also called uniform dilatation whereas scaling with 0 < � < 1 is called uniform
compression. Negative scaling with � < 0 is physically impossible.
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110 PHYSICS OF CONTINUOUS MATTER

Figure 7.1. In statistical brain image analysis it is necessary to align brain images from different
individuals so that structurally similar regions are brought to overlap. This process, called registration,
may be viewed as a deformation of one brain into another. In the above image the small arrows picture
the displacement field connecting two brain images. Image courtesy Hauge Bartsch (permission to be
obtained).

The only point which does not change place during uniform scaling is the origin of the
coordinate system. Although it superficially looks as if the origin of the coordinate system
plays a special role, this is not really the case. All relative positions of material particles scale
in the same way, because x � y D �.X � Y /, independent of the origin of the coordinate
system. There is no special center for a uniform scaling, either geometrically or physically.
The origin of the coordinate system is simply an anchor point for the mathematical description
of scaling.

Linear displacements
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Geometry of displacement. The
particle that originally was lo-
cated at X has been displaced to
x by the displacement vector u.

Under a displacement the center-of-mass of a material particle is moved from its original
positionX to its actual position x. The displacement vector is always defined as the difference
between the actual and the original coordinates,

u D x �X : (7.2)

For the case of uniform scaling, the displacement vector becomes

u D .� � 1/X D

�
1 �

1

�

�
x (7.3)

Mathematically we are completely free to express the displacement in terms of the original or
actual position of the material particle. For scaling, the displacement is in both cases a linear
function of the coordinates.
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Figure 7.2. Arrow plots of the displacement fields for simple translation, simple rotation and simple
dilatation.

More generally a linear displacement (and its inverse) takes the form,

x D AAAAAAAAA �X C b; X D AAAAAAAAA�1
� .x � b/: (7.4)

where AAAAAAAAA is a non-singular constant matrix and b is a constant vector. As for scaling, the dis-
placement vector may be expressed as a function of either the original or the actual positions,

u D .AAAAAAAAA � 111111111/ �X C b D
�
111111111 �AAAAAAAAA�1

�
� x CAAAAAAAAA�1

� b: (7.5)

There is strong similarity between the general linear displacements and the transformations
of Cartesian coordinates (seen appendix B), but the class of linear displacements is larger,
because the matrixAAAAAAAAA is not restricted to be orthogonal.

The general linear displacement may like coordinate transformations be resolved into sim-
pler types, namely translation along a coordinate axis, rotation by a fixed angle around a
coordinate axis, and scaling by a fixed factor along a coordinate axis (see figure 7.2). The
physically impossible reflections in a coordinate axis are excluded. We shall not prove here
that the general linear displacement may be resolved in this way, but instead rely on geometric
intuition.

Simple translation

A rigid body translation of the material through a distance b along the x-axis is described by
x D X C b, y D Y , and z D Z. The displacement vector becomes,

ux D b; uy D 0; uz D 0: (7.6)

The geometric relationships in a body are evidently unchanged under any translation, so this
is not a deformation.

Simple rotation
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A rigid body rotation through an
angle � moves the material parti-
cle at .X; Y / to .x; y/.

A rigid body rotation through the angle � around the z-axis takes the form,

x D X cos� � Y sin�; X D x cos� C y sin� (7.7a)
y D X sin� C Y cos�; Y D �x sin� C y cos� (7.7b)
z D Z; Z D z: (7.7c)

The corresponding displacement vector components are

ux D �X .1 � cos�/ � Y sin� D x.1 � cos�/ � y sin�; (7.8a)
uy D X sin� � Y .1 � cos�/ D x sin� � y.1 � cos�/; (7.8b)
uz D 0: (7.8c)

Since all distances in the body are unchanged, this is not a deformation.
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Simple scaling

Multiplying all x-coordinates by the factor �, we get x D �X , y D Y , and z D Z. The
displacement vector becomes,

ux D .� � 1/X D kx; (7.9a)
uy D 0; (7.9b)
uz D 0; (7.9c)

where k D 1�1=�. Simple dilatation corresponds to k > 0 and simple compression to k < 0.
Uniform scaling (7.1) is a combination of three such scalings by the same factor along the
three coordinate axes. Scaling is a true deformation.

7.2 The displacement field

In this book we have systematically adopted a “materialistic” attitude towards the description
of continuous matter. Field values, such as the density �.x/ and gravity g.x/, represent
the physical properties in the immediate neighborhood of the point x. When a macroscopic
material body is deformed, all its material particles are in general simultaneously displaced.
In keeping with the materialistic attitude, we let the fieldX.x/ denote the original position of
the material particle now situated at x, so that the displacement field becomes a function of
the actual position,

u.x/ D x �X.x/: (7.10)

This (material) representation of displacement is also called the Euler representation.
Mathematically, we could—as we did for the linear displacements—solve the equation,

X.x/ D X for x, to obtain the actual position in terms of the original, x D x.X/. In that
case the displacement, u D x.X/�X , becomes a function of the original position. Although
it seems physically awkward, this Lagrange representation of displacement is conceptually
convenient in many situations and has played a great role in the long history of continuum
physics. Here we shall mainly deal with slowly varying displacement fields, for which there
is essentially no difference between the Euler and the Lagrange representations. A bit of the
general theory of arbitrary displacements is presented in section 7.5.

Local deformation

A general displacement field also includes all kinds of ordinary rigid body translations and
rotations, and it would be wrong to classify all displacement fields as deformations. Sailing a
submarine at the surface of the water will only translate or rotate it horizontally, not deform
it, whereas taking it to the bottom of the sea will also compress it. A true deformation must
involve changes in geometric relationships, i.e. lengths and angles, in the body.

Large scale deformation can be very complex. Think of all the loops and knots that
weavers make from a roll of yarn. We should for this reason not expect to find a simple
formalism for global deformation. Weaving, knitting, folding, winding, writhing, wringing
and squashing may bring particles that were originally far apart into close proximity. Even
the wildest weave consists, however, locally of small pieces of straight yarn that have only
been translated, rotated, stretched or contracted, but not folded, spindled or mutilated. We
may therefore expect to find a much simpler description of deformation for very small pieces
of matter.
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Displacement of an infinitesimal “needle”
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arX C a0

rx C a

Displacement of a tiny material
needle from a0 to a. It may
be translated, rotated, and scaled.
Only the latter corresponds to a
true deformation.

Consider a tiny elongated piece of matter, a “needle” or material vector a, now actually
connecting the points x and x C a in the displaced material. Before the displacement this
needle connected the pointsX D X.x/ andXCa0 D X.xCa/. Subtracting these equations
and using that X.x/ D x � u.x/, we find

a0 D X.x C a/ �X.x/ D a � u.x C a/C u.x/: (7.11)

Expanding to the displacement field to first order in a, we get

u.x C a/ D u.x/C ax

@u.x/

@x
C ay

@u.x/

@y
C az

@u.x/

@z
CO

�
a2
�

D u.x/C .a � r/u.x/CO
�
a2
�
: (7.12)

This shows that the displacement changes an infinitesimal needle vector by

ıa � a � a0 D .a � r/u.x/: (7.13)

Since it is a relation between infinitesimal quantities, this transformation is of course linear
in a. In index notation, it may be written as,

ıai D

X
j

aj rjui : (7.14)

The coefficients of the linear transformation of a are computed from the set of derivatives of
the displacement field, frjuig, also called the displacement gradients. For a general linear
displacement (7.5) we find rjui D ıij � .AAAAAAAAA

�1/ij .

Example 7.1 [Simple rotation]: The displacement gradient matrix of a simple rotation (7.7)
is,

frjui g D

0@1 � cos� � sin� 0

sin� �1C cos� 0

0 0 0

1A (7.15)

where the index i enumerates the rows and j the columns.

Slowly varying displacement field

r -���
���:

a0

a
ıa
@@I

The change in a needle vector
is small compared to its length
when the displacement gradients
are small.

Displacements and coordinates have dimension of length, so that the displacement gradients
are dimensionless, i.e. pure numbers. This makes it meaningful to speak of small displacement
gradients in an absolute way. A displacement field is said to be slowly varying if all the
displacement gradients are small everywhere,ˇ̌

rjui .x/
ˇ̌
� 1; (7.16)

for all i; j and x. If we define the norm of a matrix as jAAAAAAAAAj D
P

ij

ˇ̌
Aij

ˇ̌2, this may also
be written jruj � 1. Except for section 7.5, where a few aspects of the theory of finite
deformations are presented, we shall from now on assume that the displacement field is slowly
varying, so that the change in a material needle is much smaller than its length, jıaj � jaj.
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Small displacement gradients do not automatically guarantee that the displacement field
itself is small compared to the size of the body, because the displacement could include a
rigid body translation to the other end of the universe, and that would not affect its gradient.
But relative to a fixed anchor point in the body, a slowly varying field will always be small
compared to the size L of the body and thus fulfill,

ju.x/j � L: (7.17)

A displacement field, satisfying this condition everywhere, will in general also be slowly
varying, though there are notable exceptions. If you, for example, make a small crease in
your shirt when you iron it, the displacement gradients will be almost infinitely large in the
crease although none of the shirt’s material is greatly displaced compared to its size.

Example 7.2 [Small rotations]: For small rotation angle � � 1, the displacement field of a
simple rotation becomes u D .�y; x; 0/ �, and the gradient matrix (7.15) becomes,

frjui g D

0@0 �� 0

� 0 0

0 0 0

1A (7.18)

to lowest order in �. The change in a becomes ıax D ��ay and ıay D �ax . This may also be
written as a cross product, ıa D � � a, where � D � Oez .

Cauchy’s strain tensor
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Displacement of a pair of in-
finitesimal material needles may
affect their lengths as well as the
angle between them.

The scalar product of two needles a �b is unchanged by translation and rotation, so it ought to
be a useful indicator for a change in geometry. Using (7.13) , we calculate the change in the
scalar product ı.a � b/ � a � b � a0 � b0 to first order in the small displacement gradients,

ı.a � b/ D ıa � bC a � ıb

D .a � r/u � bC .b � r/u � a

D

X
ij

�
riuj Crjui

�
aibj :

or

ı.a � b/ D 2
X
ij

uijaibj D 2 a � uuuuuuuuu � b; (7.19)

where uuuuuuuuu D fuij g is the symmetrized displacement gradient tensor,

uij D
1
2

�
riuj Crjui

�
: (7.20)

This tensor is called Cauchy’s (infinitesimal) strain tensor, or just the strain tensor when that
is unambiguous. It is sometimes convenient to write this relation in matrix form,

uuuuuuuuu D 1
2

�
ruC ru>

�
(7.21)

where .ru/ij D riuj and .ru>/ij D rjui is its transposed.
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The strain tensor contains all the information about geometric changes caused by the
displacement and is accordingly a good measure of deformation. All bodily translations and
rotations have been automatically taken out, and any displacement which is a combination
of translations and rotations must consequently yield a vanishing strain tensor. It should,
however, be emphasized that Cauchy’s expression is only valid for small displacement gradi-
ents. When that is not the case, a more complicated expression must be used, involving the
square of the displacement gradients (see section 7.5). The relative error committed by using
Cauchy’s approximation rather than the true strain tensor is therefore of the same magnitude
as the displacement gradients.

It is instructive and useful for practical calculations to write out all the components of the
strain tensor explicitly, once and for all. The six independent components are,

uxx D rxux ; uyz D uzy D
1
2

�
ryuz Crzuy

�
; (7.22a)

uyy D ryuy ; uzx D uxz D
1
2

�
rzux Crxuz

�
; (7.22b)

uzz D rzuz ; uxy D uyx D
1
2

�
rxuy Cryux

�
: (7.22c)

Had we not assumed that the displacement was slowly varying, there would as mentioned
above also have been quadratic terms in the displacement gradients, and the strain tensor
might take large values. But with our assumption of small displacement gradients (7.16) , the
strain tensor field is likewise small,

ˇ̌
uij .x/

ˇ̌
� 1 for all i; j and x. Contrariwise, a small

strain tensor does not imply that the displacement gradients are small.

Example 7.3 [Simple linear displacements]: The matrix of displacement gradients of a
simple translation, u.x/ D .b; 0; 0/, vanishes trivially, and so does the strain tensor. This confirms
that a translation is not a deformation. For small angles of rotation, j�j � 1, the displacement
gradient matrix (7.18) is antisymmetric. Cauchy’s symmetric strain tensor therefore vanishes,
confirming that a small rotation is not a deformation. For a simple scaling u D k.x; 0; 0/ the
displacement gradient matrix is symmetric and equals therefore strain tensor

fuij g D k

0@1 0 0

0 0 0

0 0 0

1A : (7.23)

Evidently this is a true deformation.

* Principal axes of strain
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Principal strain basis in a point x.
The deformation consists entirely
of scale changes along the prin-
cipal axes, often shown by the
lengths of the basis vectors.

Arrow plot of the two-
dimensional Lagrangian linear
displacement field u D .y; x; 0/

in the square �1 < x < 1 and
�1 < y < 1. The material is
dilated along one diagonal and
contracted along the other. These
are the principal directions of
strain everywhere (see problem
7.5).

According to its definition (7.20) the strain tensor is born symmetric under exchange of its
indices

uij D uj i : (7.24)

It differs in this respect from the stress tensor, for which symmetry is not self-evident and
must be viewed as a constitutive equation (see page 104).

A symmetric tensor can always be diagonalized. The eigenvectors of the strain tensor at a
given point are called the principal axes of strain, and form a principal basis at every point of
the body. In the principal basis for any given point, the strain tensor is diagonal, and the angles
between the principal axes are unchanged under the displacement. The signs and magnitudes
of the eigenvalues determine how much the material is being stretched or contracted along the
principal axes. It should, however, be remembered that the principal basis of the strain tensor
varies from point to point in space, and defines three orthogonal unit vector fields and three
scalar eigenvalue fields (see figure 7.3).

A symmetric tensor has six independent component whereas the displacement field has
only three independent components. Every strain tensor must consequently satisfy consis-
tency or compatibility conditions that remove three degrees of freedom. These conditions are
formulated in problem 7.11 and will not be further discussed here.
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Figure 7.3. Principal strain axis distribution for ground displacements in Japan, determined by GPS
over two years. Only the two horizontal axes are shown with lengths proportional to the magnitude of
the eigenvalues. The black axes (running mainly southeast-to-northwest) indicate contraction and the
gray extension. Geography & Crustal Dynamics Research Center (Permission to be obtained).

7.3 Geometrical meaning of the strain tensor

The strain tensor contains all the relevant information about local changes in geometric re-
lationships, such as lengths of material needles and the angles between them. Other local
geometric quantities, for example curve, surface and volume elements, are also changed un-
der a deformation.

Lengths and angles

It is useful for the following discussion to define the projection uab of a tensor uij on the
directions of two arbitrary vectors a and b,

uab D Oa � uuuuuuuuu � Ob D
a � uuuuuuuuu � b

jaj jbj
: (7.25)

Then we may simply write,

ı.a � b/ D 2 jaj jbjuab; (7.26)

for the change in a scalar product (7.19) .
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jaj

ı jaj

The length of the original needle
is ja0j D jaj�ı jajwhere ı jaj D
uaa jaj is determined by the diag-
onal projection of the strain ten-
sor.

The change in the length of a needle, ı jaj � jaj � ja0j, is obtained by setting b D a in
(7.26) , and using that 2uaa jaj

2
D ı.a � a/ D ı.jaj2/ D 2 jaj ı jaj we get,

ı jaj

jaj
D uaa: (7.27)

The diagonal strain projection uaa thus equals the fractional change of lengths in the direction
a. Obtaining this relation is part of the reason behind the conventional factor 2 in the definition
(7.20) of the strain tensor. Another reason is given in problem 7.8.
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The original angle between two
vectors is �0 D � � ı� where
in this case the actual angle is
� D 90ı. The Euler represen-
tation makes the drawing a bit
awkward because it is based on
the actual geometry and not the
original.

Introducing the angle � between two needles we have a � b D jaj jbj cos�, and thus

ı.a � b/ D ı jaj jbj cos� C jaj ı jbj cos� � jaj jbj sin� ı�:

Solving for ı� and using(7.26) and (7.27) , we get

ı� � � � �0 D
.uaa C ubb/ cos� � 2uab

sin�
: (7.28)

For actually orthogonal vectors, such as the coordinate axes, we have � D 90ı, and the change
in angle simplifies to

ı� D �2uab : (7.29)

The off-diagonal projections of the strain tensor thus determine the change in angle between
actually orthogonal needles.

Infinitesimal elements
Curve, surface, and volume integrals appear everywhere in continuum physics, and the mathe-
matics of these integrals is discussed in appendix C. When material is displaced, the infinites-
imal elements of the integrals also change, and the formalism of displacement with small
gradients introduced in this chapter allows us to calculate how they transform.

Curve element

. .......
.........

........
.......

.......
........
.......
.......
.......
.......
........
........
.........

.........
.........

..........
..........

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........

6 �
��

���
��:

d`0

d`

C0 C

A line element is stretched and
rotated by the displacement that
changes the curve from C0 to C .

A curve element is nothing but a small needle. Under a displacement, the curve element
changes from d`0 to d`, and simply transforms like the needle,

ı.d`/ � d` � d`0 D d` � ru D ru> � d`: (7.30)

Here we have as before used a compact matrix notation for the displacement gradient ten-
sor, .ru/ij D riuj . The transposed displacement gradient matrix (with rows and columns
interchanged) then becomes .ru/>ij D rjui .

Example 7.4: Let g.x/ be a vector field, and consider the integral
R

C g � d` along a curve C .
Assuming that the end points are not displaced, the change in the integral becomes,

ı

Z
C
g � d` D

Z
C
ıg � d` C

Z
C
g � ı.d`/

D

Z
C
.u � r/g � d` C

Z
C
g � .ru/> � d`: (7.31)

The first term is due to the change in the field g under the displacement, ıg D g.x/�g.x�u/ �
.u � r/g. This requires the displacement to be small compared to the length scales for changes
in the g-field. The second term is due to the change in the curve elements, and only requires the
displacement gradients to be small (see also problem 7.17).
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Volume element

""
""
""







""""""










""
""
""










a

c b
-

*�

Three infinitesimal needles span
a parallelepiped with volume
dV a � b � c.

Consider a tiny material volume, dV D a�b �c, of a parallelepiped spanned by three linearly
independent infinitesimal needles. Under the displacement the volume changes by,

ı.dV / D ı.a � b � c/

D ıa � b � c C a � ıb � c C a � b � ıc

D .a � r/u � b � c C .b � r/ a � u � c C .c � r/ a � b � u

D
�
b � c .a � r/C c � a .b � r/C a � b .c � r/

�
� u:

In the last step we used that u � b � c D b � c � u, and a � u � c D c � a � u to pull the only
x-dependent factor u.x/ out to the right.

We now use an identity between four arbitrary vectors,

a � b .c � d/C b � c .a � d/C c � a .b � d/ D .a � b � c/d : (7.32)

It expresses the simple fact that in a three-dimensional space, four vectors will always be lin-
early dependent. It may be verified by dotting from left with a, b and c (see also problem B.10
on page 610). Replacing d by r , it follows immediately that

ı.dV / D r � u dV; (7.33)

We have thus shown that the for small displacement gradients, the divergence of the dis-
placement field, r � u D

P
i riui , determines the fractional change ı.dV /=dV in the local

volume. There are several other ways of deriving this relation, a couple of which are explored
in problems 7.15 and 7.16.

Example 7.5 [Simple linear displacements]: A translation u D b does not change the
density because r �u D 0. Likewise for an infinitesimal rotation around the z-axis through a small
angle �, the displacement field u D .�y; x; 0/� has vanishing divergence, so that the density is
unchanged. A uniform scaling u D kx has r � u D 3k. If k > 0 the volume increases while the
density diminishes with a contribution k from each dimension.

The change in volume of a material particle induces a change in the local density of the
displaced matter. Using that the mass of the particle is unchanged during the displacement,

ı.dM/ D ı.�dV / D � ı.dV /C ı� dV D 0;

and making use of (7.33) , the change in density becomes,

ı� D ��r � u: (7.34)

Thus, if the divergence vanishes, there is no change of volume or density.

Surface element
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a

bdS

Two infinitesimal needles span a
parallelogram with area dS D
a � b.

An tiny material surface element, dS D a � b, also changes under a displacement. Using
that the volume element equals dV D c � dS we find from (7.33) ,

c � ı.dS / D ı.c � dS / � ıc � dS D r � u.c � dS/ � .c � ru/ � dS :

Since c is an arbitrary vector, it can be “divided out”, and we get (using matrix notation)

ı.dS / D
�
r � u111111111 � ru

�
� dS : (7.35)

Both the magnitude and direction of the vector surface element are changed by the displace-
ment, but the rule is quite different from that of the vector curve element (7.30) .
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7.4 Work and energy

Deforming a body takes work, a fact known to everyone who has ever kneaded clay or dough.
In these cases, the work you perform seems to get lost inside the material, but in other cases,
as for example when you squeeze an elastic rubber ball, the material appears to store the work
and release it again when you relinquish your grip. Many ball games like ping-pong or tennis
rely entirely on the elasticity of the ball. No material is, however, perfectly elastic. Some
work is always lost to internal friction. A hard steel ball may jump many times on a hard
floor, but eventually it loses all its energy and comes to rest, partly due to air resistance, partly
due to losses in the ball and, perhaps more importantly, in the floor. But even when your work
seems to disappear into the dough, this is not really the case. The energy you have put into
the dough has in the end been converted into heat which, however, cannot easily be recovered.
We shall analyze the interplay of mechanics and heat in chapter 22.

In continuum physics it can be quite subtle to derive the correct energy relations. The
simplest way to proceed is to follow the work. This is quite analogous to the admonition,
“follow the money”, often used with success to uncover economic or political fraud.

Virtual displacement work

t���
�

�	

f �

f 0 D �f �

Every material particle can be
kept in place by acting on it with
an additional external force that
balances the already existing ef-
fective body force on the particle.

A volume of an arbitrary material which is not in mechanical equilibrium, will left to itself
seek towards equilibrium. If the effective force dF D f � dV , acting on a material particle
of volume dV , does not vanish everywhere, the particle is (literally) forced to move until the
effective force vanishes. If we wish to keep all material particles in their non-equilibrium
positions, we must act on the body with an external volume distribution of so-called virtual
forces, f 0 D �f �, to compensate the effective internal forces. Even if such forces may be
impossible to realize in practice, they will — in a thought experiment — freeze all the material
particles in their positions for as long as we wish.

Imagine now that in this frozen state all the material particles of the body are displaced
infinitesimally by ıu.x/. To prevent the constant external forces on the surface of the body
from performing work, we shall choose to keep the surface S of its volume V unchanged, so
that the infinitesimal displacement must vanish at the surface, ıu.x/ D 0 for x 2 S . The
work of the virtual forces under this displacement then becomes,

ıW D

Z
V

f 0 � ıu dV D �

Z
V

f � � ıu dV: (7.36)

Inserting f � D f C r � ���������> we find for the stress term (using index notation for clarity),

X
ij

.rj�ij / ıui D

X
ij

rj .�ij ıui / �
X
ij

�ijrj ıui :

Integrating over V , the first term is converted into a surface integral which vanishes because
the displacement field ıu vanishes at the surface. We now introduce a convenient notation for
the trace of the product of two matrices, AAAAAAAAAWBBBBBBBBB D Tr.AAAAAAAAA �BBBBBBBBB/ D

P
ij AijBj i . The work of the

virtual forces may then be written,

ıW D �

Z
V

f � ıu dV C

Z
V

��������� Wrıu dV; (7.37)

where f is the true force density due to long range forces and ��������� Wrıu D
P

ij �ijrj ıui .
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The first term represents the part of the displacement work that is spent by the virtual
forces against the true body forces, for example gravity. In that case the work contributes to
the gravitational energy of the body. The second term represents the part of the work of the
virtual forces that is spent against the internal stresses in the body,

ıWdeform D

Z
V

��������� Wrıu dV: (7.38)

If the stress tensor is symmetric (which it normally is), �ij D �j i , the integrand may be
written,

��������� Wrıu D
X
ij

�ijrj ıui D

X
ij

�ij ıuij D ��������� W ıuuuuuuuuu

where ıuij D
1
2
.riıuj C rj ıui / is the infinitesimal change in the strain tensor. Evidently

the work (7.38) work is associated with deformation of the material and contributes to the
deformation energy of the body. In chapter 8 we shall derive an explicit expression for the
deformation energy.

Example 7.6 [Thermodynamic work]: Suppose the stresses are only due to pressure, �ij D

�p ıij . Then the deformation work becomes

ıWdeform D �

Z
V
p r � ıu dV: (7.39)

Since ı.dV / D .r �ıu/ dV is the change in volume of a material particle, we see that the deforma-
tion work is identical to the thermodynamic work �p ı.dV / summed over all material particles.

* 7.5 Large deformations
Ronald Samuel Rivlin (1915–
2005). British born mathemati-
cian and physicist. Contributed
to the understanding of nonlinear
materials during the 1940s and
1950s. Discovered exact nonlin-
ear solutions for isotropic materi-
als.

When the condition (7.16) for slowly varying displacement is not fulfilled, we can no longer
use the simple Cauchy strain tensor (7.20) . The local description of large deformation is
essentially equivalent to the formalism of general curvilinear coordinate systems, but because
space is Euclidean the description is not quite as complicated as that of truly non-Euclidean
spaces [Green and Zerna 1992]. Although many aspects of the theory of large deformations
were developed in the nineteenth century, the subject was not fully established until the mid-
twentieth century through Rivlin’s work on nonlinear materials. Here we shall only touch
briefly on the most general aspects of large deformation theory which is a mathematically
rather challenging subject [Green and Adkins 1960, Doghri 2000].

The Euler representation

When there are no restrictions on the magnitude of the displacement field or the displacement
gradients, the transformation x ! X.x/ becomes a completely general non-singular differ-
entiable point-to-point map between two regions of space representing the actual body and its
original situation. There is then no particular reason to split off the displacement, except to
make contact with the description of small deformations in the preceding part of this chapter.
The local properties of the displacement field will still be of importance, because the map is
nearly linear in the neighborhood of any point in the body.

Copyright c 1998–2010 Benny Lautrup



7. STRAIN 121

Consider again an infinitesimal material “needle” (in the actual body) described by the
vector dx. It originated in a material needle with coordinates,

dXi D

X
j

@Xi

@xj

dxj : (7.40)

The scalar product of the infinitesimal vectors dX and dY then becomes

dX � dY D
X
ij

gij .x/dxidxj ; (7.41)

where the tensor field

gij D

X
k

@Xk

@xi

@Xk

@xj

(7.42)

is called the Eulerian deformation tensor. It contains all information about geometric changes
taking place under the displacement. Writing

gij D ıij � 2uij ; (7.43)

the change in the scalar product can be written in the same way as the expression (7.19) for
slowly varying displacement,

dx � dy � dX � dY D 2
X
ij

uijdxidyj : (7.44)

Finally, we insertX.x/ D x�u.x/, and arrive at the strain tensor in the Euler representation,

uij D
1

2

 
@uj

@xi

C
@ui

@xj

�

X
i

@uk

@xi

@uk

@xj

!
: (7.45)

It only differs from the infinitesimal Cauchy strain tensor (7.20) by the last non-linear term.
This tensor was first introduced by Emilio Almansi in 1911 and Georg Hamel in 1912 (see
[Chandrasekharaiah and Debnath 1994]).

Emilio Almansi (1869–1948).
Italian mathematical physicist.
Worked on nonlinear elasticity
theory, electrostatics and celestial
mechanics.

Georg Hamel (1877–1954). Ger-
man mathematician. Solved one
of the famous Hilbert problems in
his doctoral thesis under Hilbert
(1901).

Example 7.7 [Uniform scaling]: For uniform scaling x D �X , we have X D ��1x, so
that @Xi=@xj D �

�1ıij . Consequently the displacement gradient tensor becomes,

@ui

@xj
D
@xi

@xj
�
@Xi

@xj
D

�
1 � ��1

�
ıij ; (7.46)

from which we get the Euler-Almansi strain tensor,

uij D
1

2

��
1 � ��1

�
ıij C

�
1 � ��1

�
ıij �

�
1 � ��1

�2
ıij

�
D
1

2

�
1 � ��2

�
ıij ; (7.47)

valid for any value of �. For � D 1 C k with jkj � 1, this expression becomes uij D kıij to
leading order.
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The Lagrange representation

Even if the Lagrange representation of large deformation goes against the “materialistic” at-
titude of this book—in which the properties of material particles are functions of their actual
positions—it is sometimes useful, for exampel in numerical computations. The basic relation
between the two representation is simply that the Lagrangian displacement field by U .X/
must take the same value as the Eulerian one at corresponding points, so that

x D X C U .X/ with U .X/ D u.x/: (7.48)

Given the Euler displacement field, u.x/, this nonlinear equation may be solved for U .X/.
The local analysis now proceeds as before via the infinitesimal line element,

dx D
X

j

@xi

@Xj

dXj : (7.49)

The scalar product becomes

dx � dy D
X
ij

GijdXidYj ; Gij D

X
k

@xk

@Xi

@xk

@Xj

; (7.50)

where Gij is the Lagrangian deformation tensor. Writing

Gij D ıij C 2Uij (7.51)

it follows from (7.48) that the Lagrangian strain tensor is,

Uij D
1

2

 
@Uj

@Xi

C
@Ui

@Xj

C

X
k

@Uk

@Xi

@Uk

@Xj

!
: (7.52)

It is called the Lagrange-Green strain tensor.

George Green (1793–1841).
Largely self-taught English
mathematician and mathemat-
ical physicist. Contributed
to hydrodynamics, electric-
ity and magnetism and partial
differential equations.

Example 7.8 [Uniform scaling]: For a uniform scaling x D �X , the Lagrangian displace-
ment field becomes

U .X/ D x �X D .� � 1/X : (7.53)

The Lagrange-Green strain tensor becomes,

Uij D
1
2

�
.� � 1/ıij C .� � 1/ıij C .� � 1/

2ıij
�
D

1
2 .�

2
� 1/ıij ; (7.54)

for any value of �. It vanishes for � D ˙1, i.e. for no displacement and for a (physically impossi-
ble) pure reflection in the origin.

The scalar product of two infinitesimal needles then becomes,

dx � dy D �2dX � dY ; (7.55)

and just reflects that all vectors are scaled by the same amount �.
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Problems
7.1 Prove that eq. (7.7) is the correct transformation for a simple rotation.

7.2 Calculate displacement gradients and the strain tensor for the transformation,

ux D ˛.5x � y C 3z/;

uy D ˛.x C 8y/;

uz D ˛.�3x C 4y C 5z/;

where ˛ is small.

7.3 A displacement field is given by

ux D ˛.x C 2y/C ˇx
2;

uy D ˛.y C 2z/C ˇy
2;

uz D ˛.z C 2x/C ˇz
2;

where ˛ and ˇ are ‘small’. Calculate the divergence and curl of this field. Calculate Cauchy’s strain
tensor.

7.4 Calculate the strain tensor for the displacement field u D .AxCCy;Cx �By; 0/ where A;B;C
are small constants. Under what condition will the volume be unchanged?

7.5 Calculate the strain tensor for u D ˛.y; x; 0/ where 0 < ˛ � 1. Determine the principal
directions of strain and the change in length scales along these.

7.6 (a) Calculate the displacement gradients and the strain tensor for the displacement field u D
˛.y2; xy; 0/ with j˛j � 1=L, where L is the size of the body. (b) Calculate the principal directions of
strain and the scaling factors.

7.7 Show that the change in a scalar product under a deformation is derivable from changes in length,
i.e. from the diagonal projections uaa of the strain tensor.

7.8 Show that the general displacement rule for a an infinitesimal needle (7.13) may be written

a0 D aC � � aC uuuuuuuuu � a (7.56)

where � D 1
2 r � u and uuuuuuuuu D fuij g is Cauchy’s strain tensor (7.20) . What does the second term mean?

7.9 Show that the most general solution, for which Cauchy’s strain tensor (7.20) vanishes, is

ux D ACDy CEz

uy D B �Dx C F z

uz D C �Ex � Fy

where A;B;C are arbitrary constants and D;E;F are small.

7.10 A deformable material undergoes two successive displacements, x0 D x C u.x/ and x00 D
x0 C u0.x0/, both having small strain. Calculate the final strain tensor for the total deformation u00ij
relative to the original reference state.

* 7.11 Show that Cauchy’s strain tensor satisfies the relation (going back to Saint-Venant)

rirjukl Crkrluij D rirlukj Crkrjuil : (7.57)

[Conversely, if this relation is fulfilled for a symmetric tensor field uij then there is a displacement field
such that the strain tensor is given by (7.20) .]
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* 7.12 Show that for finite deformations

ıij C 2uij D

X
k

.ıik Criuk/.ıjk Crjuk/; (7.58)

and use this to prove that the matrix fıij C 2uij g is positive definite. Show that

detfıij Criuj g D

q
detfıij C 2uij g: (7.59)

* 7.13 Show that the only finite displacements with vanishing strain tensor are the rigid body translations
and rotations.

* 7.14 Consider a shear deformation of a slab of elastic material in the xz-plane by a force in the
x-direction. Assume that the sides of the slab are kept free to move, so that the only non-vanishing
components of the strain tensor are uxy D uyx D

1
2˛. Show that the displacement becomes

ux D ˛y; (7.60)

uy D �

�
1 �

p
1 � ˛2

�
y: (7.61)

for a deformation which is not assumed to be small. Describe what happens for ˛ ! 1.

7.15 Show that the Jacobian determinant of an arbitrary transformation x0 D xC u.x/ represents the
ratio of the infinitesimal volumes

dV 0

dV
D det j111111111C ruj : (7.62)

Show that for small displacement gradients, the right hand side becomes 1Cr �u and compare with eq.
(7.33) .

7.16 Show that a small volume change can be represented by a surface integral

ıV D V 0 � V D

I
S
u � dS : (7.63)

and use this result to derive (7.33) .

7.17 Consider the gravitational field g.x/ D �rˆ.x/ and calculate the change due to the displace-
ment in the integral

R
C g � d` along a piece C of a curve. Show that eq. (7.31) yields the same result.
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