
Part II

Solids at rest
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Solids at rest
In the following chapters we only consider matter at permanent rest without any macroscopic
local or global motion. Microscopically, matter is never truly at rest because of random molec-
ular motion (heat), and internal atomic motion.

The essential chapters for a minimal curriculum are 6, 7, and 8. Readers that want to focus
on fluid mechanics alone need only chapter 6.

List of chapters
6. Stress: Friction is discussed as an example of shear stress. The stress tensor field is

formally introduced. The equations of mechanical equilibrium in all matter are formu-
lated. The symmetry of the stress tensor is discussed.

7. Strain: The displacement field is introduced and analyzed in the limit of infinitesimal
strain gradients. The strain tensor is introduced and its geometrical meaning exposed.
Work and energy are analyzed, and large deformation briefly discussed.

8. Elasticity: Hooke’s law is discussed and generalized to linear homogeneous materials.
Young’s modulus and Poisson’s ratio are introduced. Fundamental examples of static
uniform deformation are discussed. Expressions for the elastic energy are obtained.

9. Basic elastostatics: The most important elementary applications of linear elasticity are
analyzed (gravitational settling, bending and twisting beams, spheres and tubes under
pressure).

10. Slender rods: Slender elastic rods are analyzed and presented with characteristic ex-
amples, such as cantilevers, bridges, and coiled springs.

11. Computational elastostatics: The basic theory behind numeric computation of linear
elastostatic solutions is presented, and a typical example is analyzed and computed.
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The force on a small piece of a
surface can be resolved by a nor-
mal pressure force and a tangen-
tial shear force.

In fluids at rest pressure is the only contact force. For solids at rest or in motion, and for
viscous fluids in motion, this simple picture is no longer valid. Besides pressure-like forces
acting along the normal to a contact surface, there may also be shearing forces acting in any
tangential direction to the surface. The relevant local quantity analogous to pressure is the
shear force per unit of area, called the shear stress. Friction, so well-known from everyday
life, is always a result of shear stress acting in the contact areas between material bodies. The
integrity of a solid body is largely secured by internal shear stresses.

The two major classes of materials, fluids and solids, react differently to external stresses.
Whereas fluids respond by flowing, solids respond by deforming. Elastic deformation usually
grows linearly with stress, although every material in the end becomes plastic and deforms
permanently, and may eventually rupture. We shall as far as possible maintain a general view
of the physics of continuous systems, applicable to all types of materials, also those that do
not fall into the major classes. The field of exotic materials is rapidly growing because of the
needs for special material properties in technology.

In this chapter the emphasis is on the theoretical formalism for contact forces, independent
of whether they occur in solids, fluids, or intermediate forms. The vector notation used up to
this point is not adequate to the task, because contact forces not only depend on the spatial
position but also on the orientation of the surface on which they act. A collection of nine
stress components, called the stress tensor, is used to describe the full range of contact forces
that may come into play. The concept of stress and its properties is the centerpiece of the
continuum mechanics, and therefore of this book.

6.1 Friction
Friction between solid bodies is a shear force known to us all. We hardly think of friction
forces, even though all day long we are served by them and do service to them. Friction is the
reason that the objects we hold are not slippery as a piece of soap in the bathtub, but instead
allow us to grab, drag, rub and scrub. Most of the work we do is done against friction, from
stirring the coffee to making fire by rubbing two pieces of wood against each other.

Guillaume Amontons (1663–
1705). French physicist. Made
improvements to the barometer,
hygrometer and thermometer.

Charles-Augustin de Coulomb
(1736–1806). French physicist,
best known from the law of elec-
trostatics and the unit of electric
charge that carries his name.

The law of static friction goes back to Amontons (1699) and the law of dynamic friction to
Coulomb (1779). The full story of friction between solid bodies is complicated, and in spite
of our everyday familiarity with friction, there is still no universally accepted microscopic
explanation of the phenomenon [GM01, Kes01].
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Figure 6.1. The construction of a friction brake depends on how much energy it has to dissipate. In
bicycles (left) the pads are pressed against the metallic rim of the wheel by suitably levered finger forces.
In cars (right) disc brakes require hydraulics to press the pads against the metallic discs. Both images
from Wikipedia Commons.

Static friction

�0 �

Glass/glass 0.9 0.4
Rubber/asphalt 0.9 0.7
Steel/steel 0.7 0.6
Metal/metal 0.6 0.4
Wood/wood 0.4 0.3
Steel/ice 0.1 0.05
Steel/teflon 0.05 0.05

Typical friction coefficients for
various combinations of materi-
als.
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Sketch of tangential reaction
(traction) T as a function of ap-
plied force F . Up to F D �0N ,
the traction adjusts itself to the
applied force, T D F . At
F D �0N , the tangential re-
action drops abruptly to a lower
value, T D �N , and stays there
regardless of the applied force.

Consider a heavy crate at rest, standing on a horizontal floor. The bottom of the crate acts
on the floor with a force equal to its weight Mg0, and the floor acts back on the bottom of
the crate with an equal and opposite normal reaction force of magnitude N D Mg0. If you
try to drag the crate along the floor by applying a horizontal force, F , you may discover that
the crate is so heavy that you are not able to budge it, implying that the force you apply must
be fully balanced by an opposite tangential or shearing friction force (also called traction),
T D F , between the floor and the crate.

Empirically, such static friction can take any magnitude up to a certain maximum, which
is proportional to the normal load,

T < �0N: (6.1)

The dimensionless constant of proportionality �0 is called the coefficient of static friction.
In our daily doings it may take a quite sizable value, say 0.5 or greater, making dragging
comparable to lifting. Its value depends on what materials are in contact and on the roughness
of the contact surfaces (see the margin table).

Dynamic friction
If you are able to pull with a sufficient strength, the crate suddenly starts to move, but fric-
tion will still be present and you will have to do real work to move the crate any distance.
Empirically, this dynamic (or sliding) friction is proportional to the normal load,

T D �N; (6.2)

with a coefficient of dynamic friction, �, that is always smaller than the corresponding co-
efficient of static friction, � < �0. This is why you have to heave strongly to get the crate
set into motion, whereas afterwards a smaller force, F D �N , suffices to keep it going at
constant speed. Notice that whereas static friction requires no work to be done, the rate of
work, P D F U , performed against dynamic friction grows linearly with velocity U , and this
work is irretrievably lost to heat.
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Static and dynamic friction are both independent of the size of the contact area, so that a
crate on legs is as hard to drag as one without. The best way to diminish the force necessary
to drag the crate is to place it on wheels.

What do cars have wheels?: The contact between a rolling wheel and the road surface is
always static, although the actual contact area moves as the wheel rolls. Static friction performs
no work, so friction losses are only found in the bearing of the wheels and other parts of the
transmission (and some in the deformation of the tires). Being lubricated these bearings are much
less lossy than dynamic friction would be (see chapter 17).

When a moving car brakes, energy is dissipated by sliding friction in the brake assembly (see
figure 6.1) where the normal load is controlled by the force applied to the brake pedals. A larger
weight generates proportionally larger static friction between wheel and road, so a car’s minimal
braking distance will in the first approximation be independent of how heavily it is loaded, and
that is lucky for the flow of traffic. Braking a car, it is best to avoid blocking the wheels so that the
car skids because dynamic (sliding) friction is smaller than static (rolling) friction (see problem
6.3). More importantly, a skidding car has no steering control, so modern cars are equipped with
anti-skid brake systems that automatically adjust brake pressure to avoid skidding.

6.2 Stress fields
The above arguments indicate that it is necessary to introduce one or more fields describing
the distribution of normal and tangential forces acting on a surface. In analogy with pressure,
such stress fields represent the local force per unit of area, whether it is normal or tangential,
and are measured in the same units as pressure, namely the pascal (Pa D N m�2). A stress
that acts along the normal to a surface is called a tension stress whereas a stress that acts
against the normal is called a pressure stress. A stress that acts along a tangential direction to
a surface is called a shear stress.

External and internal stresses
The stresses acting in the interface between a body and its environment are external. As for
pressure, we shall also speak about internal stresses acting across any imagined surface in
the body. Internal stresses abound in the macroscopic world around us. Whenever we come
into contact with the environment (and when do we not?) internal stresses are set up in the
materials we touch, as well as in our own bodies. The precise distribution of stress in a body
depends not only on the external forces applied to the body, but also on the types of material
the body is made from and on other macroscopic quantities such as temperature.

There is no guarantee that the normal stress is the same for any choice of surface through a
given point. The proof of Pascal’s law (page 26)—that the pressure is the same in all directions
of the normal—assumed that the material was a fluid at rest. For fluids in motion and for solids
in general, this proof does not hold, but there is a generalized version of the theorem.

In the absence of external forces there is usually no internal stress in a material, although
fast cooling may freeze stresses permanently into certain materials, for example glass, and
provoke an almost explosive release of stored energy when triggered by a sudden impact.

Estimating stress

-F

�
F

A

A

�

�

Clamped slab of homogeneous
material. The shear force F at
the upper clamp is balanced by an
oppositely directed fixation force
F on the lower clamp. The shear
stress � D F=A is the same on
all inner planes parallel with the
clamps (dashed).

In many situations it is quite straightforward to estimate average stresses in a body from the
external forces that act on the body. Consider, for example, a slab of homogeneous solid
material bounded by two stiff flat clamps of area A, firmly glued to it. A tangential force F
applied to one clamp with the other held fixed will deform the slab a bit in the direction of the
applied force, so that there is an average shear stress � D F=A acting on the upper surface of
the slab in the direction of the force.
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The fixed clamp will by Newton’s Third Law act back on the slab with a force of the same
magnitude but in the opposite direction. If we make an imaginary cut through the slab parallel
with the clamps, then the upper part of the slab must likewise act like a clamp on the lower
with the shear force F , so that the average internal shear stress acting in the cut must again
be � D F=A. Had a normal external force also been applied to the clamps, we would have
gone through the same type of argument to convince ourselves that the average normal stress
would be the same everywhere in the cut.

For bodies with a more complicated geometry and non-uniform external load, internal
stresses are not so easily calculated, although their average magnitudes may often be esti-
mated, especially for symmetric bodies. In analogy with friction one may assume that varia-
tions in shear and normal stresses are roughly of the same order of magnitude, provided the
material, the external load, and the body geometry are unexceptional.

�
�
�
�

�
�
�
�
�

����M
The classic gallows construction.

Example 6.1 [Classic gallows]: The classic gallows is constructed from a vertical pole, a
horizontal beam and a diagonal strut. A body of mass M D 70 kg hangs at the extreme end of
the horizontal beam of cross section A D 100 cm2. The body’s weight must be balanced by a
shear stress in the beam of average magnitude � � Mg0=A � 70 000 Pa � 0:7 bar. The actual
distribution of shear stress will generally vary over the cross section of the beam and the position
of the chosen cross section, but its average magnitude should be of the estimated value. There will
also be a pressure force that has to vary over the cross section to balance the moment of force that
the body exerts on the beam (see section 9.3).

Example 6.2 [Water pipe]: The half-inch water mains in your house have an inner pipe
radius a � 0:6 cm. Tapping water at a high rate, internal friction in the water (viscosity) creates
shear stresses opposing the flow, and the pressure drops perhaps by �p � 0:1 bar D 104 Pa over
a length of L � 10 m of the pipe. In this case, we may calculate the shear stress on the water at
the inner surface of the pipe, because the pressure difference between the ends of the pipe is the
only other force acting on the water. Setting the force due to the pressure difference equal to the
total shear force on the inner surface, we get,

�a2�p D 2�aL�; (6.3)

from which it follows that � D �p a=2L � 3 Pa. This stress is of the same magnitude as the
pressure drop �p � 2a=L over a stretch of pipe of length equal to the diameter.

Yield Tensile
[MPa] [MPa]

Tungsten 3450
Titanium 275 420
Steel 250 415
Nickel 58 317
Copper 70 220
Cast iron NA 172
Zinc 124 172
Magnesium 90 172
Silver 55 160
Gold 130
Aluminium 35 90
Tin 12 22
Lead 17

Typical yield stress and tensile
strength for common metals. The
values may vary widely for dif-
ferent specimens, depending on
purity, heat treatment and other
factors.

Tensile strength
When external forces grow large, a solid body will deform strongly, become plastic, or even
fracture and break apart. The maximal tension, i.e. negative pressure or pull, a material can
sustain without failure is called the tensile strength of the material. Similarly, the yield stress is
defined as the stress beyond which otherwise elastic solids begin to undergo plastic deforma-
tion from which the material does not automatically recover when released. Such materials are
also called ductile. Copper is an example of a ductile metal which can be drawn or stretched
without breaking. Brittle materials, such as concrete or cast iron, do not have a yield point but
fail suddenly when then tension reaches the tensile strength.

For metals the tensile strength lies typically in the region of several hundred megapas-
cals (i.e. several kilobars) as shown in the margin table. Modern composite carbon fibers can
have tensile strengths up to several gigapascals, whereas “ropes” made from single-wall car-
bon nanotubes are reported to have tensile strengths of up to 50 gigapascals or even larger
[YFAR00].

Example 6.3 [Carbon steel rod]: Plain carbon steel has a tensile strength of 415 MPa. A
quick estimate shows that a steel rod with a diameter of 2 cm breaks if loaded with more than
13 000 kg. Adopting a safety factor of 10, one should not load it with more than 1300 kg, which
also brings it well below the yield point for carbon steel.
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6.3 The nine components of stress
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Components of stress acting on a
surface element dSz in the xy-
plane.

Shear forces are more complicated than normal forces, because there is an infinity of tangen-
tial directions on a surface. In a coordinate system where a force dFx is applied along the
x-direction to a material surface element dSz with its normal in the z-direction, the shear
stress will be denoted �xz D dFx=dSz , instead of just � . Similarly, if the shear force is ap-
plied in the y-direction, the stress would be denoted �yz D dFy=dSz , and if a normal force
is applied along the z-direction, the normal stress is consistently denoted �zz D dFz=dSz .
The sign is chosen such that a positive value of �zz corresponds to a pull or tension.

Cauchy’s stress hypothesis
Continuing this argument for surface elements with normal along x or y, it appears to be
necessary to use at least nine numbers to indicate the state of stress in a given point of a
material in a Cartesian coordinate system. Cauchy’s stress hypothesis (to be proved below)
asserts that these nine numbers are in fact all what is needed to determine the force dF D
.dFx ; dFy ; dFz/ on an arbitrary surface element, dS D .dSx ; dSy ; dSz/, according to the
rule

dFx D �xxdSx C �xydSy C �xzdSz ;
dFy D �yxdSx C �yydSy C �yzdSz ;
dFz D �zxdSx C �zydSy C �zzdSz :

(6.4)

This may also be written more compactly with index notation,

dFi D
X
j

�ijdSj ; (6.5)

where the indices range over the coordinate labels, here x, y, and z. Each coefficient �ij D
�ij .x; t / depends on the position (and time), and is thus a field in the normal sense of the
word.
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The tiny triangle and its projec-
tions form a tetrahedron. The
(vector) force acting on the tri-
angle in the xy-plane is called
dFz , and the force acting on the
triangle in the zx-plane dFy .
The force dFx acting on the tri-
angle in the yz-plane is hidden
from view. The force dF acts on
the skew triangle.

* Proof of Cauchy’s stress hypothesis: As in the proof of Pascal’s law (page 26) we take
again a surface element in the shape of a tiny triangle with area vector dS D .dSx ; dSy ; dSz/.
This triangle and its projections on the coordinate planes form together a little body in the shape
of a right tetrahedron. Let the external (vector) forces acting on the three triangular faces of
the tetrahedron be denoted respectively dFx , dFy and dFz . Adding the external force dF
acting on the skew face and a possible volume force f dV , Newton’s Second Law for the small
tetrahedron becomes

w dM D f dV C dFx C dFy C dFz C dF ; (6.6)

where w is the center-of-mass acceleration of the tetrahedron and dM D � dV its mass.
The volume of the tetrahedron scale like the third power of its linear size, whereas the surface

areas only scale like the second power. Making the tetrahedron progressively smaller, the body
force term and the acceleration term will vanish faster than the surface terms. In the limit of a truly
infinitesimal tetrahedron, only the surface terms survive, so that we must have dFx C dFy C
dFz C dF D 0. Taking into account that the area projections dSx , dSy and dSz point into the
tetrahedron, we define the stress vectors along the coordinate directions as �x D �dFx=dSx ,
�y D �dFy=dSy and �z D �dFz=dSz . Consequently,

dF D �xdSx C �ydSy C �zdSz : (6.7)

This shows that the force on an arbitrary surface element may be written as a linear combination of
three basic stress vectors along the coordinate axes. Introducing the nine coordinates of the three
stress vectors, �x D .�xx ; �yx ; �zx/, �y D .�xy ; �yy ; �zy/ and �z D .�xz ; �yz ; �zz/, we arrive
at Cauchy’s hypothesis (6.4) .

Copyright c 1998–2010 Benny Lautrup



102 PHYSICS OF CONTINUOUS MATTER

The stress tensor

Augustin-Louis, Baron Cauchy
(1789–1857). French mathemati-
cian who produced an astound-
ing 789 papers. Contributed
to the foundations of elasticity,
hydrodynamics, partial differen-
tial equations, number theory and
complex functions.

Together the nine fields, f�ij g, make up a single geometric object, called the stress tensor
field1, first introduced by Cauchy in 1822. Vector and tensor calculus is developed in some
detail in appendix B. It must be emphasized that this collection of nine fields cannot be viewed
geometrically as consisting of either nine scalar or three vector fields, but must be considered
together as one geometric object, a tensor field f�ij .x; t /g. There is unfortunately no simple,
intuitive way of visualizing the stress tensor field.

It is often convenient to write the stress tensor a matrix,

��������� D f�ij g D

0@�xx �xy �xz
�yx �yy �yz
�zx �zy �zz

1A ; (6.8)

so that the force may be written compactly as a matrix equation,

dF D ��������� � dS : (6.9)

Notice how a dot is used to denote the product of a matrix and a vector. This is consistent
with the rule for dot-products of vectors.

Writing dS D On dS where On is the normal to the surface, the force per unit of area
becomes dF=dS D ��������� � On, often called the stress vector. Although it is a vector, it is not a
vector field in the strict sense of the word, because it also depends the normal to the surface
on which it acts. The following example demonstrates this point.

Example 6.4 [A tensor field]: A tensor field of the form,

f�ij g D fxixj g D

0@x2 xy xz

yx y2 yz

zx zy z2

1A ; (6.10)

is a tensor product (see the definition (B.8) on page 599) and thus by construction a true tensor.
The “stress vector” acting on a surface with normal in the direction of the x-axis becomes

�x D ��������� � Oex D

0@xy
z

1A x: (6.11)

It is not a true vector because of the factor x on the right-hand side.

Total force
Including a true body force, dF D f dV , for example gravity f D �g, the total force on a
body of volume V with surface S becomes,

F D
Z
V

f dV C

I
S

��������� � dS ; (6.12)

which in index notation takes the form

Fi D
Z
V

fi dV C

I
S

X
j

�ij dSj : (6.13)

The circle through the surface integral is only there to remind us that the surface is closed.
1Some texts use the symbols f�ij g or fTij g for the stress tensor field.
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The surface integral can be converted into a volume integral by means of Gauss’ theorem,
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The total contact force on a
small box-shaped material parti-
cle is calculated from the differ-
ences of the stress vectors act-
ing on the sides. Suppress-
ing the dependence on y and
z, the resultant contact force on
dSx becomes dF D .�x.x C

dx/ � �x.x//dSx � rx�x dV .
Adding the similar contributions
from dSy and dSz , one arrives
at the total surface force, dF D
.rx�x C ry�y C rz�z/ dV D

r � ���������> dV .

eq. (2.13) on page 25, applied to each component of the stress tensor,

Fi D
Z
V

fi dV C

Z
V

X
j

rj�ij dV �

Z
V

f �i dV: (6.14)

In the last step we have—in complete analogy with the hydrostatic definition of the effective
force density (2.21) on page 28—introduced the effective force density,

f �i D fi C
X
j

rj�ij : (6.15)

In matrix notation the second term may be written compactly as a tensor divergence,

f � D f C r � ���������>: (6.16)

where ���������> is the transposed matrix, defined by �>j i D �ij .
The effective force density is not just a formal quantity because the total force on a material

particle is indeed dF D f � dV (see the margin figure). That we can write the total force as
a sum over contributions of this kind confirms that matter may be viewed as a collection of
material particles. It must as before be emphasized that the effective force density f � is not
a long-range volume force, but a local expression which for a tiny material particle equals the
sum of the true long-range force (here gravity) and all the short-range contact forces acting
on its surface.

Mechanical pressure
In hydrostatic equilibrium, where the only contact force is pressure and the force element is
dF D �pdS , comparison with eq.(6.9) shows that the stress tensor must be

��������� D �p 111111111 or equivalently �ij D �p ıij ; (6.17)

where 111111111 is the .3 � 3/ unit matrix. In index notation the unit matrix is represented by the
Kronecker delta tensor, ıij , which equals 1 for i D j and 0 otherwise (see appendix B).

Generally, however, the stress tensor will also have off-diagonal non-vanishing compo-
nents. A diagonal component behaves like a (negative) pressure, and often the negative diag-
onal components are called the “pressures” along the coordinate directions,

px D ��xx ; py D ��yy ; pz D ��zz : (6.18)

Here it should be remembered that the triplet .px ; py ; pz/ of diagonal elements of the stress
tensor does not behave like a Cartesian vector (see section B.6 on page 606). It is in fact not
a well-defined geometric object at all.

There is no unique way of defining the pressure in general materials, so wherever pressure
is used, it must be accompanied by a suitable definition. Sometimes the pressure will be
identified with the mechanical pressure, defined as the average of the three pressures along
the axes,

p D 1
3
.px C py C pz/ D �

1
3
.�xx C �yy C �zz/: (6.19)

This makes sense because the sum over the diagonal elements of a matrix, the trace Tr ��������� �P
i �i i D �xx C �yy C �zz , is invariant under Cartesian coordinate transformations (see

appendix B). Defining pressure in this way ensures that it is a scalar field, taking the same
value in all coordinate systems. There is in fact no other scalar linear combination of the nine
stress components with that property.
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Example 6.5: For the stress tensor given in example 6.4 the pressures along the coordinate axes
become px D �x2, py D �y2 and pz D �z2. Evidently, they do not form a vector, but the
mechanical pressure,

p D �13 .x
2
C y2 C z2/; (6.20)

is clearly a scalar, invariant under rotations of the Cartesian coordinate system.

6.4 Mechanical equilibrium
In mechanical equilibrium, the total force on any body must vanish, for if it does not the body
must begin to move. Accordingly, the general condition for mechanical equilibrium is that
F D 0 for all volumes V . Applied to material particles, it implies that the force on each
and every material particle must vanish, f � D 0. We thus arrive at Cauchy’s equilibrium
equation,

f C r � ���������> D 0: (6.21)

which in tensor notation becomes,

fi C
X
j

rj�ij D 0; (6.22)

In spite of their simplicity these partial differential equations govern mechanical equilibrium
in all kinds of continuous matter, be it solid, fluid, or whatever. For a fluid at rest with pressure
being the only stress component, we have ��������� D �p111111111, and recover with f D �g the equation
of hydrostatic equilibrium, � g � rp D 0.

It is instructive to write out the three coupled partial differential equations in full,

fx Crx�xx Cry�xy Crz�xz D 0;

fy Crx�yx Cry�yy Crz�yz D 0;

fz Crx�zx Cry�zy Crz�zz D 0:

(6.23)

These three equations are in themselves not sufficient to determine the stress distribution in
continuous matter, but must be supplemented by constitutive equations connecting the stress
tensor with the variables describing the state of the matter. For fluids at rest, the equation of
state serves this purpose by relating pressure to mass density (and temperature), as we saw in
chapter 2. In solids at rest the constitutive equations are more complicated and relate stress to
strain, a tensor that describes the state of deformation (chapter 7).

Symmetry
There is one additional condition (also going back to Cauchy) which is normally imposed on
the stress tensor, namely that it must be symmetric,

�ij D �j i ; or ���������> D ���������: (6.24)

Symmetry only affects the shear stress components,

�xy D �yx ; �yz D �zy ; �zx D �xz ; (6.25)

and thereby reduces the number of independent stress components from nine to six. Here we
shall now present a simple, though not entirely correct, argument for symmetry. In the fol-
lowing section we analyze the properties of asymmetric stress tensors and the deeper reasons
for imposing symmetry.
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��yxbc
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An asymmetric stress tensor will
produce a non-vanishing moment
of force on a small rectangular
box (the z-direction not shown).

Consider a material particle in the shape of a tiny rectangular box with sides a, b and c.
The shear force acting in the y-direction on a face in the x-plane is �yxbc whereas the shear
force acting in the x-direction on a face in the y-plane is �xyac. On opposite faces the contact
forces have opposite sign in mechanical equilibrium (their difference is as we have seen of
order abc). Since the total force vanishes, the total moment of force on the box may be
calculated around any point we wish. Using the lower left corner, we get (since the moments
of the diagonal elements of the stress tensor cancel automatically)

Mz D a �yxbc � b �xyac D .�yx � �xy/abc:

This shows that if the stress tensor is asymmetric, �xy ¤ �yx , there will be a resultant moment
on the box. In mechanical equilibrium this cannot be allowed, since such a moment would
begin to rotate the box, and consequently the stress tensor must be symmetric. Conversely,
when the stress tensor is symmetric, mechanical equilibrium of the forces alone guarantees
that all local moments of force will also vanish.

Being a symmetric matrix, the stress tensor may be diagonalized. The eigenvectors of
a symmetric stress tensor define the principal directions of stress and the eigenvalues the
principal tensions or stresses. In the principal basis, there are no off-diagonal elements, i.e. no
shear stresses, only pressure-like stresses. The principal basis is generally different from point
to point in space.

Example 6.6: The stress tensor in example 6.4 has one radial eigenvector Oer D x=r with
eigenvalue r2 D x2 C y2 C z2 and two degenerate eigenvectors with eigenvalue 0 orthogonal to
Oer , for example the spherical unit vectors Oe� and Oe� .

Boundary conditions

.
........................

........................

........................

.......................

.......................

.......................

........................

.........................

...........................

.............................

...............................

.................................

1 2

�n
���������1 ���������2

Contact surface separating body
1 from body 2. Newton’s third
law requires continuity of the
stress vector ��������� � n across the
boundary, i.e. ���������1 � n D ���������2 � n,
or ���������� � n D 0.

Cauchy’s equation of mechanical equilibrium (6.22) constitutes a set of coupled partial dif-
ferential equations valid inside a body’s volume, and such equations require boundary condi-
tions to be imposed on the surface of the body. The stress tensor is a local physical quantity,
or rather collection of quantities, and may, like pressure in hydrostatics, be assumed to be
continuous in regions where material properties change continuously. Across real boundaries,
surfaces or interfaces, where material properties may change abruptly, Newton’s third law
demands (in the absence of surface tension) that the two sides act on each other with equal
and opposite forces. Since the surface elements of the two sides are opposite to each other, it
follows that the stress vector, ��������� � On D f

P
j �ijnj g, must be continuous across a surface with

normal On (in the absence of surface tension). This is best expressed by the vanishing of the
surface discontinuity,

���������� � On D 0 (6.26)

This does not mean that all the components of the stress tensor should be continuous. Since it
is a vector condition, it imposes continuity on three linear combinations of stress components,
but leaves three other combinations free to jump discontinuously (for the symmetric stress
tensor). Surprisingly, it does not follow that the mechanical pressure (6.19) is continuous.
In full-fledged continuum mechanics, the mechanical pressure loses the appealing intuitive
meaning it acquired in hydrostatics.

Example 6.7 [What may jump and what may not]: Consider a plane interface in the
yz-plane with normal along x. The stress components �xx , �yx and �zx must then be continuous,
because they specify the stress vector on such a surface. Symmetry implies that �xy and �xz are
likewise continuous. The remaining three independent components �yy , �zz and �yz D �zy are
allowed to jump at the interface. In particular the mechanical pressure, p D �.�xxC�yyC�zz/=3,
may (and will usually) be discontinuous.
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* 6.5 Asymmetric stress tensors

The stress tensor was introduced at the beginning of this chapter as a quantity which furnished
a complete description of the contact forces that may act on any surface element. There is
nothing in the definition of the stress tensor that requires it to be symmetric, so we cannot
exclude the possibility that it could be asymmetric. In normal elastic materials where stress
only depends on deformation it will automatically be symmetric, as we shall see in chapter 8.

Total moment of force

The basic principle of continuum physics is that matter may be viewed as a collection of
material particles obeying Newton’s laws. We have seen that the total force (6.14) is the
integral over individual forces F D f � dV acting on each and every material particle, so in
keeping with this principle, the total moment of force on a body with volume V must be

M D

Z
V

x � dF D
Z
V

x � f � dV: (6.27)

In chapter 20 we shall see that this moment is indeed the time derivative of the total angular
momentum of the body, as it ought to be. Since mechanical equilibrium requires f � D 0

everywhere, it follows that the total moment of force vanishes automatically in mechanical
equilibrium, whether the stress tensor is symmetric or not.

How can it then be that we (on the preceding page) were able to demonstrate the symmetry
of the stress tensor by demanding that the moment of force on a material particle should
vanish? To find the answer we first write the total moment in index notation,

M D

X
i

OeiMi D

Z
V

X
ijk

�ijk Oeixj

 
fk C

X
l

rl�kl

!
dV; (6.28)

where �ijk is the totally antisymmetric Levi-Civita tensor, defined in eq. (B.25) on page 602.
Rewriting the stress term by means of the trivial identity,

xj
X
l

rl�kl D
X
l

rl .xj�kl / � �kj ; (6.29)

and applying Gauss theorem to the divergence, the total moment can be rewritten as the sum
of the moment of external body and surface forces, plus an extra term,

M D

Z
V

x � f dV C

I
S

x � ��������� � dS C

Z
V

X
ijk

Oei�ijk�jk dV: (6.30)

The extra contribution to the total moment may be viewed as a kind of internal moment
associated with the material of the body. It vanishes for all volumes if and only the stress
tensor is symmetric.

In our discussion of symmetry above, we only calculated the moment of the external
surface stresses acting on a material particle, i.e. the second term in eq. (6.30) . But the
external moment does not have to vanish in equilibrium if the stress tensor is asymmetric,
only the sum of the external and internal moments must vanish. So the argument fails in
general, and is vacuous if the stress tensor is already symmetric. We are, however, left with
an unanswered question about the nature of the extra internal moment distribution due to the
asymmetry.
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Non-classical continuum theories
The stress tensor allows us to calculate the force on any open surface in a body. But open
surfaces do not define physical bodies, only closed surfaces do. The gives rise to an ambiguity
in the stress tensor which makes it possible to convert any asymmetric stress tensor into a
symmetric tensor without changing the forces on physical bodies (see [MPP72, Appendix A]
and [Landau and Lifshitz 1986, p. 7]).

Even if it is thus formally possible to construct an equivalent symmetric stress tensor
from an asymmetric one, the relation between them is, however, non-local. This is an embar-
rassment because such non-locality is in disagreement with the basic principle in continuum
physics that forces and moments should be calculable from the local state of matter, i.e. from
the properties of the material particles.

Manifestly asymmetric stress tensors have been used in various generalizations of classi-
cal continuum theory, generally called Cosserat theory. In such theories, a material particle is
endowed with geometric properties in addition to its position, for example angles describing
its spatial orientation. These theories have turned out to be useful for the continuum treat-
ment of modern complex materials, which the classical theory is incapable of handling. We
shall not go further into these extensions of classical continuum physics; see for example
[Narasimhan 1993, p. 493] for a short review.

Eugène Maurice Pierre
Cosserat (1866–1931). French
mathematician. Worked in math-
ematics and astronomy, and
created in 1909 together with his
brother, an engineer, the now fa-
mous extension to the classical
continuum theory of elasticity.

Problems
6.1 A crate is dragged over a horizontal floor with sliding friction coefficient �. Determine the angle
˛ with the vertical of the total reaction force.

6.2 Explain what forces and moments that act on an accelerating car. Explain why rear-wheel drive
does not spin the wheels as easily as front-wheel drive.

6.3 A car with massmmoves with a speedU . Estimate the minimal braking distance without skidding
and the corresponding braking time. Do the same if it skids from the beginning to the end. For numerics
usem D 1000 kg and v D 100 km h�1. The static coefficient of friction between rubber and the surface
of a road may be taken to be �0 D 0:9, whereas the sliding friction is � D 0:7.

6.4 A strong man pulls a jumbo airplane slowly but steadily exerting a force of F D 2000 N on a
rope. The plane has N D 32 wheels, each touching the ground in a square area A D 40 � 40 cm2.
(a) Estimate the shear stress between the rubber and the tarmac. (b) Estimate the shear stress between
the tarmac and his feet, each with area A D 5 � 25 cm2.

6.5 Estimate the maximal height h of a mountain made from rock with a density of � D 3; 000 kg m�3

when the maximal stress the material can tolerate before it deforms permanently is � D 300 MPa. How
high could it be on Mars where the surface gravity is 3:7 m s�2?

6.6 A stress tensor has all components equal, i.e. �ij D � for all i; j . Find its eigenvalues and
eigenvectors.

6.7 Show that if the stress tensor is diagonal in all coordinate systems, then it can only contain pres-
sure.

6.8 A stress tensor and a rotation matrix are given by,

��������� D

0@ 15 �10 0

�10 5 0

0 0 20

1A ; AAAAAAAAA D

0@ 3=5 0 �4=5

0 1 0

4=5 0 3=5

1A :
Calculate the stress tensor in the rotated coordinate system x0 D AAAAAAAAA � x.
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6.9 (a) Show that the average of a unit vector n over all directions obeys

hninj i D
1

3
ıij : (6.31)

(b) Use this to show that the average of the normal stress acting on an arbitrary surface element in a fluid
equals (minus) the mechanical pressure (6.19) .

* 6.10 A body of mass m stands still on a horizontal floor. The coefficients of static and kinetic friction
between body and floor are �0 and �. An elastic string with string constant k is attached to the body in
a point close to the floor. The string can only exert a force on the body when it is stretched beyond its
relaxed length. When the free end of the string is pulled horizontally with constant velocity v, intuition
tells us that the body will have a tendency to move in fits and starts.

(a) Calculate the amount s that the string is stretched, just before the body begins to move.

(b) Write down the equation of motion for the body when it is just set into motion, for example in
terms of the distance x that the point of attachment of the string has moved and the time t elapsed
since the motion began.

(c) Show that the solution to this equation is

x D
v

!
.!t � sin!t/C .1 � r/s.1 � cos!t/

where ! D
p
k=m, r D �=�0.

(d) Assuming that the string stays stretched, calculate at what time t D t0 the body stops again?

(e) Find the condition for the string to be stretched during the whole motion.

(f) How long time will the body stay in rest, before moving again?

* 6.11 One may define three invariants, i.e. scalar functions, of the stress tensor in any point. The first
is the trace I1 D

P
i �i i , the second I2 D 1

2

P
ij .�i i�jj � �ij �j i / which has no special name, and the

determinant I3 D det��������� . Show that the characteristic equation for the matrix ��������� can be expressed in terms
of the invariants. Can you find an invariant for an asymmetric stress tensor which vanishes if symmetry
is imposed?

6.12 A space elevator (fictionalized by Arthur C. Clarke in Fountains of Paradise (1978)) can be
created if it becomes technically feasible to lower a line down to Earth from a geostationary satellite at
height h. Assume that the line is unstretchable and has constant cross section A and constant density �.
Calculate the maximal tension � D �F=A (force per unit of area) in the line. Determine the numerical
value of the ratio of tension to density, �=�, and compare with the tensile strength (breaking tension) of
a known material.
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