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Buoyancy

’Buoy’ mostly pronounced
’booe’, probably of Germanic
origin. A tethered floating
object used to mark a loca-
tion in the sea.

Fishes, whales, submarines, balloons and airships all owe their ability to float to
buoyancy, the lifting power of water and air. The understanding of the physics
of buoyancy goes back as far as antiquity and has probably sprung from the
interest in ships and shipbuilding in classic Greece. The basic principle is due
to Archimedes. His famous Law states that the buoyancy force on a body is
equal and oppositely directed to the weight of the fluid that the body replaces.
Actually the Law was not just one law, but a set of four propositions dealing with
different configurations of body and liquid [7]. Before his time one had thought
that the shape of a body determined whether it would sink or float. Archimedes of Syracuse

(287–212 BC). Greek math-
ematician. Discovered
the formulas for area and
volume of cylinders and
spheres. Considered the
father of fluid mechanics.

The shape of a floating body and its mass distribution does determine whether
it will float stably or capsize. Stability of floating bodies is of importance to
shipbuilding, and to anyone who has ever tried to stand up in a small rowboat.
Newtonian mechanics not only allows us to derive Archimedes’ Principle for equi-
librium of floating bodies, but also to characterize the deviations from equilibrium
and calculate the restoring forces. Even if a body floating in or on water is in
hydrostatic equilibrium, it will not be in complete mechanical balance in every
orientation, because the center of mass of the body and the center of mass of the
displaced water do not in general coincide. The latter is also called the center of
buoyancy. For a volume of the fluid itself, the center of mass always coincides
with the center of buoyancy.

The mismatch between the centers of mass and buoyancy for a floating body
creates a moment of force, which tends to rotate the body towards a stable
equilibrium. For submerged bodies, submarines, fishes and balloons, the stable
equilibrium will always be with the center of gravity situated directly below the
center of buoyancy. For bodies floating stably on the surface, ducks, ships, and
dumplings, the center of gravity is mostly found directly above the center of
buoyancy.



86 5. BUOYANCY

5.1 Archimedes’ principle

Mechanical equilibrium takes a slightly different form than global hydrostatic
equilibrium (4-14) when a body of another material is immersed in a fluid. If its
material is incompressible, the body retains its shape and displaces an amount of
fluid with exactly the same volume. If the body is compressible, as a rubber ball,
the volume of displaced fluid will be smaller. The body may even take in fluid,
like the piece of bread you dunk into your coffee, but then the physics becomes
more complicated, and we shall disregard this possibility in the following. A
body which is partially immersed may formally be viewed as a body that is fully
immersed in a fluid for which the mass density and the equation of state vary
from place to place. This also covers the case where part of the body is in vacuum
which may be thought of as a fluid with the extreme properties, ρ = p = 0.

Weight and buoyancy

Let the actual, perhaps compressed, volume of the immersed body be V with
surface S. In the field of gravity an unrestrained body is subject to two forces:
its weight

FG =
∫

V

ρbody g dV , (5-1)

and the buoyancy due to pressure acting at its surface,
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Gravity pulls at a body all
over its volume, while
pressure only presses at the
surface.

FB = −
∮

S

p dS . (5-2)

In general these two forces do not have to be in balance. The resultant F = FG+
FB determines the direction that the body will begin to move if unrestrained.
In mechanical equilibrium the two forces must exactly cancel each other so that
the body can remain in place.
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displacement

For a body partially sub-
merged in water the
displacement is the amount
of water that has been
displaced by the volume of
the body below the waterline.

Assuming that the body does not itself significantly contribute to the field
of gravity (see however page 120), the local balance of forces in the fluid (4-18)
will be the same as before. In particular the pressure in the fluid cannot depend
on the volume V containing material that is different from the fluid itself. The
pressure on the surface of the immersed body must for this reason be identical to
the pressure on a body of fluid of the same shape. But then the global equilibrium
condition (4-14) tells us that the buoyancy force will exactly balance the weight
of the displaced fluid, so that

FB = −
∮

S

p dS = −
∫

V

ρfluid g dV . (5-3)

This theorem is indeed Archimedes’ principle: the force of buoyancy equals (mi-
nus) the weight of the displaced fluid.
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The total force on the body may then be written

F = FG + FB =
∫

V

(ρbody − ρfluid)g dV , (5-4)

explicitly confirming that when the body is made from the same fluid as its
surroundings, so that ρbody = ρfluid, the resultant force vanishes automatically.
In general, however, the distributions of mass in the body and in the displaced
fluid will be different.

Notice that Archimedes’ principle is valid even if the gravitational field varies
appreciably across the body. Archimedes principle fails, if the body is so large
that its own gravitational field cannot be neglected, such as would be the case
if an Earth-sized body fell into Jupiter’s atmosphere. The extra compression
of the fluid and the associated change in buoyancy caused by the body’s own
gravitational field is calculated section ??.

Constant field of gravity

If the gravitational field is constant, g(x) = g0, the weight of the body is,

FG = Mbody g0 , (5-5)

and the buoyancy force becomes

FB = −Mfluid g0 . (5-6)

Since the total force is the sum of these contributions, one might say that buoy-
ancy acts as if the displacement were filled with fluid of negative mass −Mfluid.
Alternatively, one may view the buoyancy force as a kind of antigravity.

The total force on an unrestrained object is now,

F = FG + FB = (Mbody −Mfluid)g0 . (5-7)

If the body mass is smaller than the mass of the displaced fluid, the total force
is directed upwards, and the unrestrained body will begin to move upwards.
Alternatively, if the body is chained restrained from moving, the restraints must
deliver a force −F to keep the object in place.

For a body to hover motionless in a fluid, its mass must equal the mass of the
displaced fluid,

Mbody = Mfluid . (5-8)

Fish achieve this balance by adjusting the amount of water they displace through
contraction and expansion of an internal air-filled bladder. Submarines on the
contrary change their mass by pumping water in and out of ballast tanks. Curi-
ously, no animals seem to have developed balloons for floating in the atmosphere,
although both the physics and chemistry of ballooning appears to be within reach
of biological evolution.
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5.2 The art of ballooning
Joseph Michel Montgolfier
(1740-1810). Experimented
(together with his younger

brother Jacques Étienne
(1745-1799)) with hot-air
balloons and on November
21, 1783, the first human
flew in such a balloon for
a distance of 9 kilometers
at a height of 100 meter
above Paris. Only one of
the brothers ever flew, and
then only once!

Apart from large kites used in ancient China, balloons were the earliest flying
machines. The first balloons made by the Montgolfier brothers in 1783 contained
hot air which is lighter than cold. Hot-air balloons were a century later replaced
by balloons containing light gases, hydrogen or helium, with greater lifting power.
This also eliminated the need for a constant heat supply and made possible the
huge (and dangerous) hydrogen airships of the 1930’s. In the last half of the
twentieth century hot-air balloons again came into vogue, especially for sports,
because of the availability of modern strong lightweight materials (nylon) and
fuel (propane).

Gas balloons

A large hydrogen or helium balloon typically begins its ascent being only partially
filled, assuming an inverted tear-drop shape. During the ascent the gas expands
because of the fall in ambient air pressure, and eventually the balloon becomes
nearly spherical and stops expanding (or bursts) because the “skin” of the balloon
cannot stretch further. Since the density of the displaced air falls with height, the
balloon will reach a maximum height, a ceiling where it could hover permanently
if it did not lose gas. In the end no balloon stays aloft forever.

Let the total mass of the balloon be M , including the mass of the gas, the
balloon skin, the gondola, people, and what not. The condition for upwards flight
is then that M < V ρ where V is the total volume of air that the balloon displaces
and ρ the air density. If this inequality is fulfilled on the ground, the balloon will
start to rise. During the rise the volume may expand towards a maximal value
while the air density falls, and the balloon will keep rising until the air density
has fallen to ρ = M/V . In the isentropic atmospheric model the air density is
given by (4-60) and solving for the maximal height z we obtain the balloon’s
ceiling,

z = h2

(
1−

(
M

ρ0V

)γ−1
)

, (5-9)

where γ ≈ 7/5 is the adiabatic index of air, ρ0 ≈ 1.2 kg/m3 its density at sea
level, and h2 ≈ 30 km the isentropic scale height (4-58).

Example 5.2.1: A spherical balloon has a maximal diameter of 10 m yielding
a volume V ≈ 524 m3. For the balloon to lift off at all, its mass must be smaller
than ρ0V = 628 kg. Taking M = 400 kg the ceiling becomes z ≈ 5 km. At this
height the air pressure and temperature are 0.54 Bar and 245 K. Assuming that the
balloon contains hydrogen H2 at this temperature and pressure, the total mass of
the hydrogen is merely 28 kg. The surface area of the balloon is 314 m2, so if the
skin has thickness 2 mm and density 300 kg/m3, its mass becomes 188 kg, which
leaves about 184 kg for the proper payload. Filled with helium (He), the gas mass
would double and the payload be correspondingly smaller.
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Hot-air balloons
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A hot-air balloon has higher
temperature T ′ > T and
lower density ρ′ < ρ but
the same pressure as the
surrounding atmosphere
because it is open below.

A hot-air balloon is open at the bottom so that the inside pressure is always
the same as the atmospheric pressure outside. The air in the balloon is warmer
(T ′ > T ) than the outside temperature and the density is lower (ρ′ < ρ). If M0

denotes the total payload, the total mass including the hot air is M = M0 +ρ′V .
The total mass thus changes with height (and temperature) rather than being
constant as for a gas balloon. From the ideal gas law (4-24) and the equality
of the inside and outside pressures it follows that ρ′T ′ = ρT , so that the inside
density is ρ′ = ρT/T ′. The condition for flight is as before M < ρV , and the
maximum payload for a given height z becomes,

M0 =
(

1− T

T ′

)
ρV =

(
1− T0

T ′

(
1− z

h2

)) (
1− z

h2

) 1
γ−1

ρ0V . (5-10)

On the right hand side we have inserted the expressions (4-57) and (4-60) for the
isentropic atmospheric temperature T and density ρ.

Example 5.2.2: A hot-air balloon with diameter 15 m is desired to reach a ceiling
of 1000 m with air temperature 70 ◦C = 343 K. When the ground temperature is
T0 = 20 ◦C = 293 K and the density ρ0 = 1.2 kg/m3, it follows that this balloon
would be capable of lifting M0 ≈ 341 kg to the ceiling.

5.3 Stability of floating bodies

Although a body may be in buoyant equilibrium, so that the total force composed
of gravity and buoyancy vanishes, F = FG +FB = 0, it may not be in complete
mechanical equilibrium. The total moment of all the forces acting on the body
must also vanish; for else an unrestrained body will start to rotate.

Moments of weight and buoyancy

The total moment is like the total force a sum of two contributions,

M = MG + MB , (5-11)

with one contribution from gravity, i.e. weight,

MG =
∫

V

x× ρbodyg dV , (5-12)

and the other from pressure, i.e. buoyancy,

MB =
∮

S

x× (−p dS) . (5-13)

If the total force vanishes, F = 0, the total moment will be independent of the
origin of the coordinate system.
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In hydrostatic equilibrium the total moment of any volume of fluid must van-
ish. Under the same assumptions as we used for deriving Archimedes principle,
this implies that the moment of buoyancy must equal the (minus) moment of
gravity of the displaced fluid,

MB = −
∫

V

x× ρfluidg dV . (5-14)

This result is a natural corollary to Archimedes’ principle, and of immense help
in calculating the buoyancy moment. A formal proof of the theorem is found in
problem 5.6.

Constant gravity and buoyant equilibrium

In the remainder of this chapter we assume that gravity is constant, g(x) = g0,
and that the body is in buoyant equilibrium so that it displaces exactly its own
mass of fluid, Mfluid = Mbody = M . The densities of body and displaced fluid
will, however, in general be different, ρbody 6= ρfluid.

The moment of gravity (5-12) may as before (page 43) be expressed in terms
of the center of the body mass distribution (here called the center of gravity),

MG = xG ×Mg0 , xG =
1
M

∫
xρbody dV . (5-15)

Similarly the moment of the mass distribution of the displaced fluid (5-14) is,

MB = −xB ×Mg0 , xB =
1
M

∫
xρfluid dV . (5-16)

Even if each of these moments depends on the choice of origin of the coordinate
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Body in buoyant equilibrium
but with non-vanishing total
moment which here sticks
out of the paper. The mo-
ment will for a submerged
body tend to rotate it in
the anticlockwise direction
and thus bring the center of
gravity below the center of
buoyancy.

system, the total moment,

M = (xG − xB)×Mg0 , (5-17)

will be independent, as witnessed by the appearance of the difference of the two
center positions.

As long as the total moment is non-vanishing, the body is not in mechan-
ical equilibrium, but will start to rotate towards an orientation with vanishing
moment. Except for the trivial case where the centers of gravity and buoyancy
coincide, the above equation tells us that the total moment can only vanish if
the centers lie on the same vertical line,

xG − xB ∝ g0 . (5-18)

Evidently, there are two possible orientations satisfying this condition: one where
the center of gravity lies above the center of buoyancy, and another where the
center of gravity is lowest. In general only one of these will be stable.
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Submerged body

For a fully submerged rigid body, for example a submarine, both centers are
always in the same place relative to the body. If the center of gravity does not
lie directly below the center of buoyancy, but displaced a bit horizontally, the
direction of the moment will always tend to turn the body so that the center
of gravity is lowered with respect to the center of buoyancy. The only stable
orientation of the body is where the center of gravity lies vertically below the
center of buoyancy. Any small perturbation away from this orientation will soon
be corrected and the body brought back to the equilibrium orientation. A similar
argument shows that the other equilibrium orientation with the center of gravity
above the center of buoyancy is unstable and will flip the body over, if perturbed
the tiniest amount.
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A fully submerged body in
stable equilibrium must
have the center of gravity
directly below the center of
buoyancy. If G is moved to
G′ a restoring moment is
created which sticks out of
the plane of the paper.

This is why the gondola hangs below an airship or balloon, and why a fish
goes belly-up when it dies, because it loses control of the swim bladder which
enlarges into the belly and reverses the positions of the centers of gravity and
buoyancy. It also loses buoyant equilibrium and floats to the surface.

Floating body

At the surface of a liquid, a body such as a ship or an iceberg will according to
Archimedes’ principle always arrange itself so that the mass of displaced liquid
exactly equals the mass of the body. Here we assume that there is vacuum or a
very light fluid such as air above the liquid. The center of gravity is as always in
the same place relative to the body, but the center of buoyancy depends now on
the orientation of the body, because the volume of displaced fluid changes place
and shape (while keeping its mass constant) when the body orientation changes.
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A partially submerged body
may have a stable equi-
librium with the center of
gravity directly below the
center of buoyancy.

Stability can again only occur when the two centers lie on the same vertical
line, but there may be more than one point of stability. A sphere made of
homogeneous wood floating on water, is stable in all orientations . None of them
are in fact truly stable, because it takes no force to move from one to the other.
This is however a marginal case.

A floating body may like a submerged body also possess a stable orientation
with the center of gravity directly below the center of buoyancy. A heavy keel
may, for example, used to lower the center of gravity of a sailing ship so much
that this orientation becomes the only stable equilibrium. In that case it becomes
virtually impossible to capsize the ship, even in a very strong wind.

The stable orientation for most floating objects, such as ships, will in general
have the center of gravity situated directly above the center of buoyancy. This
happens always when an object of constant mass density floats on top of a liquid
of constant mass density, for example an iceberg on water. The part of the iceberg
that lies below the waterline must have its center of buoyancy in the same place
as its center of gravity. The part of the iceberg lying above the water cannot
influence the center of buoyancy whereas it always will shift the center of gravity
upwards.
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A partially submerged body
may have a stable equi-
librium with the center of
gravity directly above the
center of buoyancy.
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How can that situation ever be stable? Will the restoring moment not be
of the wrong sign? Why don’t ducks and tall ships capsize spontaneously? The
qualitative answer is that when the body is rotated away from such an equilibrium
orientation, the volume of displaced water will change position and shift the
center of buoyancy back to the other side of the center of gravity, reversing the
direction of the restoring moment.

5.4 Ship stability

Sitting comfortably in a small rowboat, it is fairly obvious that the center of
gravity lies above the center of buoyancy, and that the situation is stable with
respect to small movements of the body. But many a fisherman has learnt that
suddenly standing up may compromise the stability and send him out among the
fishes. There is, as we shall see, a strict limit to how high the center of gravity
may be above the center of buoyancy.

Most ships are mirror symmetric in a plane, but we shall be more general and
consider a “ship” of an arbitrary shape. We shall assume that the ship initially
is in mechanical equilibrium and calculate the moment that arises when it is
brought slightly out of equilibrium. If the moment tends to turn the ship back into
equilibrium, the initial orientation is stable. To lowest order of approximation,
the stability turns out to be an essentially two-dimensional problem, depending
mainly on the shape of the outline of the ship’s hull in the waterline.

Center of roll
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The area A of the ship in the
waterline may be of quite
arbitrary shape. The z-axis
is vertical, sticking out of
the paper. The ship is tilted
around the line y = y0.

A flat-earth coordinate system is introduced in which the outline of the ship’s hull
is A in the waterline, z = 0. The ship is now tilted slightly through a small angle
α around a line y = y0, parallel to x-axis, so that the previous waterline area A
comes to lie in the plane z = α(y− y0). The net change in the displacement due
to the tilt is to lowest order in α given by the difference in volumes of the two
wedge-shaped regions between new and the old waterlines,

δV =
∫

A

(−z) dA = −α

∫

A

(y − y0) dA . (5-19)

Here we have disregarded the small corrections of order α2 due to the actual
shape of the hull just above and below the waterline.- y

6
z

©©©©

©©©©
y0

α

Tilt around the axis y = y0.
The change in displacement
is negative in the wedge to
the right and positive in the
wedge to the left.

For the ship to remain in buoyant equilibrium after the tilt, the change in
displacement must vanish, δV = 0, which is only possible for y0 = 1

A

∫
A

y dA.
Including also tilts around the y-axis, this defines a unique point,

(x0, y0) =
1
A

∫

A

(x, y) dA , (5-20)

which we shall call the center of roll. A roll of the ship around any axis through
this point will generate no change in displacement. We shall from now on place
the origin of the coordinate system at the center of roll, so that x0 = y0 = 0.
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The restoring moment

A roll through an angle α around the x-axis generates a restoring moment, which
may be calculated from (5-17),

Mx = −(yG − yB)Mg0 . (5-21)

Since we have yG = yB in the original mechanical equilibrium, the difference in
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The ship in an equilibrium
orientation, stable or un-
stable, shown in a vertical
plane containing the aligned
centers of gravity and
buoyancy.

coordinates after the tilt may be written,

yG − yB = δyG − δyB , (5-22)

where δyG and δyB are the small shifts in centers of gravity and buoyancy caused
by the tilt.

bb

r rr

GG′

B B′B′′

The tilt rotates the center
of gravity from G to G′,
and the center of buoyancy
from B to B′. In addition,
the change in displaced
water shifts the center of
buoyancy back to B′′. In
stable equilibrium this point
must for α > 0 lie to the left
of the new center of gravity.

The center of gravity is (hopefully!) fixed with respect to the ship and is to
first order in α shifted horizontally by a simple rotation,

δyG = −αzG . (5-23)

There will also be a vertical shift, δzG = αyG, but that is of no importance to
the stability.

The center of buoyancy is at first shifted in the same way as the center
of gravity by the tilt, but because the displacement also changes there will be
another contribution ∆yB ,

δyB = −αzB + ∆yB . (5-24)

The change in displacement consists in moving the water in wedge-shaped region
from y > 0 into the region y < 0. Due to the choice of coordinates the two
regions have equal volumes. The horizontal change in the center of buoyancy is
calculated from the change in the center of mass of the displaced water,

- y

6
z

©©©©

©©©©

α −
+

The change in displacement
consists in moving the water
in the wedge to the right
into the wedge to the left.

∆yB =
1
V

∫

A

y(−z)dA = − α

V

∫

A

y2 dA .

Finally, putting it all together we find the restoring moment

Mx = −α

(
zB +

I

V
− zG

)
Mg0 , (5-25)

where

I =
∫

A

y2 dA , (5-26)

is the second “moment of inertia” of the area A around the tilt axis. It is a
purely geometric quantity which in principle may be calculated for any choice of
tilt axis when the shape of the hull in the waterline is known.
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The metacenter

For the ship to be stable, the restoring moment must counteract the tilt and
thus have opposite sign of the tilt angle α. This implies that the expression in
parenthesis in (5-25) must be positive, or

zG < zM ≡ zB +
I

V
. (5-27)

The quantity zM on the right hand side defines the z-coordinate of a fictitious
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Stable ship. The metacenter
lies above the center of
gravity.

point situated vertically above the original center of buoyancy, called the meta-
center. The ship is stable when the center of gravity lies below the metacenter,
zG < zM . A good captain should always know the positions of the center of
gravity and the metacenter of his ship before he sails, or else he may capsize
when casting off.
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center lies below the center
of gravity.

Example 5.4.1: It is this condition you violate when you stand up in a small
rowboat. Taking the boat to be roughly rectangular with area A = 1 m× 2 m, the
moment of the area becomes I = 2 m× 2

3
(1/2 m)3 = 0.167 m4. If your mass is 75 kg

and the boat’s is 50 kg, the displacement will be V = 0.125 m3, and the draught
d = 6.25 cm. The coordinate of the center of buoyancy becomes zB = −3.1 cm and
the metacenter zM = 1.3 m. A person getting up from his seat may indeed raise
the center of gravity so much that this inequality is violated and the boat becomes
unstable.

The orientation of the coordinate system with respect to the ship’s hull was
not specified in the analysis and is therefore valid for a tilt in any direction. For
a ship to be fully stable, the stability condition must be fulfilled for all possible
tilt directions. Since the displacement V is the same for all tilt directions, the
second moment of the area on the right hand side of (5-27) should in fact be
chosen to be the smallest one. Often it is quite obvious which moment is the
smallest. Many modern ships are extremely long with the same cross section for
most of their length and a mirror symmetry through a vertical plane. For such
ships the smallest moment is clearly obtained with the roll axis parallel to the
longitudinal axis of the ship.

The position of the center of gravity depends on the way the ship is loaded
and how the load is balanced, but once the weight of the ship and the center of
gravity is known, the metacenter becomes a purely geometric quantity which may
be calculated from the shape of the ship. We have previously seen the important
role played by the shape of the ship in the waterline, z = 0. Let now A(z) denote
the area of the ship at depth z below the waterline. From the position of the
coordinate system we have −d < z < 0, where d is the maximal depth of the
ship’s hull, also called the ship’s draught. The displacement of the ship may be
written

V =

Z 0

−d

A(z) dz , (5-28)
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and similarly the center of buoyancy becomes

zB =
1

V

Z 0

−d

z A(z)dz . (5-29)

These expressions are quite useful in practical stability calculations (see for ex-
ample problem 5.11).

The restoring moment becomes

Mx = −αρ0V g0(zM − zG) , (5-30)

and is proportional to the vertical distance between the metacenter and the center
of gravity. The closer the center of gravity comes to the metacenter, the smaller
will the restoring moment be, and the longer will the period of rolling oscillations.
The actual roll period depends also on the true moment of inertia of the ship
around the roll axis (see problem 5.9).

Floating board

The simplest example to which we may apply the stability criterion is that of
a rectangular board or box of dimensions a, b and c in the three coordinate
directions. The board is assumed to be made from a uniform material with
constant density ρ1 and floats in water of constant density ρ0. The draught is d,
and in hydrostatic equilibrium we must have dabρ0 = abcρ1 or ρ1/ρ0 = d/c.

The position of the center of gravity is zG = 0 and the center of buoyancy
zB = −(c − d)/2. The second moment of the waterline area becomes (for tilts
around the x-axis)

rG

rB

b

c

d

Board floating on water.
The board has length a into
the paper.I =

∫ a/2

−a/2

dx

∫ b/2

−b/2

dy y2 =
1
12

ab3 . (5-31)

Since V = abd, the position of the metacenter is

zM =
1
2
(d− c) +

b2

12d
. (5-32)

The board is stable for zM > 0. Rearranging this condition, it may be written as
(

2d

c
− 1

)2

> 1− 2
3

(
b

c

)2

. (5-33)

When the board dimensions obey b/c >
√

3/2 = 1.2247 . . ., the right hand side
becomes negative and the inequality is always fulfilled. On the other hand, when
b/c <

√
3/2, i.e. if the width of the board is less than 122% of the height, there

is a range of draft values around d = c/2 (corresponding to density values around
ρ1 = ρ0/2), for which the board is unstable and will keel over and come to rest
in another orientation (see problem 5.11).
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Stability diagram for the
floating board.

This stability analysis is valid for other configurations of mass inside the
board, as long as the total mass and the position of the center of gravity are
unchanged, as is for example the case for a box-shaped “ship” with a hull con-
structed from plates of uniform thickness.
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Ship with liquid cargo

Many ships carry liquid cargos, oil, water, etc. When the tanks are not completely
filled this kind of cargo may strongly influence the stability of the ship. In heavy
weather or due to accidents, car ferries may inadvertently also get a layer of
water on the car deck. The main effect of an open liquid surface inside the ship
is that the center of mass is shifted in the same direction by the redistribution of
real liquid as the shift in the center of buoyancy due to the change in displaced
water, i.e. towards negative y-values. This disturbs the stability and creates a
competition between the liquid carried by the ship and the water displaced by
the ship.
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Tilted ship with an open
container filled with liquid.

For the case of a single open tank, let as before the displaced volume (including
the weight of the liquid) be V and the second moment I. A similar calculation
then shows that the change in center of gravity due to the movement of a wedge
of liquid of density ρ1 becomes

∆yG = −α
ρ1I1

M
= −α

ρ1

ρ0

I1

V
(5-34)

where I1 is the second moment of the open liquid surface. The metacentric height
now becomes

zM = zB +
I

V
− ρ1

ρ0

I1

V
(5-35)

The effect of the moving liquid is to lower the metacentric height with possible
destabilization as result (see problem 5.5). The unavoidable sloshing of the liquid
may further compromise the stability.

The destabilizating effect of a liquid cargo may be counteracted by having
a number of smaller containers or compartments, instead of a single container
with an open surface. In car ferries this option is not available because it would
hamper efficient loading of the cars, and such ships remain susceptible to the
destabilizing effects of water on the car deck.

∗ Principal roll axis

It has already been remarked that the metacenter for absolute stability is deter-
mined by the smallest second moment of the waterline area. Instead of tilting the
ship around the x-axis, it is tilted around an axis n = (cos φ, sin φ, 0) forming an
angle φ with the x-axis. Since this configuration is obtained by a simple rotation
through φ around the z-axis, the transverse coordinate to be used in calculating
the second moment becomes y′ = y cos φ− x sin φ (see eq. (2-40b)), and we find
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Tilt axis n forming an angle
φ with the x-axis.

I =
∫

A

(y′)2 dA = Ixx cos2 φ + Iyy sin2 φ + 2Ixy sin φ cos φ = n · III · n (5-36)
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where Ixx, Iyy and Ixy are the elements of the matrix

III =
(

Ixx Ixy

Iyx Iyy

)
=

∫

A

(
y2 −xy
−xy x2

)
dA (5-37)

The extrema of the positive definite quadratic form n · III · n are found from the
eigenvalue equation III ·n = λn (see problem 5.8). The eigenvector corresponding
to the smallest eigenvalue is called the principal roll axis of the ship and its
eigenvalue determines the metacenter for absolute stability.
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Problems

5.1 Show that when the total force on a body vanishes, the moment of force becomes
independent of the origin of the coordinate system.

5.2 A stone weighs 1000 N in air and 600 N when submerged in water. Calculate the
volume and average density of the stone.

5.3 A hydrometer with mass M = 4 g consists of a spherical glass container filled
with air and a long thin cylindrical stem of radius a = 2 mm. The sphere is weighed
down so that the apparatus will float stably with the stem pointing vertically upwards
and crossing the fluid surface at at some point. How much deeper (h) will it float in
alcohol (mass density ρ1 = 0.78 g/cm3) than in oil (mass density ρ0 = 0.82 g/cm3)?

5.4 A cylindrical wooden stick (density ρ1 = 0.65 g/cm3) floats in water (density
ρ0 = 1 g/cm3). The stick is loaded down with a lead weight (density ρ2 = 11 g/cm3) at
one end such that it floats in vertical position with a fraction f = 1/10 of its length out
of the water. a) What is the ratio (M1/M2) between the masses of the wooden stick
and the lead weight? b) How large a fraction can stick out of the water (disregarding
questions of stability)?

5.5 A car ferry is extremely sensitive to water on the car deck. Consider a ferry in
the shape of a long box-shaped hull of mass M and essentially no thickness. The length
of the ferry is a, the width b, and the height c. The density of water is ρ0. a) Calculate
the draft d0 when there is no water in the hull, b) Calculate the draft (d) when there is
water of depth h inside the hull. c) Determine the center of mass height in equilibrium.
d) Evaluate the stability condition.

h
d

b

c

A ‘car ferry’ with water on
the deck ∗ 5.6 Prove without assuming constant gravity that the hydrostatic moment of buoy-

ancy equals (minus) the moment of gravity of the displaced fluid (corollary to
Archimedes’ law).

∗ 5.7 Assuming constant gravity, show that for a body not in buoyant equilibrium
(i.e. for which the total force does not vanish), there is always a well-defined center of
gravity xG, such that the total moment of gravitational and buoyant forces is given by
M = xG ×F .

∗ 5.8 Show that the extrema of a 2× 2 quadratic form n ·III ·n, where n = (cos φ, sin φ)
is a unit vector, are determined by the eigenvectors of III satisfying III · n = λn.

∗ 5.9 Show that in a stable orientation the angular frequency of small oscillations
around around a major axis of a ship is

ω =

r
Mg0

J
(zM − zG)

where J is the moment of inertia of the ship around this axis.
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∗ 5.10 A ship has a waterline area which is a regular polygon with n ≥ 3 edges. Show
that the area moment tensor (5-37) has Ixx = Iyy and Ixy = 0.

∗ 5.11 Consider a homogeneous cubic block with density equal to half that of the
water it floats on. Determine the stability properties of the cube when it floats a) with
a horizontal face below the center, b) with a horizontal edge below the center, and c)
with a corner vertically below the center. Hint: problem 5.10 is handy for a) and c).
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