
Part II

Hydrostatics





4
Fluids at rest

If the Sun did not shine, if no heat were generated inside the Earth and no energy
radiated into space, all the winds in the air and the currents in the sea would
die away, and the air and water on the planet would in the end come to rest in
equilibrium with gravity. What distribution of pressure and density would we
then find in the sea and the atmosphere?

Consider a fluid, be it air or water, under the influence of gravity. In the
absence of external driving forces or time-dependent boundary conditions, and
in the presence of dissipative contact forces, such a system must eventually reach
a state of hydrostatic equilibrium, where nothing moves anymore anywhere and
all fields become constant in time. This must be first approximation to the sea,
the atmosphere, the interior of a planet or a star.

In hydrostatic equilibrium and more generally in mechanical equilibrium there
is everywhere a balance between contact forces, such as pressure, having zero
range, and body forces such as gravity with infinite range. Contact interactions
between material bodies or parts of the same body take place across contact sur-
faces. A contact force acting on a tiny piece of a surface may take any direction.
Its component orthogonal to the surface is called a pressure force whereas the
tangential component is called a shear force. Solids and fluids in motion can
sustain shear forces, whereas fluids at rest cannot. The wind will not move your
parked car because of (shear) friction between the wheels and the road, but it
will certainly sail your boat away if not properly moored.
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The force on a small piece
of a surface can always be
resolved in a normal pres-
sure force and a tangential
shear force.

In this chapter we shall establish the basic concepts and formalism for pressure
in hydrostatic equilibrium and apply it to the sea and the atmosphere. Along the
way we shall recapitulate basic thermodynamics. In the following three chapters
we shall continue the study of hydrostatic equilibrium for fishes, icebergs and
ships, the interior of planets and stars, and the shapes of fluid bodies.
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4.1 Pressure

A fluid at rest can as mentioned only sustain pressure forces. If shear forces
arise, the fluid will tend to flow towards a new equilibrium without shear. This
expresses the most essential property of fluids and is essentially a definition of
what constitutes a macroscopic fluid.

Microscopic origin of pressure

At the microscopic level, fluid pressure on a container wall arises from the inces-
sant molecular bombardment of the wall. Consider for example a gas in which
the molecules move with some typical velocity v. A gas molecule impinging the
wall tends to be thrown back again and thus gives up at most twice its momen-
tum component normal to the wall. If the gas density is ρ, we may estimate the
mass of the gas that hits a small area A of the wall in a small time interval dt to
be of the order of dM ∼ ρA vdt. In this estimate we have disregarded that the
molecules in fact move in random directions with random velocities. Multiply-
ing with the velocity v and dividing by dt, we get a very rough estimate of the
amount of momentum transferred to the wall area A per unit of time, i.e. the
force F = dP/dt ∼ ρAv2. Since the force is proportional to the area, it makes
good sense to introduce the force per unit of area, p = F/A ∼ ρ v2, also called
the pressure.
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A molecule elastically re-
flected by a wall transfers
twice its normal momentum
component to the wall.

The unit of pressure is pascal (Pa = N/m2 = kg/m/s2). The air pressure at
sea level is a little more than 105 Pa = 1 bar. The standard pressure at sea level
is defined to be 1 atm = 1013.250 millibar. Modern meteorologists tend to quote
air pressure in hectopascals (hPa) rather than in millibars.

Example 4.1.1: Taking the density of air at sea level to be ρ ≈ 1 kg/m3 and
the molecular velocity to be of the order of the velocity of sound v ≈ 330 m/s, our
estimate yields p ≈ 105 Pa ≈ 1 atm which is very close to the pressure at sea level.
In view of the roughness of the estimate this result must be considered entirely
fortuitous.

Pressure field

So far we have only defined the pressure acting on the walls of a container. Is it
meaningful to speak about pressure in the middle of a fluid far from containing
walls? We could of course put in a tiny manometer to measure the pressure, but
then we would just obtain the pressure acting on the surface of the manometer,
which is another “wall”, and not the true internal pressure in the fluid.

In spite of these conceptual difficulties we shall imagine that there is a well-
defined pressure field p(x) everywhere in the fluid and that it acts along the
normal to any surface, real or imaginary, in the fluid (Pascal’s law). From a
molecular point of view, the estimate of the momentum transferred from the
material on one side of the surface to the other takes the same form as before.
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Incompressible sea

The mass of the water in all the seas is Msea ≈ 1.7 × 1021 kg which is 1/3500
of the Earth itself. Water is a nearly incompressible fluid with almost constant
density ρ0 ≈ 103 kg/m3, making the volume of all the seas 1.7 × 109 km3. The
surface area of the globe is 0.51×109 km2, so if no continents rose out of the sea,
it would cover the planet to a uniform depth of about 3.3 km.
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A column of sea water. The
pressure difference between
bottom and top must carry
the weight of the water in the
box.

Consider now a vertical box in the sea with cross-sectional area A and height
h. In mechanical equilibrium the difference between the pressure p at the bottom
and the pressure p0 at the top of this box must balance the total weight of the
water in the box, or

ρ0Ahg0 = pA− p0A . (4-1)

If this equation were not fulfilled, the total force on the column of water would
not vanish, and it would have to move. Dividing by the area A the pressure
difference between bottom and top of the box becomes,

p− p0 = ρ0g0h . (4-2)

In a flat-earth coordinate system with vertical z-axis and the surface of the sea
at z = 0, we find by setting h = −z,

p = p0 − ρ0g0z , (4-3)

where p0 is the surface pressure. The pressure thus rises linearly with depth −z
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as we dive into the sea. The scale of the pressure increase per unit of depth in
the sea becomes ρ0g0 ≈ 100 hPa/m, corresponding to about 1 atm/10 m. At the
deepest point in the sea, z ≈ −11 km the pressure is more than 1000 atm. The
assumption of constant gravity is well justified even to this depth (it changes by
less than 0.5 %), whereas the density of water changes by about 5 % (see section
4.3).

The linear rise of the pressure with depth for an incompressible fluid at rest
in constant gravity may immediately be used to calculate the total pressure force
on horizontal and vertical container walls. Curved and non-vertical walls require
a slightly stronger mathematical formalism which we shall soon set up.

Example 4.1.2: Water is stemmed up behind a sluice gate of width L to height
h. On the water surface and on the outer side of the gate there is atmospheric
pressure p0. On the inside of the gate the pressure is p(z) = p0 + ρ0g0(h − z), so
that the total force on the gate becomes

h
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z

-p(z) ¾ p0

Water stemmed up behind
a sluice gate. The pressure
varies linearly with height z
over the bottom.

F =

Z h

0

(p(z)− p0) Ldz =
1

2
ρ0g0Lh2 . (4-4)

Because the pressure rises linearly with depth, this result could have been calculated
without an explicit integral. The total force is simply the product of the area of
the sluice gate Lh with the average pressure excess 〈p− p0〉 = 1

2
ρ0g0h acting on the

gate.
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Incompressible atmosphere?

The mass of the atmosphere is about Matm ≈ 5× 1018 kg, which is smaller than
a millionth of the mass of the Earth. Since air is highly compressible, it makes
little sense to use the above expression (4-3) for the pressure at constant density
(except for very small values of z). If we anyway do so, we find a pressure which
drops linearly with height and reaches zero at

z = h0 =
p0

ρ0g0
. (4-5)

Using p0 = 1 atm and air density ρ0 = 1.2 kg/m3 we get h0 = 8.6 km, which is a
tiny bit lower than the height of Mount Everest. This is of course meaningless,
since climbers have reached the summit of that mountain without oxygen masks.
But as we shall see, this height is nevertheless the correct scale for major changes
in the atmospheric properties.

Paradox of hydrostatics

The linear rise of the pressure with depth may, as we have seen, be used to
calculate the total pressure force on any vertical container wall. For a curved
container wall, like that of an open vase, there seems to be no problem, except
handling the necessary mathematics. But if the water column does not reach
all the way to the surface, as when you fill a boot with water, what is then the
pressure at the flat horizontal bottom? Will it be constant along the bottom as
in the open sea, or will it vary? And if it is constant, what is it “up against”,
since there is only a short column of water above?
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Paradox: the pressure along
the vertical wall of the
“boot” rises linearly because
it has to carry the weight of
the water above, but what
about the pressure in the tip
of the “toe”?

The quick answer to this paradox is that the pressure is indeed constant along
the horizontal bottom. For if the pressure were lower in the “toe” than in the
“heel”, there would be unbalanced horizontal pressure forces directed towards
the toe acting on a horizontal box of water. But that is not allowed in complete
mechanical equilibrium. The only possible conclusion is that the material of the
“boot” must supply the necessary forces to compensate for the missing weight of
the water column.

Oriented surfaces

To establish a concise mathematical formalism for pressure we consider a surface
S that divides a body into two parts. This surface needs not be a real surface
where material properties change dramatically but may just be an imaginary
surface separating two parts of the same body from each other. A tiny surface
element is characterized by its area dS and the direction of its normal n. It is
convenient to combine these in the vector surface element
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All normals to an oriented
open surface have a con-
sistent orientation with
common positive and
negative sides.

dS = (dSx, dSy, dSz) = n dS . (4-6)

There is nothing intrinsic in a surface which defines the orientation of the normal,
i.e. whether the normal is really n and not −n. A choice must, however, be
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made, and having done that, one may call the side of the surface element into
which the normal points, positive (and the other of course negative). Usually
neighboring surface elements are required to be oriented consistently, i.e. with
the same positive sides. By universal convention the normal of a closed surface
is chosen to be directed out of the enclosed volume, so that the enclosed volume
always lies at the negative side of its surface.
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A volume V defined by the
closed surface S has all
normals oriented towards
the outside.

Formal definition of pressure

The contact forces due to microscopic molecular interactions of electromagnetic
origin have a finite range at the molecular scale, but zero range at macroscopic
distances. Across a tiny but still macroscopic piece of surface, the number of
neighboring molecules participating in the interaction as well as the force they
exert may for this reason be expected to be proportional to the area of the
surface. In a fluid at rest the only contact force is the pressure force acting along
the normal to the surface. The force exerted by the material at the positive side
of a surface element on the material at the negative side must therefore be of the
form

dF = −p dS , (4-7)

where the coefficient of proportionality p is called the pressure. Convention dic-
tates that a positive pressure exerts a force directed towards the material on the
negative side, and that explains the minus sign.
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The force on a vector sur-
face element under positive
pressure is directed against
the normal.

The total pressure force acting on a surface S is obtained by summing up all
the little vector contributions from each surface element,

F = −
∫

S

p dS . (4-8)

This is the force which acts on the cork in the champagne bottle, moves the
pistons in the cylinders of your car engine, breaks a dam, and sends off a bullet
from a canon. It is also this force that lifts fishes, ships, and balloons and thereby
cancels their weight so that they are able to float (see chapter 5).

Same pressure in all directions?
Blaise Pascal (1623–1662).
French mathematician and
physicist. Founded probabil-
ity theory. Constructed what
may be viewed as the first
digital calculator. He spent
his later years with religious
thinking in the Cistercian
abbey of Port-Royal. More
than one property of pres-
sure goes under the name of
Pascal’s law.

Newton’s third law guarantees that the material on the negative side of a surface
element reacts with an equal and opposite force −dF = −p(−dS) on the material
on the positive side (provided there is no surface tension). Since the surface vector
seen from the negative side is −dS, the above relation shows that the pressure
also has the value p on the negative side of the surface. This is part of a much
stronger result, called Pascal’s law, which we shall prove below: the pressure in
a fluid at rest is independent of the direction of the surface element on which it
acts. It implies that pressure cannot depend on the normal n, but only on the
location x of a surface element, and is therefore a true (scalar) field p(x).
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The simple reason for pressure being the same in all directions in hydrostatic
equilibrium is that the pressure acts on the surface of a body whereas a body
force by definition acts on the volume. If we let the body shrink, the contribution
from the body force will vanish faster than the contribution from the surface force
because the volume vanishes faster than the surface area. In the limit of vanishing
body size only the surface force is left, but it must then itself vanish in mechanical
(and thus hydrostatic) equilibrium where the total force on all parts of a body
must be zero. This argument will now be fleshed out in mathematical detail.

∗ Proof of Pascal’s law

Assume first that the pressure is actually different in different directions. We shall then
show that for physical reasons this assumption cannot be maintained. Consider a tiny
body in the shape of a tetrahedron with three sides parallel to the coordinate planes.
The total pressure force acting on the body is

dF = −pdS − pxdSx − pydSy − pzdSz , (4-9)

where we have denoted the pressures acting on the different faces of the tetrahedron
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dS

A body in the shape of a
tetrahedron. The vector
normals to the sides are
all pointing out of the body
(dSx is hidden from view).
Any body shape can be
built up from sufficiently
many and sufficiently small
tetrahedrons.

by p, px, py, and pz and the outwards pointing normals by dS, dSx, dSy, and dSz.
It is sufficient to consider infinitesimal bodies of this kind, because an arbitrary body
shape can be put together from these. Each of the three triangles making up the
sides of the tetrahedron is in fact the projection of the front face onto that plane. By
elementary geometry the areas of the three projected triangles are dSx, dSy and dSz,
so that their vector surface elements become dSx = (−dSx, 0, 0), dSy = (0,−dSy, 0),
and dSz = (0, 0,−dSz).

Inserting this in the above equation we find the total force

dF = ((px − p)dSx, (py − p)dSy, (pz − p)dSz) . (4-10)

In mechanical (hydrostatic) equilibrium, which is all that we are concerned with here,
the contact forces must balance body forces (gravity),

dF + f dV = 0 , (4-11)

where f is the density of body forces. The idea is to show that for sufficiently small
tetrahedrons the body forces can be neglected and the surface forces dF must conse-
quently vanish.

Consider now a geometrically congruent tetrahedron with all lengths scaled by a
factor λ. Since the volume scales as the third power of λ whereas the surface areas only
scale as the second power, the hydrostatic equation for the scaled tetrahedron becomes
λ2dF + λ3fdV = 0 or dF + λfdV = 0. In the limit of λ → 0 it follows that the total
contact force must vanish, i.e. dF = 0, and using (4-10) we find

px = py = pz = p , (4-12)

which is Pascal’s law. As promised, the pressure must indeed be the same in all direc-
tions.
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4.2 Hydrostatic equilibrium

In the preceding section we intuitively used that in a fluid at rest the weight of
a vertical column of fluid should equal the difference in pressure forces between
bottom and top of the column. We shall now generalize this to an arbitrary
macroscopic volume of fluid, often called a control volume. The material in a
control volume, fluid or solid or whatever, represents the most general “body”
that can be constructed in continuum physics.

Up to this point we have studied only two kinds of forces that may act on the
material in a control volume. One is a body force described by a force density
field f caused by long-range interactions, here gravity f = ρg. The other is a
contact force, here the pressure field p, which has zero range and only acts on
the surface of the control volume. The total force on the control volume V with
surface S is the sum of two contributions

F =
∫

V

f dV −
∮

S

p dS . (4-13)

The first term is for the case of gravity just the weight of the fluid in the volume
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A control volume V with
its enclosing surface S, a
volume element dV and a
surface element dS.

and the second is the buoyancy force. The circle in the symbol for the surface
integral is only there to remind us that the surface is closed.

Global hydrostatic equilibrium equation

In hydrostatic equilibrium, the total force must vanish for any volume of fluid,
F = 0, or

∫

V

f dV −
∮

S

p dS = 0 . (4-14)

This is the equation of global hydrostatic equilibrium, which states that buoyancy
must exactly balance the total volume force, i.e. the weight. If the cancellation
is not exact, as for example when a small volume of water is heated or cooled
relative to its surroundings, the fluid must start to move, either upwards if it
weighs less than the buoyancy force or downwards if it weighs more.

The problem with the global equilibrium equation is that we have to know the
fields f(x) and p(x) in advance to calculate the integrals. Sometimes symmetry
considerations can get us a long way. In constant gravity, the sea on the flat
Earth ought to have the same properties for all x and y, suggesting that the
pressure p = p(z) can only depend on the depth z. This was in fact a tacit
assumption used in deriving the pressure in the incompressible sea (4-3), and it
is not difficult under this assumption to formally derive the same result from the
equation of global equilibrium (4-14). But in general we need to establish a local
form of the equations for hydrostatic equilibrium, valid in each point x, to find
the fields f(x) and p(x).
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Effective force on material particle

A material particle is like any other body subject to pressure from all sides, but
being infinitesimal it is possible to derive a general expression for the resultant
force. Let us choose a material particle in the shape of a small rectangular box
with sides dx, dy, and dz, and thus a volume dV = dxdydz. Since the pressure
is slightly different on opposite sides of the box the resultant pressure force is to
leading approximation (in the x-direction)

r
(x, y, z) dx

dz dy

©©©

©©©
-p(x)

��
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� p(x + dx)

Pressure difference over a
small rectangular box.

dFx ≈ (p(x, y, z)− p(x + dx, y, z))dydz ≈ −∂p

∂x
dxdydz .

Including the other coordinate directions we obtain

dF = −∇p dV . (4-15)

The resultant of all pressure forces acting on a tiny material particle is apparently
equivalent to a volume force with a density equal to the negative gradient of the
pressure. We shall see below that this result does not depend on the shape of
the material particle.

If there is also a true volume force, f , for example gravity (f = ρg), acting
on the material, the total force on a material particle becomes

dF = f∗ dV , (4-16)

where

f∗ = f −∇p (4-17)

is called the effective force density.

Local hydrostatic equilibrium

In mechanical (i.e. hydrostatic) equilibrium, the total force on an arbitrary body
has to vanish. Applying this to all the infinitesimal material particles in the body,
it follows that the effective density of force must vanish everywhere, f∗ = 0, or

f −∇p = 0 . (4-18)

This is the local equation of hydrostatic equilibrium. It is a differential equation
valid everywhere in a fluid at rest, and it encapsulates in an elegant way all the
physics of hydrostatics.

The flat earth

Returning to the case of constant gravity in a flat-earth coordinate system we have
f = ρg0 = ρ(0, 0,−g0) and the local equilibrium equation takes the following
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form when written out in coordinates,

∂p

∂x
= 0 , (4-19a)

∂p

∂y
= 0 , (4-19b)

∂p

∂z
= −ρg0 . (4-19c)

The first two equations tell us that the pressure does not depend on x and y,
but only on z. This confirms our previous intuition based on symmetry. It also
resolves the hydrostatic paradox because we now know that independently of the
shape of the container, the pressure will always be the same at a given depth
in constant gravity. For the special case of constant density, ρ(z) = ρ0, the
last equation is immediately integrated to yield the previous result (4-3) for the
pressure in the incompressible sea.

Gauss’ theorem

Integrating the effective force over the volume V we get again the total force

F =
∫

V

f∗ dV =
∫

V

f dV −
∫

V

∇p dV ,

and comparing with (4-13) we obtain the relation,

∮

S

p dS =
∫

V

∇p dV . (4-20)

Since the pressure can be arbitrary, this must be a purely mathematical rela-
tionship between a closed surface integral over an arbitrary function p(x) and
the integral of its gradient ∇p(x) over the enclosed volume. The equation is one
version of Gauss’ theorem which we shall meet in several different guises in the
course of this book. Being a mathematical relationship, it is also valid when the
volume becomes infinitesimal, confirming that the effective force on a material
particle of any shape is dF = −∇p dV .

Proof: Consider a volume V described by a(x, y) ≤ z ≤ b(x, y) where a(x, y) and
b(x, y) are two arbitrary functions defined in some area A of the xy-plane. We then
find, Z

V

∇zp dV =

Z
A

dxdy

Z b(x,y)

a(x,y)

∂p

∂z
dz

=

Z
A

dxdy(p(b(x, y), x, y)− p(a(x, y), x, y))

=

I
S

p(x, y, z) dSz .

Arbitrarily shaped volumes may be put together from such volumes.
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∗ Gradient forces?

The local equation of hydrostatic equilibrium f = ∇p implies that the curl of the
force density must vanish, ∇×f = 0 (see problem 2.14). In a gravitational field
a material with constant density ρ = ρ0, the force density f = ρ0g = −ρ0∇Φ
is evidently a gradient field. We shall see in section ?? that under quite general
conditions which are often fulfilled the ratio (∇p)/ρ will always be a gradient
field, even when ρ is not a constant, implying that the equation of hydrostatic
equilibrium in a gravitational field, ∇p = ρg = −ρ∇Φ, can be fulfilled.

But what happens if a force, for example f = a × x, has a manifestly non-
vanishing curl, here ∇ × f = 2a? In that case the only possible conclusion is
that hydrostatic equilibrium cannot be established, and the fluid must start to
move. This would for example happen in an electrically charged fluid with a
magnetic field growing linearly with time. Such a magnetic field would generate
a time-independent electric field with non-vanishing curl, and that would indeed
accelerate the charged molecules, and thus the fluid.

4.3 The equation of state

Mass density, pressure and temperature are thermodynamic quantities that are
well-defined as long as we consider spatial volumes containing large numbers of
molecules and time intervals much longer than the intervals between molecular
collisions. In ordinary equilibrium thermodynamics (see for example [6]), every
thermodynamic quantity is assumed to take the same value everywhere in a
macroscopic volume. Under very general conditions, there will exist a relation
between these quantities,

f(p, ρ, T ) = 0 , (4-21)

called the equation of state. The actual form of the equation of state depends on
the details of the molecular interactions, and the derivation of the equation of
state from molecular properties of matter is a subject that falls outside the scope
of continuum physics.

In the continuum description of fluids at rest these quantities are allowed to
be fields that vary over space, and the equation of state should be understood as
a local relation valid in each point of space,

f(p(x), ρ(x), T (x)) = 0 . (4-22)

The condition of constant density ρ(x) = ρ0 which we used to calculate the
pressure in the sea (4-3) may be viewed as an extreme case of such an equation
of state.
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The ideal gas law

The oldest and most famous equation of state is the ideal gas law, which is usually
presented in the form (credited to Clapeyron (1834))

p V = nR T , (4-23)

where V is a (small) volume of gas, p its pressure, T its absolute temperature, Benoit Paul Émile Clapey-
ron (1799-1864). French
engineer and physicist.
Formulated the ideal gas
law from previous work by
Boyle, Mariotte, Charles,
Gay-Lussac, and others.
Contributed to early ther-
modynamics by developing
on Carnot’s work. Defined
the concept of reversible
transformations and formu-
lated the first version of the
Second Law of Thermody-
namics. Established what
is now called Clapeyron’s
formula for the latent heat
in the change of state of a
pure substance.

n the number of moles in the volume, and R = 8.31451(6) J/K/mol the molar
gas constant. A gas obeying this law is said to be ideal or perfect. Using that
ρ = nMmol/V where Mmol is the molar mass, we obtain the ideal gas law in the
form (4-21),

p

ρ
=

RT

Mmol
. (4-24)

The ideal gas law is also valid for mixtures of pure gases, such as air, for which
one must use the average molar weight Mair = 28.9635 g/cm3. Real air is well
described by the ideal gas law, but in precise calculations it is necessary to include
non-linear corrections (in p/T or T/V ) and other corrections due to humidity (see
for example [2]).

In section 4.5 we shall review the basic thermodynamics of ideal gases with
constant heat capacity.

Isothermal hydrostatic equilibrium

All materials conduct heat to some extent. A small volume of a fluid at rest is
always in thermal contact with the fluid surrounding it and will eventually obtain
the same temperature as its environment. If the walls containing a fluid are held
at a fixed temperature T0, all of the fluid will eventually in arrive in isothermal
equilibrium with this temperature everywhere, T (x) = T0, so that the equation
of state simplifies to a relation between pressure and density,

f(p, ρ, T0) = 0 . (4-25)

A fluid is said to be in a barotropic state if its pressure like here is a function of
the density alone, p = p(ρ). This is evidently the case for an ideal isothermal gas
which obeys p/ρ = const. In section 4.5 we shall meet another barotropic state,
the isentropic ideal gas, in which the pressure is proportional to a power of the
density, p ∝ ργ .

Isothermal atmosphere

Everybody knows that the atmosphere is not at constant temperature, but if we
nevertheless assume it to be, we obtain by combining the equation of hydrostatic
equilibrium (4-19) with the ideal gas law (4-24)

dp

dz
= −ρg0 = −Mmol g0

RT0
p . (4-26)
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With the initial condition p = p0 for z = 0, this ordinary differential equation
has the solution

p = p0e
−z/h0 , (4-27)

where
h0 =

RT0

Mmol g0
=

p0

ρ0g0
. (4-28)

In the last step we have used the ideal gas law at z = 0 to replace RT0/Mmol =
p0/ρ0, making the expression for h0 exactly the same as the scale height (4-5)
of the incompressible atmosphere. In the isothermal atmosphere the pressure
decreases exponentially with height with the characteristic length scale again set
by h0, but now the pressure at h = h0 (cirka the top of Mount Everest) is finite
and predicted to be 373 hPa, which is a little more than 1/3 of the pressure at sea
level. This result is evidently much better than the vanishing pressure predicted
by the incompressible model of the atmosphere.

4.4 Compressibility

Liquids tend to be rather incompressible, so that a homogenous liquid body may
often be assumed to have constant density everywhere and at all time, ρ(x, t) =
ρ0. Gases are on the other hand easily compressed with a density that grows
with pressure. We shall now make a quantitative definition of compressibility,
and then calculate the pressure in the sea under the assumption that water has
constant compressibility.

Bulk modulus

Consider a fixed amount M = ρV of a barotropic fluid with pressure p = p(ρ).
When the fluid is compressed a bit, δV < 0, the pressure in the fluid must
necessarily increase, δp > 0. If this were not the case, pumping your bicycle
would take no effort and the piston would be sucked into the air chamber! Since
a larger volume compresses proportionally more for a given pressure increase,
we define the bulk modulus as the pressure increase δp per fractional decrease in
volume −δV/V , or

K =
δp

−δV/V
=

δp

δρ/ρ
= ρ

dp

dρ
. (4-29)

In the second step we have used the constancy of the mass to eliminate the
volume, V = M/ρ, and in the last we have used that the fluid is barotropic. The
bulk modulus is a measure of incompressibility, and the larger it is, the greater
is the pressure increase that is needed to obtain a given fractional increase in
density, δρ/ρ. As a measure of compressibility one may take 1/K.

Material K[GPa]

Plain steel 205
Nickel 200
Copper 120
Titanium 110
Brass 100
Zirconium 95
Cast iron 90
Aluminium 70
Magnesium 45
Lead 13

Typical values for the bulk
modulus of various metals
and alloys [3].

For an isothermal ideal gas it follows from the equation of state (4-24) with
T = T0 that K = p. The bulk modulus of the material of the Earth is plotted in
fig. 4.1 and is approximately K ≈ 4p.
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Figure 4.1: Bulk modulus as a function of pressure in the Earth (data from [2]). The
surface of the Earth is to the left and the centre to the right in this figure. The pressure
is of course expected to rise as one approaches the centre of the Earth, but interestingly it
turns out that the the bulk modulus varies approximately linearly with pressure, K ≈ γp,
with γ ≈ 4 (the dashed line). The dramatic change in density at the core/mantle
boundary (see fig. 3.1) is barely visible in the bulk modulus.

The definition of the bulk modulus shows that it is measured in the same units as
pressure. For air at normal pressure we have K ≈ 1 bar, and for sea water we have
K ≈ 23 kilobar, whereas typical values for metals are of the order of megabars
(1011 Pa or 100 GPa). This means that it requires about a million atmospheres
of pressure to squash iron. Pumping real iron takes more than muscles!

Sea with constant compressibility

The bulk modulus of water varies somewhat with pressure, doubling in value
between 1 and 3000 atmospheres [2], but we shall nevertheless assume that it is
constant, K ≈ 2.3 GPa, throughout the sea in order to get an idea of how much
sea water is compressed at the bottom. Solving the definition,

ρ
dp

dρ
= K (4-30)

for the pressure, we find p = K log ρ+const and inserting this into the hydrostatic
equilibrium equation (4-19c), we obtain a differential equation for ρ,

dρ

dz
= −g0

K
ρ2 . (4-31)

Solving this equation with the initial condition ρ = ρ0 for z = 0, we find

1
ρ

=
1
ρ0

+
g0z

K
.

Rearranging the terms we finally arrive at,

ρ =
ρ0

1 +
z

h1

, (4-32a)
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Figure 4.2: Two models of the flat-earth pressure rise in the sea: constant density
(dashed) and constant compressibility (fully drawn). In the latter case, there is an
unphysical singularity at z = −235 km.

where
h1 =

K

ρ0g0
=

K

p0
h0 , (4-33)

is the characteristic scale for variations in density. The pressure becomes,

p = p0 −K log
(

1 +
z

h1

)
, (4-34)

where p0 is the surface pressure.
The weird thing is that at a depth of z = −h1 both the density and pressure

become infinite. The assumption of constant compressibility on a flat Earth
apparently implies that the density and pressure will increase and reach an infinite
value at a finite depth! This is of course nonsense. Many other properties of
water break down long before, so one may use these expressions only as long as
the depth is small in comparison with h1. When |z| ¿ h1, we have

ρ ≈ ρ0

(
1− z

h1

)
. (4-35)

For water with K ≈ 23 kilobar we get h1 = 235 km, which is more than 20 times
deeper than any of the seas, so the density of water only increases by at most
1/20 = 5% in the deepest abyss. The pressure only increases by 4 atm (problem
4.4).

Example 4.4.1: A flat Earth made of cast iron with density 7.2 g/cm3 would
become infinite at a depth of 1275 km which is somewhere in the mantle. For all
it is worth (since the material of the Earth does not have constant compressibility,
fig. 4.1), the singularity disappears for a spherical Earth (problem 4.4).
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4.5 Thermodynamics of ideal gases at rest

In the beginning of this chapter we analyzed a simple model of an ideal gas
consisting of essentially non-interacting molecules. The pressure was estimated
to be p ∼ ρ v2 where ρ is the mass density and v the typical molecular speed. The
equation of state for the ideal gas (4-24) shows that T ∼ p/ρ ∼ v2, or conversely
that v ∝ √

T , so that the molecular speed only depends on the temperature and
not on pressure or density. In this section we shall draw the consequences of this
result and along the way recapitulate the conventional thermodynamics of ideal
gases. For extensive treatments, see for example [68, 67].

Internal energy and heat capacity

Consider an amount of an ideal gas with a fixed number of molecules (and thus a
fixed mass). Although the gas is macroscopically at rest, it contains an internal
energy U due to the random molecular motion. Since the molecules do not inter-
act, the internal energy is simply the sum of all the molecular kinetic energies,
U =

∑
1
2mv2, which is proportional to T , i.e.

U = CV T , (4-36)

where the constant of proportionality, CV , is independent of the volume and the
temperature. To see what this constant means we change the temperature of
the gas by δT while keeping its volume fixed. Since no work is performed, and
since energy is conserved, the necessary amount of heat is δQ = δU = CV δT .
Consequently, the amount of heat which must be added per unit of temperature
increase is CV = δQ/δT , naturally called the heat capacity at constant volume1.

If the pressure of the gas instead is kept constant while the temperature
is raised by δT , we must also take into account that the volume expands by
a certain amount δV and thereby performs work on the surroundings. Using
the constancy of the pressure, the work performed by the gas becomes pδV =
δ(pV ) = nRδT , where we in the last step used the ideal gas law (4-23). Since
energy is conserved, the necessary amount of heat is now larger by this work,
δQ = δU + pδV = (CV + nR)δT , where we have also used (4-36). Consequently,
the amount of heat which must be added per unit of increase in temperature,
Cp = δQ/δT , is

Cp = CV + nR , (4-37)

called the heat capacity at constant pressure. It is evidently, and for good reason,
always larger than CV .

1From the ideal gas law itself, it only follows by thermodynamical reasoning that CV =
(∂U/∂T )V is independent of the volume (see [68, p. 154]. The complete constancy of the heat
capacity is an extra assumption which is well fulfilled for real gases under normal circumstances.
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The adiabatic index

The dimensionless ratio of the heat capacities,

γ =
Cp

CV
, (4-38)

is called the adiabatic index. Using (4-37) we find

CV =
1

γ − 1
nR , Cp =

γ

γ − 1
nR . (4-39)

Given the adiabatic index, all thermodynamic quantities for n moles of an ideal
gas are completely determined.

Kinetic gas theory teaches us that γ = 1+2/m where m is the number of motional
degrees of freedom of the molecules. For monatomic gases the only degrees of
freedom are the center of mass velocity, implying m = 3 and γ = 5/3. For
diatomic gases such as air there are two extra rotational degrees of freedom for
rotations orthogonal to the molecular axis (rotations around the molecular axis
are not excited at normal temperatures), so that m = 5 and γ = 7/5. Finally, for
multiatomic gases there are three extra rotational degrees of freedom, leading to
m = 6 and γ = 4/3. These values agree decently with empirical results.

Entropy of an ideal gas

In general, when neither the volume nor the pressure are kept constant, the heat
that must be added to the system in an infinitesimal process is,

δQ = δU + pδV = CV δT + nRT
δV

V
. (4-40)

It is a mathematical fact that there exists no function, Q(T, V ), which has this
expression as differential (see problem 4.11). It may on the other hand be directly
verified (by insertion) that

δS =
δQ

T
= CV

δT

T
+ nR

δV

V
, (4-41)

can be integrated to yield a function,

S = CV log T + nR log V + const , (4-42)

called the entropy of the amount of ideal gas. The entropy is only defined up to
an arbitrary constant.

The entropy of the gas is, like its energy, an abstract quantity which cannot
be directly measured. But since both quantities depend on the measurable ther-
modynamic quantities, ρ, p, and T , that characterize the state of the gas, we can
calculate the value of energy and entropy in any state. But why bother to do so
at all?
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The reason is that the two major laws of thermodynamics are formulated for
the energy and entropy. Both laws concern processes that may take place in an
isolated system which is not allowed to exchange heat with the environment or
perform work on it. The First Law states that the energy is unchanged under any James Prescott Joule (1818-

1889). English physicist.
Gifted experimenter who as
the first demonstrated the
equivalence of mechanical
work and heat, a necessary
step on the road to the First
Law. Demonstrated (in con-
tinuation of earlier experi-
ments by Gay-Lussac) that
the irreversible expansion of
a gas into vacuum does not
change its temperature.

process in an isolated system. This implies that the energy of an open system can
only change by exchange of heat or work with the environment. We actually used
this law implicitly in deriving the heat capacities and the entropy. The Second
Law states that the entropy cannot decrease. In the real world, the entropy of
an isolated system must in fact grow. Only if all the processes taking place in
the system are completely reversible at all times, will the entropy stay constant.
Reversibility is an ideal which can only be approached by very slow quasistatic
processes, consisting of infinitely many infinitesimal reversible steps. Essentially
all real-world processes are irreversible to some degree.

Example 4.5.1 (Joule’s expansion experiment): An isolated box of vol-
ume V contains an ideal gas in a walled-off compartment of volume V0. When the
wall is opened, the gas expands into vacuum and fills the full volume V . Since
the box is isolated from the environment, and since the internal energy only de-
pends on the temperature, it follows from the First Law that the temperature
must be the same before and after the event. The change in entropy then be-
comes ∆S = (CV log T + nR log V ) − (CV T + nR log V0) = nR log(V/V0) which is
evidently positive (because V/V0 > 1). This result agrees with the Second Law,
which thus appears to be unnecessary.

V0

V

........................................................................

..............................................
....................

..........

A compartment of volume
V0 inside an isolated box of
volume V . Initially, there
is vacuum in the box, and
the compartment contains
an ideal gas. When the wall
breaks, the gas expands by
itself to fill the whole box.
The reverse process never
happens by itself.

The strength of the Second Law becomes apparent when we ask the question
of whether the air in the box could ever — perhaps by an unknown process to
be discovered in the far future — by itself enter the compartment of volume V0,
leaving vacuum in the box around. Since that would entail a negative change in
entropy, which is forbidden by the Second Law, it never happens. This is also why
a scrambled egg never spontaneously unscrambles again.

Isentropic processes

Any process in an open system which does not exchange heat with the environ-
ment is said to be adiabatic. If the process is furthermore reversible, it follows
that δQ = 0 in each infinitesimal step, so that the δS = δQ/T = 0. The entropy
(4-42) must in other words stay constant in any reversible, adiabatic process.
Such a process is for this reason called isentropic.

By means of the adiabatic index (4-38) we may write the entropy (4-42) as,

S = CV log
(
TV γ−1

)
+ const . (4-43)

From this it follows that

T V γ−1 = const , (4-44)

for any isentropic process in an ideal gas. Using the ideal gas law to eliminate
V ∼ T/p, this may be written equivalently as,

T γp1−γ = const . (4-45)
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Eliminating instead T ∼ pV , the isentropic condition takes its most common
form,

p V γ = const . (4-46)

Notice that the constants are different in these three equations.

Example 4.5.2: When the air in a bicycle pump is compressed from V0 to
V1 (while you block the valve with your finger), the adiabatic law implies that
p1V

γ
1 = p0V

γ
0 . For p0 = 1 atm and V1 = V0/2 we find p1 = 2.6 atm. The temperature

simultaneously rises about 100 degrees, but the hot air quickly becomes cold again
during the backstroke. One may wonder why the fairly rapid compression stroke may
be assumed to be reversible, but as long as the speed of the piston is much smaller
than the velocity of sound, this is in fact a reasonable assumption. Conversely, we
may conclude that the air expands with velocity close to the speed of sound when
the wall is opened in example 4.5.1.

Isothermal versus isentropic bulk modulus

We have formerly seen that the bulk modulus of a strictly isothermal ideal gas
with p = ρRT0/Mmol is equal to the pressure,

KT = ρ

(
∂p

∂ρ

)

T

= p . (4-47)

Here the index T (in the usual thermodynamic way of writing derivatives) signals
that the temperature must be held constant while we differentiate.

In terms of the mass density ρ = M/V , the isentropic condition may be
written in any of three different ways (with three different constants),

p ρ−γ = const , Tρ1−γ = const , T γp1−γ = const . (4-48)

Using the first we find the isentropic bulk modulus of an ideal gas,

KS = ρ

(
∂p

∂ρ

)

S
= γ p , (4-49)

where the index S now signals that the entropy must be held constant. The
distinction between the isothermal and isentropic bulk modulus is necessary in
all materials, but for nearly incompressible liquids there is not a great difference
between KS and KT .

Among Isaac Newton’s great achievements was the first calculation of the speed
of sound in air, using essentially the ideal gas law with constant temperature. His
result did not agree with experiment, because normal sound waves oscillate so
rapidly that compression and expansion are essentially isentropic processes. In
section 15.2 we shall find that the speed of sound is c =

p
K/ρ, such that the

ratio between the isentropic and isothermal sound velocities is cS/cT =
√

γ. For
air with γ ≈ 1.4 this amounts to an 18% error in the sound velocity. Much later
in 1799, Laplace derived the correct value for the speed of sound.
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Specific quantities

In classical thermodynamics we always think of a macroscopic volume of mat-
ter with the same thermodynamic properties throughout the volume. Volume,
mass, energy, entropy, and the specific heats are all extensive quantities, meaning
that the amount of any such quantity in a composite system is the sum of the
amounts in the parts. Pressure, temperature, and density are in contrast inten-
sive quantities, that may not be added when a system is put together from its
parts.

In continuum physics, an intensive quantity becomes a field that may vary
from place to place, whereas an extensive quantity becomes an integral over the
density of the quantity. Since a material particle with a fixed number of molecules
has a fixed mass (subject to the reservations set down in chapter 1), the natural
field to introduce for an extensive quantity like the energy is the specific internal
energy, u = dU/dM , which is the amount of energy per unit of mass in the
neighborhood of a given point. The actual energy density becomes dU/dV = ρ u,
and the total energy in a volume

U =
∫

V

ρ u dV . (4-50)

The specific energy is an intensive quantity like temperature, pressure or density.
Similarly, we define the specific heat as the local heat capacity per unit of

mass. Since the heat capacities (4-39) of an ideal gas are directly proportional
to the mass M = nMmol, the specific heats of an ideal gas become,

cV =
1

γ − 1
R

Mmol
, cp =

γ

γ − 1
R

Mmol
. (4-51)

They are constants which only depend on the properties of the gas. For air we
have cV = 718 J/K/kg and cp = 1005 J/K/kg. From (4-36) we obtain after
dividing by M ,

u = cV T . (4-52)

The specific energy of an ideal gas is the specific heat times the absolute temper-
ature.

Finally, we define the specific entropy, s = dS/dM , from which the total
entropy may be calculated as an integral,

S =
∫

V

ρ s dV . (4-53)

For an ideal gas, the specific entropy is obtained by dividing (4-43) by M =
nMmol. It may be written in three different forms related by the ideal gas law,

s = cV log
(
Tρ1−γ

)
+ const (4-54a)

= cV log
(
T γp1−γ

)
+ const (4-54b)

= cV log
(
p ρ−γ

)
+ const . (4-54c)

Notice, however, that the constants are different in the three cases.
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4.6 The homentropic atmosphere

The assumption that the temperature is the same everywhere in the atmosphere
is certainly wrong, as anyone who has ever flown in a modern passenger jet
can testify. Temperature falls with height instead of staying constant. So the
atmosphere is not in isothermal equilibrium, and this is perhaps not so surprising,
since the “container walls” of the atmosphere, the ground and outer space, are
not at the same temperature. There must be a heat flow through the atmosphere
between the ground and outer space, maintained by an inflow of solar radiation
and an outflow of geothermal energy. But air is a bad conductor of heat, so
although heat conduction does play a role, it is not directly the cause of the
temperature drop in the atmosphere.

Of much greater importance are the indirect effect of solar heating, the convec-
tion which creates air currents, winds, and local turbulence, continually mixing
different layers of the atmosphere. The lower part of the atmosphere, the tropo-
sphere, is quite unruly and vertical mixing happens at time scales that are much
shorter than the time scales necessary for reaching isothermal equilibrium. There
is in fact no true hydrostatic equilibrium state for the real atmosphere. Even if
we disregard large-scale winds and weather systems, horizontal and vertical mix-
ing always takes place at small scales, and a realistic model of the atmosphere
must take this into account.

A thought-experiment

Let us imagine that we take a small blob of air and exchange it with another
blob of air of the same mass, but taken from a different height with a different
volume and pressure. In order to fill out the correct volume, one air mass would
have to be compressed and the other expanded. If this is done quickly, there
will be no time for heat exchange with the surrounding air, and one air mass
will consequently be heated up by isentropic compression and the other cooled
down by isentropic expansion. If the atmosphere initially were in isothermal
equilibrium, the temperature of the swapped air would not be the same as the
temperature of the surrounding air, and the atmosphere would be brought out
of equilibrium.

ÁÀ
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T0

Swapping air masses from
different heights. If the air
has temperature T0 before
the swap, the swapped air
would be warmer T1 > T0 or
colder T2 < T0.

If, however, the surrounding air initially had a temperature distribution, such
that the swapped air after the expansion and compression would arrive at the
correct temperatures of the new surroundings, a kind of thermodynamic “equilib-
rium” could be established, in which the omnipresent local mixing had essentially
no effect. Intuitively, it is reasonable to expect that the end result of fast local
mixing and slow heat conduction might be precisely such a state. It should how-
ever not be forgotten that this state is not a true equilibrium state but rather a
dynamically balanced state depending on the incessant motion in the atmosphere.

In this state, the movement of a small blob followed by compression or ex-
pansion is essentially a reversible, adiabatic process. This implies that the local
entropy per unit of mass, the specific entropy, has to be the same throughout



4.6. THE HOMENTROPIC ATMOSPHERE 79

5 10 15 20 25 30
z@kmD

200

400

600

800

1000

p@mbarD

Figure 4.3: Three different models for the atmospheric pressure: constant density
(dashed), homentropic (fully drawn) and isothermal (large dashes), plotted together with
the standard atmosphere data (dots)[3]. The parameters are h0 = 8.6 km and γ = 7/5.

the atmosphere. A gas in a state with constant specific entropy is said to be
homentropic. In this state the right hand side any of the isentropic conditions
(4-48) or (4-45) will be independent of the spatial position.

The temperature lapse rate

In order to calculate the pressure distribution in the homentropic atmosphere we
differentiate the specific entropy (4-54)b after z, and find

γ
1
T

dT

dz
+ (1− γ)

1
p

dp

dz
= 0 .

Combined with the hydrostatic equation (4-19c), we obtain

dT

dz
=

(
1− 1

γ

)
T

p

dp

dz
= −

(
1− 1

γ

)
g0Mmol

R
, (4-55)

which by (4-51) may be written,

dT

dz
= −g0

cp
. (4-56)

The great surprise is that the right hand side is independent of z. This means
that the temperature in the homentropic atmosphere drops at a constant rate,
also called the atmospheric temperature lapse rate.

With Mmol ≈ 29 g/mol and γ ≈ 7/5 the numerical value of the temperature
lapse rate becomes dT/dz ≈ 10 K/km. Thus the temperature of the homentropic
atmosphere will drop from, say, +27◦ centigrade at sea level to −60◦ at the top
of Mount Everest.
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Introducing the temperature T0 at sea level, the above equation may be inte-
grated, and the temperature at height z becomes

T (z) = T0

(
1− z

h2

)
, (4-57)

where the scale is set by

h2 =
γ

γ − 1
RT0

g0Mmol
=

γ

γ − 1
h0 . (4-58)

At z = h2 ≈ 30 km the temperature has dropped to absolute zero, which is
of course unphysical, since the atmosphere does not stop at this height. It is
nevertheless a reasonable scale for the height of the atmosphere.

The pressure follows from (4-45)

p = p0

(
1− z

h2

) γ
γ−1

, (4-59)

and the density from (4-48)

ρ = ρ0

(
1− z

h2

) 1
γ−1

. (4-60)

Both of these quantities vanish like the temperature for z = h2. At the top of
Mt. Everest the pressure is predicted to be 437 hPa.

Earth’s atmosphere

In fig. 4.3 the various atmospheric models have been plotted together with the
data for the standard atmosphere [3]. Even if the isentropic model gives the best
fit, it fails at higher altitudes because some of the physical assumptions behind
the derivation fail. The real atmosphere is in fact much more complicated than
any of these models.Standard quoted pressure at

Mount Everest is 300 hPa.
Average temperature is
−36◦C in January but
can fall to −60◦C. In the
summer it is −19◦C.

Water vapor is always present and will condense to clouds in rising currents
of air. The latent heat of condensation heats up the air, so that the temperature
lapse rate becomes smaller than 10 K/km, perhaps more like 6−7 K/km, leading
to a somewhat higher temperature at the top of Mount Everest. The clouds may
eventually precipitate out as rain, and when the dried air afterwards descends
again, for example on the lee side of a mountain, the air will heat up at a higher
rate than it cooled during its ascent on the windward side and become quite hot,
a phenomenon known as föhn in the Alps.

The fact that the temperature lapse rate is smaller in the real atmosphere
than in the isentropic model has a bearing on the stability of the atmosphere. If
a certain amount of air is transported to higher altitude without heat exchange
and condensation of water vapor, it will behave like in the isentropic model and
become cooler than the surrounding air. Consequently it will also be heavier than
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the surrounding air and tend to sink back to where it came from. Conversely,
if the real temperature lapse becomes larger than in the isentropic model, the
atmosphere becomes unstable and strong vertical currents may arise. This can,
for example, happen in thunderstorms.
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Problems

4.1 Consider a canal with a dock gate which is 12 m wide and has water depth 9 m
on one side and 6 m on the other side.

a) Calculate the pressures in the water on both sides of the gate at a height z over
the bottom of the canal.

b) Calculate the total force on the gate.

c) Calculate the total moment of force around the bottom of the gate.

d) Calculate the height over the bottom at which the total force acts.

4.2 Show that the pressure (4-3) can be derived from the equation of global equilib-
rium (4-14) under the assumption that p = p(z).

4.3 An underwater lamp is covered by a hemispherical glass with a diameter of 30 cm
and is placed at a depth of 3 m on the side of the pool. Calculate the total horizontal
force from the water on the lamp, when there is air at normal pressure inside.

4.4 Calculate the change in pressure in the deepest sea, assuming a constant bulk
modulus of water, K = 2.3 GPa.

4.4 Expanding the pressure (4-34) to second order in z/h1 we find

p = p0

�
1− z

h0
+

z2

h0h1

�
. (4-61)

For z = −11 km and taking h0 = 10 m and h1 = 235 km, the last term becomes about
4 atm.

4.5 The equation of state for water is to a good approximation (for pressures up to
100,000 bar) given by

p + B

p0 + B
=

�
ρ

ρ0

�n

(4-62)

with B = 3000 bar, n = 7, p0 = 1 bar and ρ0 = 1 g/cm3. a) Calculate the bulk
modulus K for water. b) Calculate the density and pressure in the sea. c) What is the
compression of the water at the deepest point in the sea?

4.6 Determine the form of the pressure across the core/mantle boundary when the
bulk modulus is K ≈ γp with γ ≈ 4 throughout the Earth (see fig. 4.1).

4.7 Using a manometer, the pressure in an open container with liquid is found to be
1.6 bar at a height of 6 m over the bottom, and 2.8 bar at a height of 3 m. Determine
a) the density of the liquid and b) the height of the liquid surface.

4.8 An open jar contains two non-mixable liquids with densities ρ1 > ρ2. The heavy
layer has thickness h1 and the light layer on top of it has thickness h2. a) An open
glass tube is lowered vertically into the liquids towards the bottom of the jar. Describe
how high the liquids rise in the tube (disregarding capillary effects). b) The open tube
is already placed in the container with its opening close to the bottom when the heavy
fluid is poured in, followed by the light. How high will the heavy fluid rise in the tube?
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4.9 A vertical plate is inserted into a liquid at rest with constant density ρ0 in constant
gravity g0. Introduce a coordinate z going vertically down with the pressure defined to
vanish for z = 0. In the following we denote the vertical area moments by,

In =
1

A

Z
A

zn dS , n = 1, 2, . . . (4-63)

where dS is the surface element. The point zM = I1 is called the area center.

a) Calculate the pressure in the liquid.

b) Show that I2 ≥ I2
1 .

c) Calculate the total pressure force on the plate.

d) Calculate the total moment of force of the pressure forces around z = 0.

e) Show that the point of attack of the pressure forces is found below the area center
zP ≥ zM .

f) A thin isosceles triangle with height h and bottom length b is lowered into the
liquid such that its top point is at z = 0. Calculate the area center and the point
of attack of the pressure forces.

4.10 The equation of state due to van der Waals is�
P +

n2a

V 2

�
(V − nb) = nRT (4-64)

where a and b are constants. It describes gases and their condensation into liquids.
a) Calculate the isothermal bulk modulus. b) Under which conditions can it become
negative, and what does it mean?

4.11 a) Show that for a function Q = Q(T, V ) the differential takes the form dQ =
AdT + BdV where ∂A/∂V = ∂B/∂T . b) Prove that this is not fulfilled for (4-40).
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