
29
Nonlinear waves

Wading in the water near a beach and fighting to stay upright in the surf, you
are evidently under the influence of a nonlinear dynamics, simply because the
breaking waves look so different from the smooth swells at the open sea that
gave rise to them. Less apparent but equally nonlinear is the dynamics behind
the sonic boom caused by a high-speed airplane passing overhead, the short-
range shock wave created by an exploding grenade, or the huge atmospheric
shock waves created by thermonuclear explosions. The beauty of fluid mechanics
lies in the knowledge that all these effects stem from the same nonlinear aspects
of the Navier-Stokes equations.

Any linear dynamics has the powerful property that it permits superposi-
tion of solutions to the dynamic equations. A complicated solution to a linear
dynamics may in the end be completely resolved into a linear combination of
elementary solutions. Leaving the domain of linearity this is no more possible,
and solutions take on a more individual character. Typically they are difficult to
find and demand special techniques in each particular case. They may also be
“nasty”, unpredictable and chaotic. Nonlinear phenomena have been at focus in
physics for most of the 20’th century, and there is still long way to go.

In this chapter the global laws of balance are first used to analyze large-
amplitude shallow-water gravity waves, called hydraulic jumps, observed every
day in the kitchen sink or on the beach. A similar analysis of large-amplitude
waves in an isentropic gas reveals the basic physics behind the shock waves created
by explosions and by supersonic aircraft. Remarkably, it turns out that the
nonlinear dynamic equations governing shallow-water surface waves are similar to
the nonlinear equations for large-amplitude waves in an isentropic gas, permitting
us to see the analogy between hydraulic jumps and shock waves. Deep-water
nonlinear surface waves constitute a clean and elegant problem, although they
are much harder to deal with. This chapter owes much to [16, 40, 37, 60].

Copyright c© 1998–2003, Benny Lautrup Draft 7.6, December 15, 2003



626 29. NONLINEAR WAVES

29.1 Hydraulic jumps

A stationary hydraulic jump or step is easily observed in a kitchen sink. The
column of water coming down from the tap splays out from the impact region in
a roughly circular flow pattern, and at a certain radius the thin sheet of water
abruptly thickens and stays thick beyond. The transition region behind the front
appears to have a narrow width and contain quite complicated flow. Strongly tur-
bulent stationary hydraulic jumps may also arise in spillways channelling surplus
water from the dam into the river downstream from the dam.

................. .......... ............. ................ ................... ...................... ......................... .
..........
.........
...........
............. ................ ..............................................................................................................................................

..........
.........

...........
................................................

Sketch of the hydraulic jump
in a kitchen sink. The water
coming down from the tap
splays out in a sheet which
suddenly thickens.
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A river bore moving in from
the right in water initially
at rest. The water behind
the front moves slower than
the front itself.

Moving hydraulic jumps are seen on the beach when waves roll in, sometimes
in several layers on top of each other. More dramatic river bores may be formed
by the rising tide near the mouth of a river. When the circumstances are right
such waves can roll far up the river with a nearly vertical foaming turbulent front.
In the laboratory a bore can be created in a long canal with water initially at rest.
When the wall in one end of the canal is set into motion with constant velocity, a
bore will form and move down the canal with constant speed and constant water
level.

We shall for simplicity analyze a stationary jump along a straight line orthog-
onal to the direction of a uniform horizontal flow. Since one can always choose
a frame of reference in which a moving straight-line river bore is stationary, this
case is also covered by the following analysis. A gently curved river bore and the
stationary circular jump in the kitchen sink are locally nearly straight and thus,
at least approximatively, covered.

Stationary jump in planar flow

The flow is assumed to be steady before and after the jump, whereas in the
transition region there may be intermittency and turbulence. The Reynolds
number is assumed to be so large that viscous friction can be ignored outside the
transition region. The liquid streams towards the jump with constant uniform
velocity U1 and constant water level h1. Downstream from the jump the flow has
smaller velocity U2 and larger water level h2.

.

...........
...........
...........
.............
................

..................
..................... ........................ .......................... ............................. ...............................

-
-

U1

U2h1

p1

h2

p2

Sketch of an idealized
stationary straight-line
hydraulic jump of length L
(into the paper). Incom-
pressible fluid enters from
the left at velocity U1 and
height h1 and exits on the
right at a lower velocity U2

and height h2. The entry
and exit pressures, p1 and
p2, are hydrostatic. At the
front the flow pattern is
complicated, often turbulent.
The control volume encom-
passes the whole drawing
between the dotted lines.

In a control volume containing the transition region, mass conservation guar-
antees that the rate of mass inflow must equal the rate of outflow. For a stretch
L of the straight-line jump we find ρ0U1h1L = ρ0U2h2L. Dividing by ρ0L this
becomes,

U1h1 = U2h2 , (29-1) eHydraulicJumpMassBalance

which shows that an increase in height must be accompanied by a drop in velocity.
Momentum balance (16-14) similarly guarantees that the net outflow of mo-

mentum from the control volume equals the total external force acting on the
control volume. For a nearly inviscid fluid the horizontal force can only be due to
the pressure acting on the two vertical sides of the control volume where the liquid
enters or leaves. The pressure in the planar flow in these regions is hydrostatic,
given by p1 = p0 +ρ0g0(h1−z) before the jump and p2 = p0 +ρ0g0(h2−z) after,
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Figure 29.1: (a) The Froude numbers Fr = U1/
√

g0h1 before and Fr2 = U2/
√

g0h2

after the jump, plotted as function of the height ratio h2/h1 > 1. (b) The percentage of
the incoming kinetic energy (29-9) dissipated in the stationary jump.

where p0 is the constant (atmospheric) pressure on the open surface. Carrying
out the force integrals in the usual way, momentum balance becomes (apart from
an overall factor ρ0L),

U2
2 h2 − U2

1 h1 =
1
2
h2

1g0 − 1
2
h2

2g0 . (29-2) eHydraulicJumpMomentumBalance

On the left one finds the difference between the momentum loss through the
outlet and the gain through the inlet of the control volume, and on the right the
difference between the total pressure forces acting on the inlet and the outlet.

These equations are solved for U1 and U2 with the result,

U1 =
√

1
2
g0(h1 + h2)

h2

h1
, U2 =

√
1
2
g0(h1 + h2)

h1

h2
. (29-3) eJumpVelocities

The total mass flow through a stretch of the jump of length L becomes,

Ṁ = ρ0U1h1L = ρ0U2h2L = ρ0L

√
1
2
g0(h1 + h2)h1h2 , (29-4) eJumpMassFlow

and it is symmetric in h1 and h2, as one would expect.
The Froude number at the inlet is defined as the ratio of the inlet velocity to

the small-amplitude shallow-water wave velocity, Fr1 = U1/
√

g0h1, and similarly
at the outlet, Fr2 = U2/

√
g0h2. Inserting the velocities, the Froude numbers

become functions only of the ratio h2/h1, plotted in fig. 29.1(a),

Fr1 =

√
1
2

(
1 +

h2

h1

)
h2

h1
, Fr2 =

√
1
2

(
1 +

h1

h2

)
h1

h2
, (29-5)

Since h2 > h1, we have Fr1 > 1 > Fr2. The inlet velocity is always greater than
the shallow-water velocity, whereas the outlet velocity is always smaller. The
figure also shows that Fr1 is very close to being linear in h2/h1 whereas Fr2 is
not.
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628 29. NONLINEAR WAVES

Energy loss in the stationary jump

It would be tempting to make use of Bernoulli’s theorem along a streamline
going across the stationary hydraulic jump but that is impossible because of the
unruly fluid in the transition region which messes up streamlines and generates
a dissipative (viscous) loss of mechanical energy.

We may nevertheless use mechanical energy balance (16-91) to calculate the
rate of loss of energy from the system by keeping track of what mechanical energy
goes into the control volume and what comes out. Mechanical energy balance
takes the form (after dividing out the overall factor ρ0L),
(

1
2
U2

2 +
1
2
g0h2

)
U2h2 −

(
1
2
U2

1 +
1
2
g0h1

)
U1h1 =

1
2
g0h

2
1U1 − 1

2
g0h

2
2U2 − P

ρ0L
.

(29-6)

On the left hand side we have the difference between the rates of outflow and
inflow of mechanical energy from the control volume, calculated from the me-
chanical energy density, 1

2ρ0v
2 + ρ0g0z, integrated over the outlet and inlet. On

the right there is first the net rate of work of the pressure forces integrated over
the inlet and outlet, and finally P , the rate of loss of energy due to the work of
internal friction.

Solving for P we find

P = Ṁ

(
1
2
U2

1 + g0h1

)
− Ṁ

(
1
2
U2

2 + g0h2

)
= Ṁ(H1 −H2) (29-7)

where Ṁ is the mass flow (29-4) and H1 and H2 are the Bernoulli function (15-
16) evaluated at the surface of the water before and after the jump. Substituting
the velocities (29-3) we find

P = Ṁg0
(h2 − h1)3

4h1h2
. (29-8)

The fraction with dimension of length is what engineers would call the head loss
(page 271). Since the rate of viscous energy loss must always be positive (page
341), the stationary hydraulic jump must always rise in the downstream direction,
h2 > h1.

A stationary hydraulic jump is perceived as driven by the inflow. Since kinetic
energy flows in at a rate Ṫ1 = 1

2ṀU2
1 , the fractional dissipative loss of kinetic

energy becomes ,

P

Ṫ1

=
(h2 − h1)3

(h1 + h2)h2
2

. (29-9) eJumpDissipation

It is plotted fig. 29.1(b) and converges as expected to unity for h2 → ∞. For
h2/h1 = 2, corresponding to Fr1 = 1.73, only 8.3% of the kinetic energy is
lost, whereas for h2/h1 = 10 corresponding to Fr2 = 7.4, the fractional loss is
66%. Large hydraulic jumps are efficient dissipators of kinetic energy, and are
sometimes used technologically for this purpose, for example in dam spillways.

Copyright c© 1998–2003, Benny Lautrup Draft 7.6, December 15, 2003



29.1. HYDRAULIC JUMPS 629

River bores, reflection bores, and the kitchen sink
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A river bore is obtained by
subtracting U1 from all the
velocities of the stationary
jump.

The only difference between a river bore and a stationary hydraulic jump lies,
as mentioned, in the frame of reference. The river bore is obtained in the frame
where the fluid before the jump is at rest. Subtracting U1 from all velocities (and
reversing their directions), the front itself will move with velocity U1, and the
fluid after the jump will move in the same direction with velocity U1 − U2. This
velocity may be larger and smaller than the shallow-water velocity

√
g0h2 and

equals it for for h2/h1 ≈ 3.21.
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Reflection bore in a closed
canal is obtained by subtract-
ing U2 from all velocities of
the stationary jump.

There is also the possibility of choosing a reference frame in which the fluid
after the jump is at rest. Subtracting U2 from the velocities of the stationary
jump, this describes to a stationary flow being reflected in a closed canal, forming
a reflection bore moving with velocity U2 out of the canal while the flow into the
canal has velocity U1 − U2.

Better to get the 1993 article
of Tomas

The reflection bore has in fact some bearing on the stationary jump in the
kitchen sink, because the spreading circular layer of fluid encounters resistance
against the free flow from the sides of the sink or from the slight slope and
curvature of its bottom (or even from the increasing viscous friction from the
bottom of the thinning layer1). This creates a reflection bore which quickly
moves towards the center until it gets stopped by the spreading fluid. When the
faucet is closed the stationary jump in the kitchen sink immediately turns into a
river bore moving towards the center.

Build-up of a hydraulic jump
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A river bore is “pumped up”
by small-amplitude surface
waves of sufficiently long
wavelength. Short waves
move too slowly to catch up
with the jump.

A river bore is created by the rising tide at the river mouth, and as long as
the tide keeps rising, it will continue to pour more water in. The additional
water supplied by the rising tide in a small time interval may be thought of as a
small-amplitude surface wave moving upriver on top of the already existing bore.
Although this mechanism is most obvious for the river bore, both the reflection
bore and the stationary hydraulic jump must also be built up “from behind” by
small-amplitude waves.

Any small-amplitude surface wave may be resolved into a superposition of
harmonic waves with a spectrum wavelengths. Consider now a harmonic wave
with wavelength λ on its way upstream towards a stationary hydraulic jump. In
the rest frame of the outflow, the energy in a harmonic wave with wave number
k = 2π/λ moves with the group velocity of a gravity wave (22-31),

c2 =
1
2

√
g0

k
tanh kh2

(
1 +

2kh2

sinh 2kh2

)
. (29-10)

In the rest frame of the jump, the wave propagates towards the jump with velocity
c2 − U2 which must be positive if the wave shall ever reach the jump. Since
c2 →

√
g0h2 for λ → ∞ and U2 <

√
g0h2, this is always possible provided the

wavelength exceeds a certain value, λ > λ0.
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A small amplitude wavelet
moving towards the sta-
tionary jump with velocity
c2 − U2 > 0.

1T. Bohr, V. Putkaradze, and S. Watanabe, Phys. Rev. Lett. 79, 1038 (1997).
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Figure 29.2: (a) The ratio λ0/h2 of the minimal wavelength to the height h2 after the
jump as a function of h2/h1, obtained by solving (29-11). For h2/h1 → 1 the ratio

diverges as ∼ (h2/h1 − 1)−1/2, and for h2/h1 → ∞ it decreases as h1/h2. (b) The
ratio λ0/h1 of the minimal wavelength in units of the height h1 before the jump as
a function of h2/h1. The minimum λ0/h1 ≈ 10.77 occurs for h2/h1 ≈ 1.90, and the
maximum λ0/h1 ≈ 13.87 for h2/h1 ≈ 8.11. For h2/h1 →∞ the ratio becomes constant,
λ0/h1 → 4π.

The minimal wavelength λ0 is found by solving the equation c2 = U2. After
division by

√
g0h2 this condition takes the form

1
2

√
tanh kh2

kh2

(
1 +

2kh2

sinh 2kh2

)
=

√
1
2

(
1 +

h1

h2

)
h1

h2
. (29-11) eJumpCritical

Since the left hand side is only a function of the dimensionless variable kh2 =
2πh2/λ0, this transcendental equation may be solved for λ0/h2. The result is
shown in fig. 29.2(a) as a function of h2/h1. In fig. 29.2(b) the ratio λ0/h1 of the
wavelength to the water level h1 before the jump is seen to have a quite dramatic
structure.

A smooth hydraulic jump cannot contain details much smaller than the waves
that maintain it, so the minimal wavelength λ0 sets a lower limit to the width of
the transition region. For h2/h1 only a little above unity fig. 29.2(a) shows that
λ0/h′ is large and the jump is barely discernable. For h2/h1 between 2 and 3, the
width is at least 4 to 6 times h2. For larger h2/h1 the minimal width continues
to decrease but the short waves in turbulence may make the front even sharper.

Example 29.1.1: A river bore of height h2 = 1 m moves up a river with depth
h1 = 0.5 m. The front velocity calculated from (29-3) becomes U1 = 3.8 m/s and the
velocity of the flow behind the front U1 − U2 = 1.9 m/s. From fig. 29.2(b) we find
λ0/h1 = 10.8 for h2/h1 = 2, so that the minimal wavelength becomes λ0 = 5.4 m.

Check this argument with an
expert. Fig. 29.2(b) reveals something about the character of the hydraulic jump.

For 1 . h2/h1 . 2, the minimal wavelength decreases rapidly as the jump grows,
and each pulse of length λ0 adds less and less energy, making the jump quite
stable. For 2 . h2/h1 . 6 the minimal wavelength increases rapidly as the jump
grows, and each pulse of length λ0 adds more energy, making the jump rather
unstable. Finally, for 6 . h2/h1 . ∞ each pulse adds roughly the same energy
and the jump is fairly stable, though with a strongly turbulent front.
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Figure 29.3: The hydraulic jump discussed in detail in example 29.1.2. The fully drawn
line is the water level whereas the dashed line is the estimated thickness of the boundary
layer. The fact that it is comparable to the water level in front of the jump indicates that
viscosity plays a role in this case, casting some doubts on the validity of the calculation.
The jump has been smoothed “by hand” to a width of twice the minimal wavelength.
Notice that the height is plotted on a four times larger length scale than the radius.

Anatomy of the jump in the kitchen sink

The circular stationary hydraulic jump in the kitchen sink is particularly inter-
esting because of the difficulties in predicting where it happens. As discussed
above, the position of the jump depends crucially on the forces that resist the
free flow towards the drain. Here we shall simply place the jump at a certain
radius r = r1 from the center and calculate the shape of the flow before and
after, assuming that viscosity can be disregarded. The water is discharged at a
volume rate Q from a circular jet of radius r0, such that its average velocity is
U0 = Q/πr2

0. By Bernoulli’s theorem the water emerges horizontally with the
same speed U0 as it comes down. Mass conservation, Q = πr2

0U0 = 2πr0h0U0,
then determines the initial height h0 = r0/2 of the horizontal sheet of water at
r = r0.

Before the jump, r0 < r < r1, the flow with velocity U(r) and height h(r) is
governed by mass conservation together with Bernoulli’s theorem for a streamline
along the surface,

rhU = r0h0U0 , (29-12)
1
2
U2 + g0h =

1
2
U2

0 + g0h0 . (29-13)

In the general case this becomes a third degree equation for U (or h). When the
initial Froude number is large, as in the example below, the potential term g0h
can be disregarded and the velocity becomes constant, U ≈ U0, implying that
the height decreases as h ≈ h0r0/r.

At r = r1 the velocity becomes U1 = U(r1) and the height h1 = h(r1). The
jump transforms these into U2 and h2. After the jump we may again use the
above equations to determine U(r) and h(r) starting at r1 with U2 and h2. If
the Froude number here is small, as in the example below, the height h becomes
constant after the jump while the velocity decreases as 1/r.
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632 29. NONLINEAR WAVES

Notice that because of mass conservation across the jump, the Reynolds num-
ber Re = Uh/ν = (r0/r)U0h0/ν is continuous and varies inversely with the
radius. To test whether the assumption of inviscid flow is justified, one may
compare the water level h with a thickness estimate of the boundary layer, for
example δ = 3

√
νr/U .

Example 29.1.2 (Kitchen sink jump): In a home-made kitchen sink exper-
iment (see fig. 29.3) the discharge rate was casually observed to be Q = 100 cm3/s
and the radius of the water column r0 = 0.5 cm. This makes the initial velocity
U0 = 127 cm/s and the initial thickness h0 = 0.25 cm, corresponding to an initial
Froude number, Fr0 = 8.1, and an initial Reynolds number Re0 = 3700. The radius
of the jump was in this case observed to be r1 = 7 cm, but with rapid intermittent
variations due to the fluctuations in the water jet from the tap. From the solu-
tion of the equations we find h1 = 0.018 cm, U1 = 129 cm/s, corresponding to a
Froude number Fr1 = 31 and a Reynolds number Re1 = 264. The height ratio (see
problem 29.1) becomes h2/h1 = 43.4, and the height after the jump h2 = 0.76 cm
while the velocity drops to U2 = 3 cm/s, corresponding to a Froude number of
Fr2 = 0.11. The observed height after the jump seems to be a bit smaller than the
above prediction. Due to the large height ratio, the minimal wavelength is merely
λ0 = 4πh = 0.22 cm. The jump is indeed quite steep, though perhaps not that
steep. In fig. 29.3 the jump has been smoothed to a width of 2λ0. The boundary
layer thickness becomes δ1 = 0.065 cm at the jump which is about 4 times the wa-
ter level. This indicates that viscosity does play some role for this experiment, in
particular just before the jump.

29.2 Normal shocks in ideal gases

An explosion in a fluid at rest creates an expanding fireball of hot gases and
debris which pushes the fluid in front of it. If the velocity imparted to the fluid
by the explosion is smaller than the velocity of sound in the fluid, a sound wave
will run ahead of the debris and with a loud bang inform you that the explosion
took place. If on the other hand the initial expansion velocity of the fireball is
larger than the sound velocity in the fluid, the first sign of the explosion will be
the arrival of the supersonic front (here we disregard the flash of light which may
arrive much earlier). The sudden jump in the properties of a fluid at the passage
of a supersonic front is called a shock. Stationary shocks may arise in constricted
ducts which choke the flow until it becomes supersonic. The understanding of
shocks is of great importance for the design of supersonic aircraft, and of jet and
rocket engines.
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A stationary shock (dashed)
in an expanding nozzle. The
inflow is supersonic and the
outflow subsonic.

In this section we shall investigate the properties of normal shocks, defined
as (nearly) singular jumps in the properties of a fluid along a plane orthogonal
to the motion of the fluid. Around objects moving at supersonic speeds so-called
oblique shock fronts will appear, not at right angles with the direction of motion.
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The Rankine-Hugoniot relations

We shall later see that normal shocks are in fact not much thicker than the
molecular length scale, allowing us to view all normal shocks as singular and
locally planar. In the rest system of the shock we choose a narrow control volume
just containing an area A of the shock front. Upstream from the shock the gas
has velocity U1, temperature T1, pressure p1, and density ρ1; downstream it has
velocity U2, temperature T2, pressure p2, and density ρ2. Temperature, pressure,
and density are of course related by the ideal gas law (4-23) one either side of
the shock.

ρ1

p1

T1

U1

-
-
-
-
-
-
-
-
-

ρ2

p2

T2

U2

-
-
-
-
-
-
-
-
-

A piece of a stationary shock
front. Fluid comes in from
the left with supersonic
velocity U1, temperature T1,
pressure p1 and density ρ1.
The fluid emerges on the
right with subsonic velocity
U2.

Since the shock is very narrow there will be essentially no space for dissipation
of energy, allowing us to balance the energy in addition to mass and momentum.
As we have shown in section 16.11 on page 326, energy balance is equivalent to
Bernoulli’s theorem for an inviscid ideal gas. Using the pressure function (15-32)
on page 276 for an ideal gas with adiabatic index γ, we obtain the three basic
Rankine-Hugoniot relations,

Pierre Henri Hugoniot
(1851-1887). French engi-
neer.

There is a biography of Hugo-
niot by Cheret.

ρ1U1 = ρ2U2 , (29-14a)

ρ1U
2
1 + p1 = ρ2U

2
2 + p2 , (29-14b)

1
2
U2

1 +
γ

γ − 1
p1

ρ1
=

1
2
U2

2 +
γ

γ − 1
p2

ρ2
. (29-14c)

These relations are simple rearrangements of mass, momentum, and energy bal-
ance across the shock. These equations may be solved explicitly for the down-
stream parameters in terms of the upstream ones (see problem 29.3). It is, how-
ever, more convenient to express the solution in terms of a single dimensionless
parameter.

Using (29-14a) to eliminate U2 in (29-14b), we obtain,

U2
1 =

ρ2

ρ1
· p2 − p1

ρ2 − ρ1
, U2

2 =
ρ1

ρ2
· p2 − p1

ρ2 − ρ1
, (29-15) eRHvelocities

where the second equation is obtained fromt the first by swapping 1 ↔ 2. Insert-
ing this into (29-14c) we find the ratio of densities,

ρ2

ρ1
=

γ(p1 + p2) + p2 − p1

γ(p1 + p2) + p1 − p2
. (29-16)

This indicates that the dimensionless parameter may conveniently be chosen to
be the relative pressure difference across the shock,

τ =
p2 − p1

p1 + p2
. (29-17)

When the absolute pressures are positive (as they must be) this always lies in
the interval −1 < τ < 1. In terms of τ , the dimensionless ratios of the physical
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Figure 29.4: The dimensionless Rankine-Hugoniot parameters as function of the rela-
tive pressure jump τ across the shock. The fully drawn curves are the ratios of pressure,
density, and temperature. The dashed curves are the Mach numbers Ma1 and Ma2, and
the dotted curve is the specific entropy jump at the shock, ∆s/cV given in (29-22).

quantities across the shock then become,

p2

p1
=

1 + τ

1− τ
, (29-18)

ρ2

ρ1
=

U1

U2
=

γ + τ

γ − τ
, (29-19)

T2

T1
=

1 + τ

1− τ
· γ − τ

γ + τ
. (29-20)

Since we are interested in supersonic flow, it is most convenient to express the
velocities in terms of the dimensionless Mach numbers, Ma1 = U1/c1 and Ma2 =
U2/c2, where c1 =

√
γp1/ρ1 and c2 =

√
γp2/ρ2 are the sound velocities before

and after the shock. Using (29-15) we obtain,

Ma1 =
√

γ + τ

γ(1− τ)
, Ma2 =

√
γ − τ

γ(1 + τ)
. (29-21)

The second equation is obtained from the first by swapping 1 ↔ 2 which amounts
to changing the sign of τ . All these dimensionless quantities are plotted in fig.
29.4 for 0 ≤ τ ≤ 1.

Up to this point, everything has been treated symmetrically for the two sides
of the shock. The physical asymmetry between the two sides becomes apparent
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when we apply the Second Law of Thermodynamics to the change in specific
entropy ∆s = s2 − s1 across the shock. Using (4-54c) we find,

∆s

cV
= log

[
p2

p1

(
ρ2

ρ1

)−γ
]

= log
[
1 + τ

1− τ

(
γ − τ

γ + τ

)γ]
, (29-22) eRKentropy

where cV is the specific heat constant of the gas. The right hand side is a
monotonically increasing function of τ which vanishes for τ = 0 (see problem
29.4 and fig. 29.4). By the Second Law the specific entropy is not permitted to
decrease across the shock, and consequently we must require τ > 0.

What transpires from fig. 29.4 is that the pressure, density, and temperature
all increase across the shock, whereas the velocity drops from supersonic (Ma1 >
1) to subsonic (Ma2 < 1). The entropy increase is very small for small τ and first
reaches cV at τ ≈ 0.92 where Ma1 ≈ 4.6 and Ma2 ≈ 0.42.

Example 29.2.1:
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