
7
Hydrostatic shapes

It is primarily the interplay between gravity and contact forces that shapes the
macroscopic world around us. The seas, the air, planets and stars all owe their
shape to gravity, and even our own bodies bear witness to the strength of gravity
at the surface of our massive planet. What physics principles determine the shape
of the surface of the sea? The sea is obviously horizontal at short distances, but
bends below the horizon at larger distances following the planet’s curvature.
The Earth as a whole is spherical and so is the sea, but that is only the first
approximation. The Moon’s gravity tugs at the water in the seas and raises
tides, and even the massive Earth itself is flattened by the centrifugal forces of
its own rotation.

Disregarding surface tension, the simple answer is that in hydrostatic equi-
librium with gravity, an interface between two fluids of different densities, for
example the sea and the atmosphere, must coincide with a surface of constant
potential, an equipotential surface. Otherwise, if an interface crosses an equipo-
tential surface, there will arise a tangential component of gravity which can only
be balanced by shear contact forces that a fluid at rest is unable to supply. An
iceberg rising out of the sea does not obey this principle because it is solid, not
fluid. But if you try to build a little local “waterberg”, it quickly subsides back
into the sea again, conforming to an equipotential surface.
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A triangular “waterberg”
in the sea. The tangential
component of gravity acting
on a little slice requires a
shear contact force to bal-
ance it, whereas the normal
component can be balanced
by the pressure force.

Hydrostatic balance in a gravitational field also implies that surfaces of con-
stant pressure, isobars, must coincide with the equipotential surfaces. When
surface tension plays a role, as it does for a drop of water hanging at the tip
of an icicle, this is still true, but the shape bears little relation to equipotential
surfaces, because surface tension creates a finite jump in pressure at the interface.
Likewise for fluids in motion. Waves in the sea are “waterbergs” that normally
move along the surface, but under special circumstances they are able stay in
one place, as for example in a river flowing past a big stone.
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7.1 Fluid interfaces in hydrostatic equilibrium

The intuitive argument about the impossibility of hydrostatic “waterbergs” must
in fact follow from the equations of hydrostatic equilibrium. We shall now show
that hydrostatic equilibrium implies that the interface between two fluids with
different densities ρ1 and ρ2 must be an equipotential surface.

Since the gravitational field is the same on both sides of the interface, hy-
drostatic balance ∇p = ρg implies that there is a jump in the pressure gra-
dient across the interface, because on one side (∇p)1 = ρ1g and on the other
(∇p)2 = ρ2g. If the field of gravity has a component tangential to the interface,
there will consequently be a jump in the tangential pressure gradient. The dif-
ference in tangential gradients on the two sides of the interface implies that even
if the pressures are equal in one point, they must be different a little distance
away along the surface. Newton’s third law, however, requires pressure to be
continuous everywhere, also across an interface (as long as there is no surface
tension), so this problem can only be avoided if the tangential component of
gravity vanishes everywhere at the interface, implying that it is an equipotential
surface.
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p1 =
p0 − ρ1g0z

p2 =
p0 − ρ2g0z

An impossible vertical inter-
face between two fluids at
rest with different densities.
Even if the hydrostatic
pressures on the two sides
are the same for z = 0 they
will be different everywhere
else.

If, on the other hand, the fluid densities are the exactly same on both sides of
the interface but the fluids themselves are different, the interface is not forced to
follow an equipotential surface. This is, however, an unusual and highly unstable
situation. The smallest fluctuation in density will call gravity in to make the
interface horizontal. Stable vertical interfaces between fluids are simply not seen.

Isobars and equipotential surfaces

Surfaces of constant pressure, satisfying p(x) = p0, are called isobars. Through
every point of space runs one and only one isobar, namely the one corresponding
to the pressure in that point. The gradient of the pressure is everywhere normal
to the local isobar. Gravity, g = −∇Φ, is likewise everywhere normal to the
local equipotential surface, defined by Φ(x) = Φ0. Local hydrostatic equilibrium,
∇p = ρg = −ρ∇Φ, tells us that the normal to the isobar is everywhere parallel
with the normal to the equipotential surface. This can only be the case if isobars
coincide with equipotential surfaces in hydrostatic equilibrium. For if an isobar
crossed an equipotential surface anywhere at a finite angle the two normals could
not be parallel.
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If isobars and equipotential
surfaces cross, hydrostatic
balance rp + ρrΦ = 0
becomes impossible.

Since the “curl” of a gradient trivially vanishes, ∇ × (∇f) = 0, it follows
from hydrostatic equilibrium that

0 = ∇× (ρg) = ∇ρ× g + ρ∇× g = −∇ρ×∇Φ . (7-1)

This implies that ∇ρ ∼ ∇Φ so that the surfaces of constant density must also
coincide with the equipotential surfaces in hydrostatic equilibrium.
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The pressure function

The relation between pressure and gravitational potential in hydrostatic equilib-
rium may be often be expressed in an even simpler way. For an incompressible
fluid with constant density, ρ(x) = ρ0, it follows that the quantity

H =
p

ρ0
+ Φ , (7-2)

takes the same constant value everywhere in the fluid. Calculating the gradient of
both sides, we find ∇H = ∇p/ρ0−g = 0, which vanishes because of hydrostatic
equilibrium ∇p = ρ0g. This shows that p and Φ are two sides of the same coin.

Even for compressible fluids we may integrate the equation of hydrostatic
equilibrium, provided the material obeys a barotropic equation of state of the
form ρ = ρ(p). Defining the so-called pressure function,

w(p) =
∫

dp

ρ(p)
, (7-3)

its gradient becomes

∇w(p) = ∇p
dw(p)

dp
=

∇p

ρ(p)
.

Since ∇p + ρ∇Φ = 0 in hydrostatic equilibrium, it follows that

H = w(p) + Φ (7-4)

satisfies ∇H = 0 and is thus a constant everywhere in the fluid. Again we
conclude fromt he constancy of H that isobaric and equipotential surfaces must
coincide.

For an isothermal ideal gas with constant absolute temperature T0 we obtain
from the ideal gas law (4-23),

w =
∫

RT0

Mmol

dp

p
=

RT0

Mmol
log p + const . (7-5)

Similarly we find for a ideal gas under isentropic conditions with p = Aργ ,

w =
∫

Aγργ−1 dρ

ρ
=

γ

γ − 1
p

ρ
. (7-6)

Using the ideal gas law this becomes,

w =
γ

γ − 1
RT

Mmol
= cpT (7-7)

where cp is the specific heat at constant pressure (4-51). This shows that in a
homentropic gas, the isotherms will also coincide with the equipotential surfaces.
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∗ The Münchausen effect

In the discussion of Archimedes principle in section 5.1 we assumed that a sub-
merged or floating body did not change the physical conditions in the fluid around
it. The question of what happens to buoyancy when the gravitational field of
a body itself is taken into account, can now be answered. One might, for ex-
ample, think of an Earth-sized planet floating in the atmosphere of Jupiter, and
surrounding itself with a shroud of compressed atmosphere due to its own gravity.

Before the body is immersed in the barotropic fluid we assume for simplicity
that the fluid is in hydrostatic equilibrium with a constant external gravitational
field of strength g0 and a pressure p = p(z) satisfying

w(p0) = w(p) + g0z , (7-8)

where p0 is the pressure at z = 0. The presence of the body with its own
gravitational potential ∆Φ(x) will generate a pressure change, ∆p = ∆p(x),
satisfying the equation,

w(p0) = w(p + ∆p) + g0z + ∆Φ(x) . (7-9)

The left hand side is the same as before the body arrived because far away from
the body where ∆Φ = 0, the hydrostatic equilibrium is not disturbed, so that
also ∆p = 0. Provided the pressure change ∆p is small relative to p and using
that dw/dp = 1/ρ, we may expand to first order in ∆p,

w(p0) = w(p) +
∆p

ρ
+ g0z + ∆Φ(x) . (7-10)

Making use of (7-8) we find,Freiherr Karl Friedrich Hi-
eronymus von Münchhausen
(1720-1797). German
(Hanoveran) soldier,
hunter, nobleman, and
delightful story-teller. The
stories of his travels to
Russia were retold and
further embroidered by
others and published as
”The Adventures of Baron
Munchausen” in 1793. In
one of these, he lifts himself
(and his horse) out of deep
snow by his bootstraps. In-
cidentally, this story is also
the origin of the expression
“bootstrapping”, or more
recently just “booting”, a
computer.

∆p(x) = −ρ(z)∆Φ(x) , (7-11)

where ρ(z) is the density of the fluid in the absence of the body. Since ∆Φ < 0,
the pressure change is positive everywhere in the vicinity of the body. This is also
expected for physical reasons, because the body’s gravity pulls the surrounding
fluid in and compresses it. The net change in buoyancy may, however, be of both
signs, depending on the body’s internal mass distribution (which determines ∆Φ).

If the body is a uniform sphere with radius a, the potential is constant at
the surface. Its value is ∆Φ = −g1a, where g1 is the surface gravity. But
then ∆p = ρ(z)g1a, and since ρ(z) is larger for negative z than for positive
because the fluid is compressed by the ambient gravity, g0, the pressure increase
is larger below the sphere than above it. The net effect is therefore an increase
in buoyancy. The body in a sense “lifts itself by its bootstraps” by means of its
own gravity, and it is quite appropriate to call this phenomenon the Münchausen
effect.
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7.2 Shape of rotating fluids

Newton’s second law of motion is only valid in inertial coordinate systems, where
free particles move on straight lines with constant velocity. In rotating, or oth-
erwise accelerated, non-inertial coordinate systems, one may formally write the
equation of motion in their usual form, but the price to be paid is the inclusion
of certain force-like terms that do not have any obvious connection with material
bodies, but derive from the overall motion of the coordinate system (see chapter
20 for a more detailed analysis). Such terms are called fictitious forces, although
they are by no means pure fiction, as one becomes painfully aware when stand-
ing up in a bus that suddenly stops. A more reasonable name might be inertial
forces, since they arise as a consequence of the inertia of material bodies.

Antigravity of rotation

A material particle at rest in a coordinate system rotating with constant angular
velocity Ω in relation to an inertial system will experience only one fictitious
force, the centrifugal force. We all know it from carroussels. It is directed per-
pendicularly outwards from the axis of rotation and of magnitude dm r Ω2, where
r is the shortest distance to the axis.
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The geometry of a rotating
system is characterized by
a rotation vector Ω directed
along the axis of rotation
with magnitude equal to the
angular velocity. The vec-
tor r is directed orthogonally
out from the axis to a point
x.

In a rotating coordinate system placed with its origin on the rotation axis,
and z-axis coincident with it, the shortest vector to a point x = (x, y, z) is
r = (x, y, 0). The centrifugal force is proportional to the mass of the particle and
thus mimics a gravitational field

gcentrifugal(r) = rΩ2 = (x, y, 0)Ω2 . (7-12)

This fictitious gravitational field may be derived from a (fictitious) potential

Φcentrifugal(r) = −1
2
r2Ω2 = −1

2
Ω2(x2 + y2) . (7-13)

Since the centrifugal field is directed away from the axis of rotation the centrifu-
gal field is a kind of antigravity field, which will try to split things apart and lift
objects off a rotating planet. The antigravity field of rotation is, however, cylin-
drical in shape rather than spherical and has consequently the greatest influence
at the equator of Earth. If our planet rotated once in a little less than 11

2 hours,
people at the equator could (and would) actually levitate!

Newton’s bucket

A bucket of water on a rotating plate is an example going right back to Newton
himself. Internal friction (viscosity) in the water will after some time bring it to
rest relative to the bucket and plate, and the whole thing will end up rotating
as a solid body. In a rotating coordinate system with z-axis along the axis of
rotation, the total gravitational field becomes g = (Ω2x, Ω2y,−g0), including
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both “real” gravity and the “fictitious” centrifugal force. Correspondingly, the
total gravitational potential becomes

Φ = −g · x = g0z − 1
2
Ω2(x2 + y2) . (7-14)

The pressure becomes

......................................................................................................................................................................................................................................
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Ω

The water surface in rotat-
ing bucket as a parabolic
shape because of centrifugal
forces.

p = p0 − ρ0Φ = p0 − ρ0g0z +
1
2
ρ0Ω2

(
x2 + y2

)
(7-15)

where p0 is the pressure at the origin of the coordinate system. It grows towards
the rim, reflecting everywhere the change in height of the water column.

The isobars and equipotential surfaces are in this case rotation paraboloids

z = z0 +
Ω2

2g0
(x2 + y2) , (7-16)

where z0 is a constant. In a bucket of diameter 20 cm rotating once per second
the water stands 2 cm higher at the rim than in the center.

Example 7.2.1: An ultracentrifuge of radius 10 cm contains water and rotates
at Ω = 60, 000 rpm ≈ 6300 s−1. The centrifugal acceleration becomes 400, 000 g0

and the maximal pressure 2 kBar, which is the double of the pressure at the bottom
of the deepest abyss in the sea. At such pressures, the change in water density is
about 10%.

∗ Stability of rotating bodies

Including the centrifugal field (7-12) in the fundamental field equation (6-5)
we may calculate the divergence of the total acceleration field g = ggravity +
gcentrifugal,

∇ · g = −4πGρ + 2Ω2 . (7-17)

Effectively, centrifugal forces create a negative mass density −Ω2/2πG. This is,
of course, a purely formal result, but it nevertheless confirms the “antigravity”
aspect of centrifugal forces, which makes gravity effectively repulsive wherever
Ω2/2πGρ > 1.

For a spherical planet stability against levitation at the equator requires the
centrifugal force at the equator to be smaller than surface gravity, which leads
to the stronger condition,

q =
Ω2a

g0
=

3
2

Ω2

2πGρ0
< 1 . (7-18)

Inserting the parameters of the Earth we find q ≈ 1/291. At the end of section
7.4 the influence of the deformation caused by rotation is also taken into account,
leading to an even stricter stability condition.
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7.3 The Earth, the Moon and the tides

Kepler thought that the Moon would influence the waters of Earth and raise
tides, but Galilei found this notion of Kepler’s completely crazy and compared it
to common superstition. After Newton we know that the Moon’s gravity acts on
everything on Earth, also on the water in the sea, and attempts to pull it out of
shape, thereby creating the tides. But since high tides occur roughly at the same
time at antipodal points of the Earth, and twice a day, the explanation is not
simply that the Moon lifts the sea towards itself but a little more sophisticated. Johannes Kepler (1580–

1635). German mathe-
matician and astronomer.
Discovered that planets
move in elliptical orbits
and that their motion obeys
mathematical laws.

Galileo wrote about Kepler: “But among all the great men who have philoso-
phized about this remarkable effect, I am more astonished at Kepler than at any
other. Despite his open and acute mind, and though he has at his fingertips the
motions attributed to the earth, he has nevertheless lent his ear and his assent
to the moon’s dominion over the waters, and to occult properties, and to such
puerilities.” (see [25, p. 145]).

The best natural scientists and mathematicians of the eighteenth and nine-
teenth centuries worked on the dynamics of the tides, but here we shall only
consider the simplest possible case of a quasistatic Moon. For a full discussion,
including the dynamics of tidal waves, see for example Sir Horace Lamb’s classical
book [9] or ref. [24] for a modern account.

The Earth

We shall limit ourselves to study the Moon’s influence on a liquid surface layer
of the Earth. The solid parts of the Earth will of course also react to the Moon’s
field, but the effects are somewhat smaller and are due to elastic deformation
rather than flow. This deformation has been indirectly measured to a precision
of a few percent in the daily 0.1 ppm variations in the strength of gravity (see
fig. 7.1 on page 127). There are also tidal effects in the atmosphere, but they
are dominated by other atmospheric motions.

We shall furthermore disregard the changes to the Earth’s own gravitational
potential due to the shifting waters of the tides themselves, as well as the cen-
trifugal antigravity of Earth’s rotation causing it to deviate from a perfect sphere
(which increases the tidal range by slightly more than 10 %, see section 7.4). Un-
der all these assumptions the gravitational potential at a height h over the surface
of the Earth is to first order in h given by

ΦEarth = g0h , (7-19)

where g0 is the magnitude of the surface gravity.
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The Moon

The Moon is not quite spherical, but nevertheless so small and far away that
we may approximate its potential across the Earth with that of a point particle
−Gm/|x − x0| situated at the Moon’s position x0 with the Moon’s mass m.
Choosing a coordinate system with the origin at the center of the Earth and the
z-axis in the direction of the Moon, we have x0 = (0, 0, D) where D = |x0| is
the Moon’s distance. Since the Moon is approximately 60 Earth radii (a) away,
i.e. D ≈ 60a, the Moon’s potential across the Earth (for r = |x| ≤ a) may
conveniently be expanded in powers of x/D, and we find to second order
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The Moon’s gravity with
common acceleration can-
celled. This also explains
why the variations in tidal
height have a semi-diurnal
period.

The first term in this expression leads to a constant potential −Gm/D, which
may of course be ignored. The second term corresponds to a constant gravita-
tional field in the direction towards the moon gz = Gm/D2 ≈ 30 µm/s2, which
is precisely cancelled by the centrifugal force due to the Earth’s motion around
the common center-of-mass of the Earth-Moon system (an effect we shall return
to below). Spaceship Earth is therefore completely unaware of the two leading
terms in the Moon’s potential, and these terms cannot raise the tides. Galilei
was right to leading non-trivial order, and that’s actually not so bad.

Tidal effects come from the variation in the gravitational field across the
Earth, to leading order given by the third term in the expansion of the potential.
Introducing the angle θ between the direction to the Moon and the observation
point on Earth, we have z = r cos θ, and the Moon’s potential becomes (after
dropping the two first terms)

ΦMoon = −1
2
(3 cos2 θ − 1)

( r

D

)2 Gm

D
. (7-20)

This expansion may of course be continued indefinitely to higher powers of r/D.
The coefficients Pn(cos θ) are called Legendre polynomials (here P2(cos θ) =
1
2 (3 cos2 θ − 1)).

The gravitational field of the Moon is found from the gradient of the potential.
It is simplest to convert to Cartesian coordinates, writing (3 cos2 θ − 1)r2 =
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2z2 − x2 − y2, before calculating the gradient. In the xz-plane we get at the
surface r = a

gMoon = (− sin θ, 0, 2 cos θ)
aGm

D3
.

Projecting on the local normal er = (sin θ, 0, cos θ) and tangent eθ =
(cos θ, 0,− sin θ) to the Earth’s surface, we finally obtain the vertical and hor-
izontal components of the gravitational field of the Moon at any point of the
Earth’s surface

gvert
Moon = gMoon · er = (3 cos2 θ − 1)

aGm

D3
, (7-21)

ghoriz
Moon = gMoon · eθ = − sin 2θ

3aGm

2D3
. (7-22)

The magnitude of the horizontal component is maximal for θ = 45o (and of
course also 135o because of symmetry).

Concluding, we repeat that tide-generating forces arise from variations in the
Moon’s gravity across the Earth. As we have just seen, the force is generally not
vertical, but has a horizontal component of the same magnitude. From the sign
and shape of the potential as a function of angle, we see that effectively the Moon
lowers the gravitational potential just below its position, and at the antipodal
point on the opposite side of the Earth, exactly as if there were shallow “valleys”
at these places. Sometimes these places are called the Moon and anti-Moon
positions.

And the tides

If the Earth did not rotate and the Moon stood still above a particular spot, water
would rush in to fill up these “valleys”, and the sea would come to equilibrium
with its open surface at constant total gravitational potential. The total potential
near the surface of the Earth is

Φ = ΦEarth + ΦMoon = g0h− 1
2
(3 cos2 θ − 1)

( a

D

)2 Gm

D
, (7-23)

Requiring this potential to be constant we find the tidal height

h = h0 +
1
2
(3 cos2 θ − 1)

( a

D

)2 Gm

g0D
, (7-24)

where h0 is a constant. Since the average over the sphere of the second term
becomes,

1
4π

∫ π

0

dθ

∫ 2π

0

sin θ dφ (3 cos2 θ − 1) =
1
2

∫ +1

−1

(3z2 − 1)dz = 0 ,

we conclude that h0 is the average water depth.
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Tidal range

The maximal difference between high and low tides, called the tidal range, occurs
between the extreme positions at θ = 0 and θ = 90◦,

H0 =
3
2

( a

D

)2 Gm

g0D
=

3
2
a

m

M

( a

D

)3

, (7-25)

where the last equation is obtained using g0 = GM/a2 with M being the Earth’s
mass. Inserting the values for the Moon we get H0 ≈ 54 cm. Interestingly, the
range of the tides due to the Sun turns out to be half as large, about 25 cm. This
makes spring tides when the Sun and the Moon cooperate almost three times
higher than neap tides when they don’t.

For the tides to reach full height, water must move in from huge areas of the
Earth as is evident from the shallow shape of the potential. Where this is not
possible, for example in lakes and enclosed seas, the tidal range becomes much
smaller than in the open oceans. Local geography may also influence tides. In
bays and river mouths funnelling can cause tides to build up to huge values.
Spring tides in the range of 15 meters have been measured in the Bay of Fundy
in Canada.

∗ Quasistatic tidal cycles

The rotation of the Earth cannot be neglected. If the Earth did not rotate, or
if the Moon were in a geostationary orbit, it would be much harder to observe
the tides, although they would of course be there (problem 7.8). It is, after all,
the cyclic variation in the water level observed at the coasts of seas and large
lakes, which makes the tides observable. Since the axis of rotation of the Earth
is neither aligned with the direction to the Moon nor orthogonal to it, the tidal
forces acquire a diurnal cycle superimposed on the ‘natural’ semidiurnal one (see
Fig. 7.1).

For a fixed position on the surface of the Earth, the dominant variation in
the lunar zenith angle θ is due to Earth’s diurnal rotation with angular rate
Ω = 2π/24 hours ≈ 7× 10−5 radians per second. On top of that, there are many
other sources of periodic variations in the lunar angle [24], which we shall ignore
here.

The dominant such source is the lunar orbital period of a little less than a month.
Furthermore, the orbital plane of the Moon inclines about 5◦ with respect to the
ecliptic (the orbital plane of the Earth around the Sun), and precesses with this
inclination around the ecliptic in a little less than 19 years. The Earth’s equator
is itself inclined about 23◦ to the ecliptic, and precesses around it in about 25,000
years. Due to lunar orbit precession, the angle between the equatorial plane of
the Earth and the plane of the lunar orbit will range over 23 ± 5◦, i.e. between
18◦ and 28◦, in about 9 years.
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Figure 7.1: Variation in the gravitational acceleration over a period of 56 hours in units
of 10−9g0 (measured in Stanford, California, on Dec. 8–9, 1996 [19], reproduced here
with the permission of the authors (to be obtained)). The semidiurnal as well as diurnal
tidal variations are prominently visible as dips in the curves. Modelling the Earth as
a solid elastic object and taking into account the effects of ocean loading, the measured
data is reproduced to within a few times 10−9g0.

Let the fixed observer position at the surface of the Earth have (easterly)
longitude φ and (northerly) latitude δ. The lunar angle θ is then calculated from
the spherical triangle NMO formed by the north pole, the lunar position and the
observer’s position,
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cos θ = sin δ sin δ0 + cos δ cos δ0 cos(Ωt + φ) . (7-26)

Here δ0 is the latitude of the lunar position and the origin of time has been chosen
such that the Moon at t = 0 is directly above the meridian φ = 0.

Inserting this into the static expression for the tidal height (7-24), we obtain
the quasistatic height variation with time at the observer’s place, which becomes
the sum of a diurnal and a semidiurnal cycle

h = 〈h〉+ h1 cos(Ωt + φ) + h2 cos 2(Ωt + φ) . (7-27)

Here 〈h〉 is the time-averaged height, and h1 = 1
2H0 sin 2δ sin 2δ0 and h2 =

1
2H0 cos2 δ cos2 δ0 are the diurnal and semidiurnal tidal amplitudes. The full
tidal range is not quite 2h1 +2h2, because the two cosines cannot simultaneously
take the value −1 (see problem 7.9).

To go beyond the quasistatic approximation, the full theory of fluid dynamics
on a rotating planet becomes necessary. The tides will then be controlled not
only by the tide-generating forces, but also by the interplay between the inertia
of the moving water and friction forces opposing the motion. High tides will no
more be tied to the Moon’s instantaneous position, but may both be delayed and
advanced relative to it.
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∗ Influence of the Earth-Moon orbital motion

A question is sometimes raised concerning the role of centrifugal forces from the
Earth’s motion around the center-of-mass of the Earth-Moon system. This point
lies a distance d = Dm/(m + M) from the center of the Earth, which is actually
about 1700 km below the surface, and during a lunar cycle the center of the
Earth and the center of the Moon move in circular orbits around it. Were the
Earth (like the Moon) in bound rotation so that it always turned the same side
towards the Moon, one would in the corotating coordinate system, where the
Moon and the Earth have fixed positions, have to add a centrifugal potential to
the previously calculated potential (7-23), and the tidal range would become up
to 27 times larger (problem 7.10), i.e. about 15 m!

Luckily, this is not the case. The Earth’s own rotation is fixed with respect
to the inertial system of the fixed stars (disregarding the precession of its rota-
tion axis). A truly non-rotating Earth would, in the corotating system, rotate
backwards in synchrony with the lunar cycle, cancelling the centrifugal potential.
Seen from the inertial system, the circular orbital motion imparts the same cen-
tripetal acceleration Ω2d (along the Earth-Moon line) to all parts of the Earth.
This centripetal acceleration must equal the constant gravitational attraction,
Gm/D2, coming from the linear term in the Moon’s potential, and equating the
two, one obtains Ω2 = Gm/D2d = GM/D3, which is the usual (Kepler) equation
relating the Moon’s period of revolution to its mass and distance.

The Moon always turns the same side towards Earth and the bound rotation
adds in fact a centrifugal component on top of the tidal field from Earth. Over
time these effects have together deformed the Moon into its present egg-like
shape.

∗ 7.4 Shape of a rotating fluid planet

On a rotating planet, centrifugal forces will add a component of “antigravity”
to the gravitational acceleration field, making the road from the pole to equator
slightly downhill. At Earth’s equator the centrifugal acceleration amounts to
only q ≈ 1/291 of the surface gravity, so a first guess would be that there is a
centrifugal “valley” at the equator with a depth of 1/291 of the Earths radius,
which is about 22 km. If such a difference suddenly came to exist on a spherical
Earth, all the water would like huge tides run towards the equator. Since there
is land at equator, we may conclude that even the massive Earth must over time
have flowed into the centrifugal valley. The difference between the equatorial and
polar radii is in fact 21.4 km [2], and coincidentally, this is roughly the same as
the difference between the highest mountain top and the deepest ocean trench
on Earth.
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Exaggerated sketch of the
change in shape of the Earth
due to rotation.

The flattening of the Earth due to rotation has like the tides been a problem
attracting the best minds of the past centuries [9]. We shall here consider the
simplest possible model, which nevertheless captures all the relevant features for
slowly rotating planets.
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Rigid spherical planet

If a spherical planet rotates like a stiff body, the gravitational potential above
the surface will be composed of the gravitational potential of planet and the
centrifugal potential. In spherical coordinates we have,

Φ0 = −g0
a2

r
− 1

2
Ω2r2 sin2 θ . (7-28)

from which we get the vertical and horizontal components of surface gravity,
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gr = − ∂Φ0

∂r

∣∣∣∣
r=a

= −g0(1− q sin2 θ) , (7-29a)

gθ = −1
r

∂Φ0

∂θ

∣∣∣∣
r=a

= g0 q sin θ cos θ , (7-29b)

where q = Ω2a/g0 is the “levitation parameter” defined in (7-18). This confirms
that the magnitude of vertical gravity is reduced, and that horizontal gravity
points towards the equator. For Earth the changes are all of relative magnitude
q ≈ 1/291.

Fluid planet

Suppose now the planet is made from a heavy fluid which given time will adapt
its shape to an equipotential surface of the form,

r = a + h(θ) , (7-30)

with a small radial displacement, |h| (θ) ¿ a. Assuming that the displaced
material is incompressible we must require,

∫ π

0

h(θ) sin θ dθ = 0 . (7-31)

If we naively disregard the extra gravitational field created by the displacement of
material, the potential is given by (7-28). On the displaced surface this becomes
to first order in the small quantities h and q,

Φ0 ≈ g0h− g0a(1 +
q

2
sin2 θ) . (7-32)

Demanding that it be constant, it follows that

h = h0

(
sin2 θ − 2

3

)
, (7-33)

with h0 = 1
2aq. The −2/3 in the parenthesis has been chosen such that (7-31) is

fulfilled. For Earth we find h0 = 11 km, which is only half the expected result.
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Including the self-potential

The preceding result shows that the gravitational potential of the shifted material
must play an important role. Assuming that the shifted material has constant
density ρ1, the extra gravitational potential due to the shifted material is calcu-
lated from (3-24) by integrating over the (signed) volume ∆V occupied by the
shifted material,

Φ1 = −Gρ1

∫

∆V

dV ′

|x− x′| . (7-34)

Since the shifted material is a thin layer of thickness h, the volume element is
dV ′ ≈ h(θ′)dS′ where dS′ is the surface element of the original sphere , |x′| = a.
There are of course corrections but they will be of higher order in h. The square
of the denominator may be written as |x− x′|2 = r2 + a2 − 2ra cosψ where ψ is
the angle between x and x′. Consequently we have to linear order in h

Φ1 = −Gρ1

∮

S

h(θ′)√
r2 + a2 − 2ra cos ψ

dS′ , (7-35)

where cos ψ = cos θ cos θ′+sin θ sin θ′ cosφ and dS′ = a2 sin θ′dθ′dφ′. Notice that
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this is exactly the same potential as would have been obtained from a surface
distribution of mass with surface density ρ1h(θ).

There are various ways to do this integral. We shall use a wonderful theorem
about Legendre polynomials, which says that a mass distribution with an angular
dependence given by a Legendre polynomial, creates a potential with exactly the
same angular dependence. So if we assume that the surface shape is of the form
(7-33) with angular dependence proportional to P2(cos θ) = 1

2 (3 cos2 θ − 1) =
1
2 (2 − 3 sin2 θ), the effective surface mass distribution will be proportional to
P2(cos θ), implying that the self-potential will be of precisely the same shape
(see problem 7.11),

Φ1(r, θ) = F (r)
(

sin2 θ − 2
3

)
. (7-36)

The radial function may now be determined from the integral (7-36) by taking
θ = 0. Since now ψ = θ′, all the difficult integrals disappear and we obtain

F (r) = −3
2
Φ1(r, 0) =

3
2
Gρ1h0a

22π

∫ π

0

sin θ′
(
sin2 θ′ − 2

3

)
√

r2 + a2 − 2ra cos θ′
dθ′

=
3
2
Gρ1a

2h02π

∫ 1

−1

1
3 − u2

√
r2 + a2 − 2rau

du .

The integral is now standard, and we find

F (r) = −4π

5
ρ1Gah0

a3

r3
= −3

5
g0h0

ρ1

ρ0

a3

r3
. (7-37)

In the last step we have used that g0 = GM0/a2 = 4
3πGaρ0 where ρ0 is the

average density of the planet.
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Total potential and strength of gravity

The total potential now becomes

Φ = Φ0 + Φ1 = −g0
a2

r
− 1

2
Ω2r2 sin2 θ − 3

5
g0h(θ)

ρ1

ρ0

a3

r3
(7-38)

Inserting r = a + h and expanding to lowest order in h and q, we finally obtain,

h0 =
1
2qa

1− 3
5

ρ1
ρ0

. (7-39)

For Earth, the average density of the mantle material is ρ1 ≈ 4.5 g/cm3 whereas
the average density is ρ0 ≈ 5.5 g/cm3. With these densities one gets h0 = 21.5 km
in close agreement with the quoted value [2]. In the same vein, we may also
calculate the influence of the self-potential on the tidal range. Since the density
of water is ρ1 ≈ 1.0 g/cm3, the tidal range (7-25) is increased by a factor 1.12.

From the total potential we calculate gravity at the displaced surface,

gr = − ∂Φ
∂r

∣∣∣∣
r=a+h

= −g0

(
1− q sin2 θ − 2

h(θ)
a

+
9
5

ρ1

ρ0

h(θ)
a

)
, (7-40a)

gθ = −1
r

∂Φ
∂θ

∣∣∣∣
r=a+h

= g0

(
q +

6
5

h0

a

ρ1

ρ2

)
sin θ cos θ . (7-40b)

Finally, projecting on the local normal and tangent we find to first order in h
and q,

20 40 60 80
∆

0.996
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0.998

0.999

1.001

g�g0

The variation of g/g0 with
latitude δ.g⊥ ≈ gr , g‖ = gθ + gr

1
a

dh(θ)
dθ

≈ 0 . (7-41a)

The field of gravity is orthogonal to the equipotential surface, as it should be.
Notice that the three correction terms to the vertical field are due to the

centrifugal force, to the change in gravity from the change in height, and to
the displacement of material. All three contributions are of the same order of
magnitude, q, because they all ultimately derive from the centrifugal force.

Example 7.4.1 (Olympic games): The dependence of gravity on polar angle
(or latitude) given in (7-40a) has practical consequences. In 1968 the Olympic games
were held in Mexico City at latitude δ = 19◦ north whereas in 1980 they were held
in Moscow at latitude δ′ = 55◦ north. To compare record heights in jumps (or
throws), it is necessary to correct for the variation in gravity due to the centrifugal
force, the geographical difference in height, and air resistance. Assuming that the
initial velocity is the same, the height h attained in Mexico city would correspond
to a height h′ in Moscow , related to h by v2 = 2gh = 2g′h′. Using (7-40a) we
find h/h′ = g′/g = 1.00296. This shows that a correction of −0.3% due to variation
in gravity (among other corrections) would have to be applied to the Mexico City
heights before they were compared with the Moscow heights.
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Figure 7.2: The MacLaurin function (right hand side of eq. (7-42)). The maximum
0.225 is reached for e = 0.93.

Fast rotating planet

One of the main assumptions behind the calculations in this section was that
the planet should be slowly rotating, meaning that the deformation of the planet
due to rotation be small, or |h(θ)| ¿ a. Intuitively, it is fairly obvious, that if
the rate of rotation of the planet is increased, the flattening increases until it
reaches a point, where the “antigravity” of rotation overcomes the “true” gravity
of planetary matter as well as cohesive forces. Then the planet becomes unstable
with dramatic change of shape or even breakup as a consequence.Colin MacLaurin (1698–

1746). Scottish mathemati-
cian who developed and
extended Newton’s work on
calculus and gravitation.

The study of the possible forms of rotating planets was initiated very early
by Newton and in particular by MacLaurin. It was found that oblate ellipsoids
of rotation are possible allowed shapes for rotating planets with constant matter
density, ρ0. An oblate ellipsoid of rotation is characterized by equal-size major
axes, a = b and a smaller minor axis c < a, about which it rotates.

MacLaurin found that the angular rotation rate is related to the eccentricity
e =

√
1− c2/a2 through the formula

Ω2

2πGρ0
=

1
e3

(√
1− e2

(
3− 2e2

)
arcsin e− 3e

(
1− e2

))
. (7-42)

The right hand side is shown in Fig. 7.2 and has a maximum 0.225 for e = 0.93,
implying that stability can only be maintained for Ω2/2πGρ0 < 0.225. Actually,
various other shape instabilities set in at even lower values of the eccentricity (see
ref. [21] for a thorough discussion of these instabilities and their astrophysical
consequences). For small e, the MacLaurin(!) expansion of the right hand side
of (7-42) becomes 4e2/15. Since e2 ≈ 2h0/a, we obtain h0 = 15Ω2a/16πGρ0 =
5Ω2a2/4g0, in complete agreement with (7-39) for ρ1 = ρ0.
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7.5 Surface tension

At the interface between two materials physical properties change rapidly over
distances comparable to the molecular separation scale Lmol given in (1-1). From
a macroscopic point of view, the transition layer is an infinitely thin sheet co-
inciding with the interface between the two materials. Although the transition
layer in the continuum limit thus appears to be a mathematical surface, it may
nevertheless possess macroscopic physical properties, such as energy.

Molecular estimate of surface energy density

The apparent paradox that a mathematical surface with no volume can possess
energy may be resolved by considering a primitive three-dimensional model of a
material in which the molecules are placed in a cubic grid with grid length Lmol.
Each molecule in the interior has six bonds to its neighbors with a total binding
energy of −ε, but a surface molecule will only have five bonds when the material
is interfacing to vacuum. The (negative) binding energy of the missing bond is
equivalent to an extra positive energy ε/6 for a surface molecule relative to an
interior molecule, and thus an extra surface energy density,
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Two-dimensional cross
section of a primitive
three-dimensional model of
a material interfacing to
vacuum. A molecule at the
surface has only five bonds
compared to the six that tie
a molecule in the interior.

α ≈ 1
6

ε

L2
mol

. (7-43)

The binding energy may be estimated from the specific enthalpy of evaporation
H of the material as ε ≈ HMmol/NA. Notice that the unit for surface tension is
J/m2 = kg/s2.

Example 7.5.1: For water the specific evaporation enthalpy is H ≈ 2.2×106 J/kg,
leading to the estimate α ≈ 0.12 J/m2. The measured value of the surface energy
for water/air interface is in fact α ≈ 0.073 J/m2 at room temperature. Less than a
factor of 2 wrong is not a bad estimate at all!

Definition of surface tension

Increasing the area of the interface by a tiny amount dA, takes an amount of
work equal to the surface energy contained in the extra piece of surface,

dW = α dA . (7-44)

This is quite analogous to the mechanical work dW = −p dV performed against
pressure when the volume of the system is expanded by dV . But where a volume
expansion under positive pressure takes negative work, increasing the surface area
takes positive work. This resistance against extension of the surface shows that
the interface has a permanent internal tension, called surface tension1 which we
shall now see equals the energy density α.

1There is no universally agreed-upon symbol for surface tension which is variously denoted
α, γ, σ, S, Υ and even T . We shall use α, even if it collides with other uses, for example the
thermal expansion coefficient.
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Formally, surface tension is defined as the force per unit of length that acts
orthogonally to an imaginary line drawn on the interface. Suppose we wish to
stretch the interface along a straight line of length L by a uniform amount ds.
Since the area is increased by dA = Lds, it takes the work dW = αLds, implying
that the force acting orthogonally to the line is F = αL, or F/L = α. Surface
tension is thus identical to the surface energy density. This is also reflected in
the equality of the natural units for the two quantities, N/m = J/m2.

dA

ds

L -
F

An external force F per-
forms the work dW = F ds
to stretch the surface by
ds. Since the area increase
is dA = Lds, the force is
F = α L. The force per unit
of length, α = F/L, is the
surface tension.

Since the interface has no macroscopic thickness, it may be viewed as being
locally flat everywhere, implying that the energy density cannot depend on the
macroscopic curvature, but only on the microscopic properties of the interface. If
the interfacing fluids are homogeneous and isotropic — as they normally are —
the value of the surface energy density will be the same everywhere on the surface,
although it may vary with the local temperature. Surface tension depends on the
physical properties of both of the interfacing materials, which is quite different
from other material constants that usually depend only on the physical properties
of just one material.

α[mN/m]

Water 72
Methanol 22
Ethanol 22
Bromine 41
Mercury 485

Surface tension of some liq-
uids against air at 1 atm and
25◦C in units of millinewton
per meter (from [3]).

Fluid interfaces in equilibrium are usually quite smooth, implying that α must
always be positive. For if α were negative, the system could produce an infinite
amount of work by increasing the interface area without limit. The interface
would fold up like crumbled paper and mix the two fluids thoroughly, instead
of separating them. Formally, one may in fact view the rapid dissolution of
ethanol in water as due to negative interfacial surface tension between the two
liquids. The general positivity of α guarantees that fluid interfaces seek towards
the minimal area consistent with the other forces that may be at play, for example
pressure forces and gravity. Small raindrops and champagne bubbles are for this
reason nearly spherical. Larger raindrops are also shaped by viscous friction,
internal flow, and gravity, giving them a much more complicated shape.

Pressure excess in a sphere

Consider a spherical ball of liquid of radius a, for example hovering weightlessly
in a spacecraft. Surface tension will attempt to contract the ball but is stopped
by the build-up of an extra pressure ∆p inside the liquid. If we increase the radius
by an amount da we must perform the work dW1 = α dA = αd(4πa2) = α8πa da
against surface tension. This work is compensated by the thermodynamic work
against the pressure excess dW2 = −∆p dV = −∆p 4πa2 da. In equilibrium there
should be nothing to gain, dW1 + dW2 = 0, leading to,

∆p =
2α

a
. (7-45)

The pressure excess is inversely proportional to the radius of the sphere.
It should be emphasized that the pressure excess is equally valid for a spherical

raindrop in air and a spherical air bubble in water. A spherical soap bubble of
radius a has two spherical surfaces, one from air to soapy water and one from
soapy water to air. Each gives rise to a pressure excess of 2α/a, such that the
total pressure inside a soap bubble is 4α/a larger than outside.
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Example 7.5.2: A spherical raindrop of diameter 1 mm has an excess pressure
of only about 300 Pa, which is tiny compared to atmospheric pressure (105 Pa). A
spherical air bubble the size of a small bacterium with diameter 1 µm acquires a
pressure excess due to surface tension a thousand times larger, about 3 atm.

When can we disregard the influence of gravity on the shape of a raindrop?
For a spherical air bubble or raindrop of radius a, the condition must be that the
change in hydrostatic pressure across the drop should be negligible compared to
the pressure excess due to surface tension, i.e. ρ0g02a ¿ 2α/a, or

a ¿ Rc =
√

α

ρ0g0
. (7-46)

The critical radius Rc is called the capillary constant or capillary radius and
equals 2.7 mm for water and 1.9 mm for mercury. The dimensionless ratio of the
pressure excess due to surface tension and the hydrostatic pressure variation due
to gravity, Bo = (2α/a)/(ρ0g02a) = (Rc/a)2, is often called the Bond number2.

Pressure discontinuity due to surface tension
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A plane containing the nor-
mal in a point intersects the
surface in a planar curve
with a signed radius of
curvature in the point. The
extreme values of the signed
radii of curvature define the
principal directions. The
small rectangle has sides
parallel with the principal
directions.

A smooth surface may in a given point be intersected with an infinity of planes
containing the normal to the surface. In each normal plane the intersection is a
smooth planar curve which at the given point may be approximated by a circle
centered on the normal. The center of this circle is called the center of curvature
and its radius the radius of curvature of the intersection. Usually the radius of
curvature is given a sign, depending on which side of the surface the center of
curvature is situated. As the intersection plane is rotated, the center of curvature
moves up and down the normal between extreme values R1 and R2 of the signed
radius of curvature, called the principal radii of curvature. It may be shown [?]
that the corresponding principal intersection planes are orthogonal, and that the
radius of curvature along any other normal intersection may be calculated from
the principal radii.
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The rectangular piece of the
surface of size d`1 × d`2
is exposed to two tension
forces along the 1-direction
resulting in a normal force
pointing towards the center
of the circle of curvature.
The tension forces in the
2-direction also contribute
to the normal force.

Consider now a small rectangle d`1× d`2 with its sides aligned with the prin-
cipal directions, and let us to begin with assume that R1 and R2 are positive. In
the 1-direction surface tension acts with two nearly opposite forces of magnitude
αd`2, but because of the curvature of the surface there will be a resultant force
in the direction of the center of the principal circle of curvature. Each of the ten-
sion forces forms an angle d`1/2R1 with the tangent, and projecting both on the
normal we obtain the total inwards force 2αd`2×d`1/2R1. Since the force is pro-
portional to the area d`1d`2 of the rectangle, it represents an excess in pressure
∆p = α/R1 on the side of the surface containing the center of curvature. Finally,
adding the contribution from the 2-direction we obtain the Young-Laplace law

2Unfortunately it has not been possible for this author to determine the origin of the name.
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for the pressure discontinuity due to surface tension,

∆p = α

(
1

R1
+

1
R2

)
. (7-47)

For the sphere we have R1 = R2 = a and recover the preceding result (7-45).
The Young-Laplace law may be extended to signed radii of curvature, provided it
is remembered that a contribution to the discontinuity is always positive on the
side of the surface containing the center of curvature, and otherwise negative.

................................................................................................
.............
...........
..........
.......

water

air

Sketch of the meniscus
formed by evaporation of
water from the surface of
a plant leaf, resulting in a
high negative pressure in the
water, capable of lifting the
sap to great heights.

Example 7.5.3 (How sap rises in plants): Plants evaporate water through
tiny pores on the surface of the leaves. This creates a hollow air-to-water surface in
the shape of a half-sphere of the same diameter as the pore. Both radii of curvature
are negative R1 = R2 = −a because the center of curvature lies outside the water,
leading to a negative pressure excess in the water. For a pore of diameter 2a ≈ 1 µm
the excess pressure inside the water will be about ∆p ≈ −3 atm, capable of lifting
sap through a height of 30 m. In practice, the lifting height is considerably smaller
because of resistance in the xylem conduits of the plant through which the sap
moves. Taller plants and trees need correspondingly smaller pore sizes to generate
sufficient negative pressures, even down to −100 atm! Recent research has confirmed
this astonishing picture (see M. T. Tyree, Nature 423, 923 (2003)).

Contact angle
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An air/liquid interface
meeting a wall. The up-
per curve makes an acute
contact angle, like water,
whereas the lower curve
makes an obtuse contact
angle, like mercury.

An interface between two fluids is a two-dimensional surface which makes contact
with a solid wall along a one-dimensional curve. Locally the plane of the fluid
interface typically forms a certain contact angle χ with the wall. For the typical
case of a liquid/air interface, χ is normally defined as the angle inside the liquid.
Water and air against glass meet in a small acute contact angle, χ ≈ 0, whereas
mercury and air meets glass at an obtuse contact angle of χ ≈ 140◦. Due to
its small contact angle, water is very efficient in wetting many surfaces, whereas
mercury has a tendency form pearls. It should be emphasized that the contact
angle is extremely sensitive to surface properties, such as waxing, and to fluid
composition and additives.

In the household we regularly use surfactants that are capable of making dish-
water wet greasy surfaces which otherwise would create separate droplets. After
washing our cars we apply a wax which makes rainwater pearl and prevents it
from wetting the surface, thereby diminishing rust and corrosion.

The contact angle is a material constant which depends on the properties of
all three materials coming together. Whereas material adhesion can sustain a
tension normal to the wall, the tangential tension has to vanish. This yields an
equilibrium relation between the three surface tensions,
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Two fluids meeting at a solid
wall in a line orthogonal
to the paper. The tangen-
tial component of surface
tension must vanish.

α13 = α23 + α12 cos χ , (7-48)

This relation is, however, not particularly useful because of the sensitivity of χ to
surface properties, and it is better to view χ as an independent material constant.



7.5. SURFACE TENSION 137

Capillary effect

Water has a well-known tendency to rise above the ambient water level in a
narrow vertical glass tube which is lowered into the liquid. Closer inspection
reveals that the surface inside the tube is concave. This is called the capillary
effect and is caused by the acute contact angle of water in conjunction with its
surface tension which creates a negative pressure just below the liquid surface,
balancing the weight of the raised water column. Mercury with its obtuse contact
angle displays instead a convex surface shape, creating a positive pressure just
below the surface which forces the liquid down to a level where the pressure
equals the pressure at the ambient level.
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Water rises above the ambi-
ent level in a glass tube and
displays a concave surface
inside the tube. Mercury
behaves oppositely and sinks
with a convex surface.
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Mercury sinks below the gen-
eral level in a capillary glass
tube.

Let us first calculate the effect for an acute angle of contact. At the center
of the tube the radii of curvature are equal, and since the center of curvature
lies outside the liquid, they are also negative, R1 = R2 = −R0 where R0 is
positive. Hydrostatic balance at the center of the tube then takes the form,
ρ0g0h = 2α/R0, or

h =
2α

ρ0g0R0
= 2

R2
c

R0
. (7-49)

Notice that this is an exact relation which does not depend on the surface being
spherical. It also covers the case of an obtuse contact angle by taking R0 to be
negative.

Assuming now that the surface is in fact spherical, which should be the case for
a . Rc where gravity has no effect on the shape, a simple geometric construction
shows that a = R0 cos χ, and thus,

h = 2
R2

c

a
cos χ . (7-50)

It is as expected positive for acute and negative for obtuse contact angles. From
the same geometry it also follows that the depth of the central point is,

d = a
1− sin χ

cosχ
, (7-51)

Both of these expressions are modified for larger radius, a & Rc where the surface
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A spherical surface of radius
R in a tube of radius a satis-
fies a = R0 cos χ where χ is
the contact angle. The depth
is d = a(1− sin χ)/ cos χ.

flattens such that ha → 0, and d/a → 0.

Example 7.5.4: In a capillary tube of diameter 2a = 1 mm For water with χ ≈ 0
rises h = +30 mm with a surface depth d = +0.5 mm . Mercury with contact angle
χ ≈ 140◦ sinks on the other hand to h = −11 mm and d = −0.2 mm under the same
conditions.
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7.6 Planar capillary effect

In the limit of infinite tube radius there will be no capillary rise although a
liquid surface will still rise or sink at a plane vertical wall to accommodate a
finite contact angle. This is an exactly solvable case which nicely illustrates the
mathematics of planar curved surfaces.
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The interface at a vertical
wall with an acute angle of
contact. The surface equations

Taking the x-axis orthogonal to the wall, the surface shape is independent of y
and described by a simple curve in the xz-plane. The best way to handle the
geometry of a planar curve is to use two auxiliary parameters: the arc length s
along the interface curve, and the elevation angle θ between the x-axis and the
oriented tangent to the curve. From this definition of θ we obtain immediately,
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dx

ds
= cos θ ,

dz

ds
= sin θ . (7-52)

The radius of curvature may conveniently be defined as,

R =
ds

dθ
. (7-53)

Evidently this geometric radius of curvature is positive if s is an increasing func-
tion of θ, otherwise negative.

One should be aware that this sign convention may not agree with the physical
sign convention for the Young-Laplace law (7-47), and that it may be necessary
to introduce an explicit sign to get the physics right. Assuming that the air
pressure is constant, p = p0, the pressure in the liquid just below the surface is
p = p0 + ∆p where ∆p is given by the Young-Laplace (7-47) law. For an acute
angle of contact we have R1 = −R and R2 = ∞, because the center of curvature
lies outside the liquid. Hydrostatic balance then implies that

H = g0z − 1
ρ0

α

R
, (7-54)

is a constant along the surface. For x →∞ the curvature has to vanish, R →∞,
and normalizing such that z → 0 for x →∞ we find that H = 0. Eliminating R
using (7-53), we obtain

dθ

ds
=

z

R2
c

, (7-55)

where Rc is the capillary radius (7-46). Together with (7-52) we have obtained
three equations for x, z, and θ which should be solved with the boundary condi-
tions x = 0, z = d, and θ = χ− 90◦ for s = 0. A quick analysis shows that these
equations are equally valid for an obtuse angle of contact.



7.7. ROTATIONALLY INVARIANT SHAPES 139

The pendulum connection

Differentiating the angular derivative (7-55) once more after s and introducing
the parameter τ = s/Rc we obtain,

d2θ

dτ2
= sin θ . (7-56)

This is the equation of motion for an inverted mathematical pendulum. For an

r©©©©y
............................................................................

.......

.......
.......
.......
.......
.......
.......

.......
..........

...........
.........

...................
...................................................................................................................................................................................................................................................................................................

..............
..........
..........
.......
.......
......
.....
.....
.......
.......
.......
.......

θ

?
g

Inverted mathematical pen-
dulum with angle θ moving
towards the unstable equi-
librium at θ = 0. This
corresponds to the liquid
surface falling as one moves
away from the plate.

acute angle of contact, the boundary conditions correspond to starting the pen-
dulum at a negative angle θ = χ − 90◦ with positive velocity d/R2

c . The depth
d must be adjusted such that the pendulum eventually comes to rest in the un-
stable equilibrium at θ = 0. If the depth is larger, the pendulum will continue
through the unstable equilibrium, corresponding to the liquid surface rising again
to meet another vertical wall at a finite distance.

Multiplying the equation of motion with dθ/dτ and integrating, we find

1
2

(
dθ

dτ

)2

= 1− cos θ , (7-57)

where the constant has been determined by the condition that dθ/dτ = 0 and
θ = 0 for τ → ∞. This equation may be solved by quadrature (see problem
7.13), but the height d of the rise may in fact be determined without integrating.
Using the initial conditions and (7-55) we find dθ/dτ = d/Rc and θ = χ − 90◦

for τ = 0, and solving for d we obtain,

d = ±Rc

√
2(1− sin χ) , (7-58)

with positive sign for acute angle of contact. For water with nearly vanishing
angle of contact, we find d ≈ √

2Rc ≈ 3.9 mm whereas for mercury with χ = 140◦

we get d ≈ 1.6 mm.

7.7 Rotationally invariant shapes

Many static interfaces — hanging raindrops and capillary surfaces in circular
tubes — are rotationally invariant around the z-axis, allowing us to establish a
fairly simple formalism for the shape of the surface, which in cylindrical coordi-
nates is a planar curve in the rz-plane. In terms of the arc length s along the
curve and the angle of elevation θ for its slope, we have the geometric relations
(see problem 7.14),
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dr

ds
= cos θ ,

dz

ds
= sin θ , (7-59)

R1 =
ds

dθ
, R2 =

r

sin θ
. (7-60)
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Figure 7.3: (a) Capillary surface shape z(r)/a as a function of r/a for χc = 1◦ and
a = 0, 1, 2, 3, 5, 10. The length scale is fixed by setting Rc = 1. Notice how the shape
becomes gradually spherical as the tube radius a → 1. For a . 1 the shape is constant.
(b) Computed capillary rise h and depth d as functions of a (fully drawn). For a & 1 the
computed values deviate from the spherical surface results (7-50) and (7-51) (dashed).

These are the geometric radii of curvature with signs given by their definitions.
One should be aware that this sign convention may not agree with the physical
sign convention for the Young-Laplace law (7-47), and that it may be necessary
to introduce explicit signs to get the physics right.

The capillary surface
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For the rising liquid/air capillary surface with acute contact angle both geometric
radii of curvature are positive. Since both centers of curvature lie outside the
liquid, the physical radii are −R1 and −R2 in the Young-Laplace law (7-47).
Assuming that the air pressure is constant, hydrostatic balance demands that
g0z + ∆p/ρ0 be constant, or

g0z − α

ρ0

(
dθ

ds
+

sin θ

r

)
= − 2α

R0
.

The value of the constant has been determined from the initial condition that
the curve starts in r = z = θ = 0 with equal geometric radii of curvature,
R1 = R2 = R0. Solving for dθ/ds we find,

dθ

ds
=

2
R0

− sin θ

r
+

z

R2
c

, (7-61)

where Rc is the capillary constant (7-46). Together with the two equations (7-59)
we have obtained three first order differential equations for r, z, and θ. Since
s does not occur explicitly, and since θ grows monotonically with s, one may
eliminate s and instead use θ as the running parameter.0.2 0.4 0.6 0.8 1 r
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The numeric solution for
R0 = Rc = a = 1 in the
interval 0 < θ < 6π.The
spirals are unphysical. For
χc = 0 the curve terminates
at the first vertical tangent.

Unfortunately these equations cannot be solved analytically, but given R0

they may be solved numerically with the boundary conditions r = z = 0 for
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Figure 7.4: Shapes of stable bubbles and droplets of water (χc = 1◦) and mercury
(χc = 140◦) in units of the capillary radius Rc. (a) Air bubbles in water under a lid
(to scale). Maximal depth is 2.1. (b) Water droplet on table plotted with vertical scale
enlarged 40 times. Maximal depth is 0.019. (c) Air bubbles in mercury (to scale).
Maximal depth is 0.74 . (d) Mercury droplets on a table (to scale). Maximal depth
2.0 .

θ = 0. The solutions are quasi-periodic curves that spiral upwards forever. The
physical solution must however stop at the wall r = a for θ = θc = 90◦−χc, and
that fixes R0. The results of integrating the equations are displayed in fig. 7.3.

Stable bubbles and droplets
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An air bubble in under a
horizontal lid with acute
angle of contact.

If a horizontal plate is inserted into water, air bubbles may come up against its
underside, and remain stably there. The bubbles are pressed against the plate
by buoyancy forces that also tend to flatten bubbles larger than the capillary
radius. The shape may be obtained from the solution to the capillary effect by
continuing to θ = 180◦ − χc.
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A droplet on a horizontal
plate with an obtuse angle
of contact.

It is well-known that mercury on a plate forms small nearly spherical droplets
that may be brought to merge and form flat splotches that tend to break up if
they become too large. In this case the geometric radii of curvature will both
be negative while the physical radii of curvature are both positive because the
centers of curvature lie inside the liquid. The formalism is consequently exactly
the same as before, except that the central radius of curvature R0 is now negative.
The shapes are nearly the same as for air bubbles, except for the different angles
of contact.

In fig. 7.4 the four stable configurations of bubbles and droplets are displayed.
The depth stabilizes in all cases at a maximal value for R0 →∞, indicating that
larger bubbles are unstable and tend to break up. Notice that the depth of
the water droplet (frame 7.4b) is enlarged by a factor 40. If water really has
contact angle χc = 1◦, the maximal depth of a water droplet on a flat surface is
only 0.019Rc = 50 µm. Due to its small contact angle, water is very efficient in
wetting many surfaces. It should again be emphasized that the contact angle is
extremely sensitive to surface properties, such as waxing, and to fluid composition
and additives.

In the household we regularly use surfactants that are capable of making dish-
water wet greasy surfaces which otherwise would create separate droplets. After
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washing our cars we apply a wax which makes rainwater perl and prevents it from
wetting the surface, thereby diminishing rust and corrosion.

Unstable bubbles and droplets

Rain or humidity create growing drops that eventually fall, while growing air
bubbles at the bottom of a soda bottle eventually loose their grip and rise to
the surface. We shall now investigate the hydrostatic solutions and attempt
to determine the limits to stability. Both the geometric and physical radii of
curvature are in this case positive, such that we now get,
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dθ

ds
=

2
R0

− sin θ

r
− z

R2
c

, (7-62)

with the opposite sign of z. In this case we may not eliminate s because θ is not
a monotonic function of s.
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Problems

7.1 The spaceship Rama (from the novel by Arthur C. Clarke) is a hollow cylinder
hundreds of kilometers long and tens of kilometers in diameter. The ship rotates so
as to create a standard pseudo-gravitational field g0 on the inner side of the cylinder.
Calculate the escape velocity to the center of the cylinder.

7.2 Calculate the increase in buoyancy due to its own gravity for a spherical body in
a) a fluid of constant density, b) a fluid of constant compressibility, and c) isentropic
gas.

7.3 a) Calculate the repulsion between two identical spheres with constant mass den-
sity ρ1 and radii a, submerged a distance D À a apart in a fluid obeying the equation
of state ρ = ρ(p). There is no other gravitational field present, the fluid pressure is
p0 in the absence of the spheres, and one may assume that the pressure corrections
due to the spheres are everywhere small in comparison with p0. b) Compare with the
gravitational attraction between the spheres. c) Under which conditions will the total
force between the spheres vanish.

7.4 Calculate the change in sea level if the air pressure locally rises by 20 millibars.

7.5 Calculate the changes in air pressure due to tidal motion of the atmosphere a)
over sea, and b) over land?

7.6 a) Show that for an ideal gas in isentropic balance the quantity

H =
γ

γ − 1

RT

Mmol
+ Φ (7-63)

is constant. b) Use this to calculate the temperature gradient in an arbitrary gravita-
tional field.

7.7 How much water is found in the tidal bulge (the water found above average
height).

7.8 a) Calculate the height of a geostationary orbit, i.e. an orbit where a sattelite
would appear to be at rest with respect to a point on the surface of the Earth. b) How
heavy must a sattelite in geostationary orbit be for the tides to be of the same size as
the Moon’s? c) Assuming the same average density, what would be the apparent size
of such a sattelite?

7.9 Calculate the mean value 〈h〉 and the tidal range in the quasistatic approximation
(7-27).

7.10 Calculate the tidal range that would result if the Earth were in bound rotation
around the center-of-mass of the Earth-Moon system.

∗ 7.11 Show that r2[f(r)(3 cos2 θ − 1)] = g(r)(3 cos2 θ − 1) and determine g(r).
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7.12 Show that the integral (??) may be written explicitly as

Φ1(θ) = −Gρ1a√
2

Z 2π

0

dφ′
Z π

0

sin θ′dθ′
h(θ′)√

1− cos θ cos θ′ − sin θ sin θ′ cos φ′
(7-64)

7.13 Show that (??) and (??) for λ → 0 become

z

Rc
=
p

2(1− cos θ) (7-65)

x

Rc
= log

8

λ
+ log

����tan
θ

4

����− 2

�
1− cos

θ

2

�
(7-66)

Interpret the solution.

7.14 Determine the radii of curvature in section 7.7 by expanding the shape z = f(r)
with r =

p
x2 + y2 to second order around x = x0, y = 0, and z = z0.

7.14 Expanding to second order around (x, y, z) = (x0, 0, z0) we find

∆z = α∆x +
1

2
β∆x2 +

α

2x0
y2 , (7-67)

where ∆z = z − z0, ∆x = x − x0, α = f ′(x0) = tan θ, and β = f ′′(x0). Introduce a
local coordinate system with coordinates ξ and η in (x0, 0, z0)

∆x = ξ cos θ + η sin θ (7-68)

∆z = −ξ sin θ + η cos θ (7-69)

Substituting and solving for η keeping up to second order terms,

η =
1

2
β cos3 θ ξ2 +

sin θ

2x0
y2 (7-70)

Hence

1

R1
=

∂2η

∂ξ2
= β cos3 θ ,

1

R2
=

∂2η

∂y2
=

sin θ

x0
(7-71)

But

β =
d2z

dx2
=

d tan θ

dx
=

1

cos2 θ

dθ

dx
=

1

cos2 θ

ds

dx

dθ

ds
=

1

cos3 θ

dθ

ds
(7-72)

proving that 1/R1 = dθ/ds.


