
9
Strain

All materials deform when subjected to external forces, but different materials
react in different ways. Elastic materials bounce back again to the original con-
figuration when the forces cease to act. Others are plastic and retain their shape
after deformation. Viscoelastic materials behave like elastic solids under fast
deformation, but creep like viscous liquid over longer periods of time. Elastic-
ity is itself an idealization, limited to a certain range of forces. If the external
forces become excessive, all materials become plastic and undergo permanent
deformation, even fracture.

When a body is deformed, its material is displaced away from its original po-
sition. Small deformations are mathematically much easier to handle than large
deformations, where parts of a body become greatly and non-uniformly displaced
relative to other parts, as for example when you crumble a piece of paper. A
rectilinear coordinate system embedded in the original body and deformed along
with the material of the body, becomes a curvilinear coordinate system after
the deformation. It can therefore come as no surprise that the general theory
of finite deformation is mathematically at the same level of difficulty as general
curvilinear coordinate systems. Luckily, our buildings and machines are rarely
subjected to such violent treatment, and in most practical cases the deformation
may be assumed to be tiny.

The description of continuous deformation inevitably leads to the introduc-
tion of a new tensor quantity, the strain tensor, which characterizes the state of
local deformation or strain in a material. Strained relations between neighboring
material particles cause tension or stress, but in this chapter we shall focus exclu-
sively on the formalism for strain. The discussion of the stress-strain relationship
for elastic materials is postponed to the following chapter.
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9.1 Displacement

The prime example of deformation is a uniform dilatation, in which the coordi-
nates of every material particle in a body are multiplied by a constant factor,
κ > 1. The coordinates of a particle originally situated in the point x thus
become

x′ = κx (9-1)

after the dilatation. Contraction is also included by this expression for κ-values
Uniform dilatation. The ar-
rows indicate how material
particles are displaced.

in the interval 0 < κ < 1. Negative values of κ are not physical, because besides
dilatation or contraction they contain a reflection (x → x′ = −x) of the body in
the origin of the coordinate system.

The only point which does not change place during a uniform dilatation is the
origin of the coordinate system. Although it superficially looks as if the origin of
the coordinate system plays a special role, this is not really the case. All relative
distances between material particles scale in the same way, |x′ − y′| = κ |x− y|,
independently of the origin of the coordinate system. There is no special center
for a uniform dilatation, neither geometrically nor physically. The origin of the
coordinate system is simply an anchor point for the mathematical description of
dilatation.

The displacement field

In an elastic solid the atoms retain their relations to the neighbors. Each atom
is, by and large, always surrounded by the same neighboring atoms. Only their
mutual distances change a little with the deformation.

The simultaneous displacement of all material particles in a body may mathe-
matically be described by a displacement vector field, u(x), such that a material
particle, originally in the point x, after the displacement is found in

x′ = x + u(x) . (9-2)

The position x refers to a reference state of the material which we shall arbitrarily
call undeformed, but this state may very well itself be highly deformed relative
to another state. The value u(x) defined as the displacement suffered by a
material particle originally situated at x in the undeformed state, whereas after
the displacement it is actually situated at x′.
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The displacement field. Mathematically, there is nothing wrong in referring to a position where the
material particle used to be, as long as we keep in mind that the physical po-
sition of the particle is x′. After the displacement the original body no more
exists, except in our imagination. It is, of course, also possible to express the
displacement field in terms of the actual position of the body but that leads to a
more difficult formalism (see section 9.5).

Since we have put no restrictions on the displacement field, the transformation
(9-2) is equivalent to an arbitrary vector transformation, x → x′ = f(x). The
only reason to split it into the identity x and a displacement u(x), is that the
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displacement in most applications may be considered “small”. But displacement
has dimension of length, so we need to be more specific about the meaning of
“small”, for example that for all x

|u(x)| ¿ L , (9-3)

where L is a measure of the size of the body. We shall see below that for a
consistent definition of “small”, it is more reasonable to demand the displacement
field to vary slowly over the body.

Linear displacements

The general, unrestricted displacement includes all kinds of ordinary rigid body
moves, such as translations, rotations and reflection, and it would be wrong to
classify such displacements as deformations. Sailing a submarine at the surface of
the water will not deform it, but only displace it, whereas taking it to the bottom
of the sea will deform it (slightly). A real deformation must involve changes in
geometric relationships, i.e. lengths and angles, in the body.

Although the displacement in practical cases will always be a non-linear func-
tion of the coordinates, it is of interest to begin by analyzing linear displacements,
such as the uniform dilatation (9-1). In the most general case, a linear transfor-
mation of the coordinates takes the form

x′ = AAA · x + b , (9-4)

where AAA is a non-singular matrix and b is a constant vector. There is strong
Plot of the two-dimensional
linear displacement field u =
(α y, α x, 0) for −1 < x < 1
and −1 < y < 1. The mate-
rial is dilated along one di-
agonal and contracted along
the other. These are the
principal directions of strain
(see problem 9.8).

similarity between the class of linear displacements and the transformations of
Cartesian coordinates discussed in section 2.5, but the class of linear displace-
ments is the larger, because the matrix AAA is not restricted to be orthogonal. The
conceptual difference lies in the interpretation of the displacement field,

u(x) = (AAA− 111) · x + b , (9-5)

as a real shift of the material, as opposed to a change in the way coordinates are
calculated.

As was the case for Cartesian transformations, the general linear displacement
may also be resolved into simpler types, namely translation along a coordinate
axis, rotation by a fixed angle around a coordinate axis, and scaling by a fixed
factor along a coordinate axis, whereas the physically impossible reflections are
excluded. We shall not prove here that the general linear displacement may
be resolved in this way, but instead rely on geometric intuition (see, however,
problem 9.18).

Simple translation: A rigid body translation of the material through a dis-
tance b along the x-axis is described by the displacement field

ux = b ,

uy = 0 ,

uz = 0 .

(9-6)
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Since the geometric relationships in a body are unchanged under translation, it

Simple translation.

should not be classified as deformation.

Simple rotation: Likewise, a rigid body rotation through the angle φ around
the z-axis is described by the displacement field

ux = −x (1− cosφ)− y sin φ ,

uy = x sinφ− y (1− cosφ) ,

uz = 0 .

(9-7)

Again we do not consider a rotation to be a deformation.

Simple rotation.

Simple scaling: Finally, multiplying all distances along the x-axis by the factor
κ, the displacement field becomes

ux = (κ− 1) x ,

uy = 0 ,

uz = 0 .

(9-8)

Uniform dilation (9-1) is a combination of three such scalings along the three co-

Simple scaling.

ordinate axes by the same factor. Intuitively, simple scaling implies deformation
for κ 6= 1.

9.2 Local deformation

Displacement is, as demonstrated above, not the same as deformation. All the
parts of a body could be simultaneously displaced by the same amount, or bodily
rotated, without altering the geometric relations between them. What is needed
is a measure of the actual change of spatial relations between different parts of
the material, also called strain.

At large spatial distances, deformation can be very complex. Think of all the
loops and knots that weavers make from a roll of yarn. We should for this reason
not expect to find a simple formalism for global deformation. Weaving, folding,
winding, writhing, wringing, and squashing may bring particles that originally
were far apart into close proximity. Even the wildest weave consists, however,
locally of small pieces of straight yarn that have only been translated, rotated,
stretched or contracted, but not folded, spindled or mutilated. We may therefore
expect to find a much simpler description of deformation for very small pieces of
matter.

Displacement of a needle
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Displacement of a tiny ma-
terial needle. It may be
translated, rotated, and
shrunk or stretched, but
only the latter is a true
deformation.

Consider a tiny elongated piece of material, a material vector or “needle”, con-
necting a material particle in the point x with another in the point x + a. After
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the displacement this needle will be situated between the points x′ and x′ + a′,
where x′ is given by (9-2) and similarly x′ + a′ = x + a + u(x + a). Solving for
a′ we find

a′ = a + u(x + a)− u(x) . (9-9)

The needle is now assumed to be so small that we may expand the displacement
field u(x + a) to first order in a. For the x-component of the field, we find

ux(x + a) ≈ ux(x) + ax
∂ux(x)

∂x
+ ay

∂ux(x)
∂y

+ az
∂ux(x)

∂z

= ux(x) + (a ·∇)ux(x) .

Since a · ∇ is a scalar operator acting in the same way on each component of
a vector, we may after collecting the other components write the displacement
rules for an infinitesimal needle unambiguously in the form

a′ = a + (a ·∇)u(x) . (9-10)

Not surprisingly, since it is a relation between infinitesimal quantities, this trans-
formation is linear in a. In index notation, it may be written as,

a′i = ai +
∑

j

(∇jui)aj . (9-11)

This shows that the coefficients of the linear transformation of a are computed
from the derivatives of the displacement field, ∇jui, also called the displacement
gradients.

Example 9.2.1: For a simple rotation (9-7), the matrix of displacement gradients
becomes

{∇jui} =

0@−1 + cos φ − sin φ 0
sin φ −1 + cos φ 0

0 0 0

1A (9-12)

where the index i enumerates the rows and j the columns. For small angle of
rotation, |φ| ¿ 1, the displacement gradients are all small, and the matrix simplifies
to

{∇jui} =

0@0 −φ 0
φ 0 0
0 0 0

1A (9-13)

to lowest order in φ.

Small displacement gradients

Since both displacements and coordinates have dimension of length, the displace-
ment gradients are all dimensionless quantities, i.e. pure numbers, and this makes
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it meaningful to speak of small displacement gradients in an absolute way. We
shall say that a displacement field is slowly varying, if

|∇jui(x)| ¿ 1 (9-14)

for all i, j and all x. This does not mean that the displacement itself is small,
because it could include a rigid body translation to any place in the universe.
But if we require that there is a single point in the body, an anchor point, which
is not displaced, then this possibility is excluded, and a slowly varying field must
also be small in the sense of (9-3).

By and large, the opposite is also true. A small displacement field satisfying (9-3)
everywhere, will also be smoothly varying, though there are notable exceptions.
If you, for example, make a crease in your shirt when you iron it, the displacement
gradients will be large in the crease although none of the shirt’s material is greatly
displaced relative to the size of the shirt.

For a slowly varying displacement, the vector change in a needle
rC

C
C
C
C
CO

¤
¤
¤
¤
¤
¤
¤
¤º

´
´

´́3

a
a′

δa

The change in a needle vec-
tor is small when the
displacement gradients are
small.

δa ≡ a′ − a = (a ·∇)u (9-15)

is always small compared to the length of a, i.e. |δa| ¿ |a|. Except in section
9.5, where a few aspects of finite deformations are studied, we shall from now on
assume that the displacement field is small and smoothly varying.

Cauchy’s strain tensor

In order to study the changes in geometry due to displacement, we consider the
scalar product, a ·b, between two needles. Since the scalar product is unchanged
by translation and rotation of the neighborhood of x, it ought to be a useful
measure for change in geometry. Using (9-15), we find the change in the scalar
product δ(a · b) ≡ a′ · b′−a · b to first order in the small displacement gradients
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Displacement of a pair of
infinitesimal material nee-
dles may affect their lengths
as well as the angle between
them.

δ(a · b) = δa · b + a · δb
= (a ·∇)u · b + (b ·∇)u · a
=

∑

ij

(∇iuj +∇jui) aibj

In the last line we have cast the rather ugly vector expression in the much more
elegant index notation, replacing all dot-products by explicit sums. Thus we may
write

δ(a · b) = 2
∑

ij

uijaibj (9-16)
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where the symmetric combination of displacement gradients in the parenthesis is
given a special symbol (with a conventional factor 1/2)

uij =
1
2
(∇iuj +∇jui

)
, (9-17)

called Cauchy’s strain tensor (or just the strain tensor). It pays to write out all
its components explicitly, once and for all. On the diagonal, they are

uxx = ∇xux , uyy = ∇yuy , uzz = ∇zuz , (9-18)

whereas off the diagonal one has

uxy = uyx =
1
2
(∇xuy +∇yux)

uyz = uzy =
1
2
(∇yuz +∇zuy)

uzx = uxz =
1
2
(∇zux +∇xuz)

(9-19)

Had we not assumed that the displacement was slowly varying, there would also
have been terms quadratic in the displacement gradients, and the strain tensor
might take large values (see section 9.5). But with our assumption of small
displacement gradients (9-14), the strain tensor is likewise small.

Example 9.2.2: For a uniform dilatation u = αx, the strain gradients become
∇jui = αδij and are small for |α| ¿ 1. Cauchy’s strain tensor becomes uij = α δij .

Example 9.2.3: The displacement field u = (−φ y, φ x, 0) describes a rotation
through a small angle |φ| ¿ 1 around the z-axis. From the antisymmetry of the
matrix of strain gradients (9-13), it follows that the strain tensor vanishes, as ex-
pected.

Example 9.2.4: The linear displacement u = (2α y, α x, 0) with |α| ¿ 1 has a
matrix of displacement gradients

{∇jui} =

0@0 2α 0
α 0 0
0 0 0

1A , (9-20)

and Cauchy’s strain tensor becomes

{uij} =

0@ 0 3
2
α 0

3
2
α 0 0
0 0 0

1A , (9-21)

which is symmetric as it should be.
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9.3 Geometrical meaning of the strain tensor

The strain tensor contains all the relevant information about changes in geometric
relationships, such as lengths of material needles and the angles between them.
Other geometric quantities, for example area and volume, are also changed under
a deformation.

It is useful for the following discussion to define the projection uab of a tensor
uij on the directions of two arbitrary vectors a and b

uab =

∑
ij uijaibj

|a| |b| . (9-22)

so that we may write (9-16)

δ(a · b) = 2 |a| |b|uab (9-23)

Change of length: The change in length of a needle is found by setting b = a,
and using that δ(a2) = 2 |a| δ |a|, we find

δ |a|
|a| ≡

|a′| − |a|
|a| = uaa . (9-24)

The diagonal strain projection uaa is thus the fractional change of lengths in the
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direction of a. This is also why the conventional factor 1/2 was put into the
definition (9-17) of the strain tensor.

Change of angle: In the same way, we may from a·b = |a| |b| cos φab calculate
the change in angle, δφab, between two needles, a and b,
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δφab

The off-diagonal projections
of the strain tensor deter-
mine the change in angle
for originally orthogonal
needles.

δ(a · b) = δ |a| |b| cos φab + |a| δ |b| cosφab − |a| |b| sin φabδφab

Solving for δφab, we obtain by means of (9-23) and (9-24)

δφab ≡ φ′ab − φab = − 2uab

sin φab
+ (uaa + ubb) cot φab (9-25)

For φab → 0 the vectors become parallel and the expression diverges, but the
divergence is only apparent because also uaa + ubb − 2uab = 0 in the limit. For
orthogonal vectors, i.e. for φab = π/2, the change in angle simplifies to

δφab = −2uab . (9-26)

The off-diagonal projections of the strain tensor thus determine the change in
angle between originally orthogonal needles.
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Change of area: The infinitesimal change in the area of the parallelogram
S = a × b spanned by two needles is calculated using (9-15). We find, keeping
all the time ∇ to the left of u, and using the “double-cross” rule (2-80) twice

δ(a× b) = δa× b + a× δb

= (a ·∇)u× b + (b ·∇)a× u

= ((b ·∇)a− (a ·∇)b)× u

= −((a× b)×∇)× u

= (a× b)∇ · u−∇((a× b) · u) ,

or

-¢
¢
¢
¢̧

a

b

The parallelogram spanned
by two infinitesimal vectors
defines and elementary
surface element S = a× b.

δS ≡ S′ − S = S∇ · u−∇(S · u) . (9-27)

Notice that because it is a vector relation, it cannot be expressed entirely in
terms of the strain tensor, but involves the displacement gradients in the second
term.

Change of volume: The change in the volume V = a×b ·c spanned by three
infinitesimal needles is calculated by means of the preceding result

δ((a× b) · c) = δ(a× b) · c + (a× b) · δc
= (a× b) · c∇ · u− (c ·∇)((a× b) · u) + (a× b) · (c ·∇)u
= ((a× b) · c)∇ · u .

The fractional volume change becomes
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The parallelepiped spanned
by three vectors defines an
elementary volume element
V = a× b · c.

δV

V
≡ V ′ − V

V
= ∇ · u =

∑

i

uii , (9-28)

and is simply equal to the divergence of the displacement field or, equivalently,
the trace of the strain tensor.
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Symmetry of the strain tensor

The strain tensor is by its definition (9-17) symmetric in the indices

uij = uji , (9-29)

and differs in this respect from the stress tensor, for which symmetry required
further assumptions (see page 155). The symmetry implies that the strain tensor
may be diagonalized in every point. The eigenvectors of the strain tensor in a
given point are called the principal axes of strain, and form an orthonormal basis
in every point. Whereas the angles between the principal axes are unchanged
under the displacement, the signs and magnitudes of the eigenvalues determine
how much the material is being stretched or contracted along the principal axes.
Notice, however, that the principal basis varies from point to point (problem 9.5).
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∗ 9.4 Work and energy

Deforming a body takes work, and in the ideal limit of infinitely slow, also called
quasistatic, deformation, this work is normally saved as elastic energy in the body
and may be recovered, when the deformation is released again. If, however, the
deformation is done in a finite time, some energy is always lost to sound waves
that are radiated away and eventually degenerate to heat. A hard steel ball may
jump many times on a hard floor, but eventually it loses all its energy and comes
to rest, partly due to air resistance, and partly due to radiative elastic losses in
the ball and, perhaps more importantly, in the floor.

Let us assume that we displace the material in a volume V by an infinitesimal
amount δu. The total work performed by the external forces is, to first order in
the displacement, the sum of the work performed by the volume forces and by
the contact forces,

δWext =
∫

V

∑

i

δuifidV +
∮

S

∑

ij

δuiσijdSj . (9-30)

Here we should not worry about the stress being expressed in terms of the dis-
placed body coordinates, whereas the displacement is a function of the coordi-
nates in the undisplaced body. The corrections that would follow from this worry
are of higher order in δu and can be disregarded. Using Gauss’ theorem (4-20)
on the surface integral in the first term we get

δWext =
∫

V

∑

ij

∇j(δuiσij)dV +
∫

V

∑

i

δuifidV

=
∫

V

∑

ij

(∇jδui)σijdV +
∫

V

∑

i

δui


∑

j

∇jσij + fi


 dV

In mechanical equilibrium (8-22) the second term vanishes, and the first,

δWint =
∫

V

∑

ij

σij∇jδui dV , (9-31)

must be interpreted as the work done against the internal contact forces. The
work done by the internal forces is accordingly −δWint. Although internal contact
forces cancel each other in the total force (because of Newton’s third law), they
do not cancel in the total work, because the displacement varies from place to
place. If the stresses are only due to pressure, σij = −pδij , this becomes

δW = −
∫

V

p ∇ · δu dV . (9-32)

Comparing with (9-28) we recognize that the integrand is the thermodynamic
work −p δ(dV ) performed on a material particle under the displacement.
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∗ 9.5 Finite local deformation

When the condition (9-14) for slowly varying displacement is not fulfilled, we can
no more use the simple Cauchy strain tensor (9-17). The local description of finite
deformation (see for example [12]) is essentially equivalent to the formalism of
general curvilinear coordinate systems, but because space is assumed Euclidean
the description is not as complicated as that of truly non-Euclidean spaces. Ronald Samuel Rivlin

(1915–). British born en-
gineer. Contributed to the
understanding of non-linear
materials during the 1940’s
and 1950’s.

Although many aspects of finite deformation theory were developed in the
19’th century, the subject was not fully established until the mid 20’th century
through Rivlin’s work on non-linear materials. Here we shall only touch briefly
on the most general aspects of finite deformation theory.

The non-linear strain tensor

For a finite deformation

x → x′ = f(x) = x + u(x) , (9-33)

there is no reason to split off a special displacement field u(x), although we
shall do so in order to keep contact with the previous analysis. Under a general
transformation, an infinitesimal vector, a “needle” a, in the neighborhood of x
is transformed into

a′i =
∑

j

Fij(x) aj (9-34)

where the tensor field

Fij =
∂x′i
∂xj

= ∇jfi = δij +∇jui (9-35)

is called the deformation gradient.
The scalar product of two infinitesimal vectors becomes

a′ · b′ =
∑

k

a′kb′k =
∑

ij

Gij(x) aibj (9-36)

where

Gij =
∑

k

FkiFkj = δij +∇iuj +∇jui +
∑

k

∇iuk∇juk (9-37)

is called the deformation tensor field, and was introduced by George Green in
1841. Writing George Green (1793–1841).

Self-taught English mathe-
matician and mathematical
physicist.

Gij = δij + 2uij , (9-38)

the generalization of Cauchy’s strain tensor (9-17) becomes

uij =
1
2

(
∇iuj +∇jui +

∑

k

(∇iuk)(∇juk)

)
(9-39)
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also called Green’s strain tensor. The condition that the displacement field should
change slowly across the material, |∇iuj | ¿ 1, is of course sufficient to guarantee
the smallness of the strain tensor and the linear form (9-17). The opposite is
not in general true. A displacement with a large displacement gradient does
not necessarily lead to a large strain tensor. The prime counterexample is a
rigid body rotation through a finite angle, in which all derivatives are of order
1, whereas we know from the orthogonality of Fij that the strain tensor must
vanish (problem 9.13).

Example 9.5.1: For a uniform dilatation (9-1) we have ∇jui = (κ − 1)δij and
the strain tensor becomes,

uij =
1

2

�
(κ− 1)δij + (κ− 1)δij + (κ− 1)2δij

�
= (κ2 − 1)δij , (9-40)

for any value of κ. It vanishes for κ = ±1, i.e. for no displacement and a pure
reflection in the origin. The scalar product of two needles becomes,

a′ · b′ = κ2a · b, (9-41)

just reflecting that all lengths are scaled by the same amount, whereas angles are
unchanged under a dilatation.

Euler versus Lagrange

It is sometimes convenient, and in a sense more physically correct, to refer dis-
placements to the actual positions of the material particles instead of their orig-
inal positions. This is called the Eulerian description of deformation as opposed
to the Lagrangian description used until now.

Let us define the Eulerian displacement field u′(x′) as a function of x′ with
exactly the same (vector) value at the actual position as the Lagrangian field
u(x) at the original position

u′(x′) = u(x) . (9-42)

Even if the two displacement fields take the same values at corresponding po-
sitions, the relation between them is non-trivial. To see this, we use (9-33) to
calculate the original position x = x′ − u(x) = x′ − u′(x′), and inserting this
into the right hand side of (9-42), we obtain a functional equation

u′(x′) = u(x′ − u′(x′)) . (9-43)

Given u(x), this equation must be solved for u′(x′), but that is in general im-
possible.

Example 9.5.2: For the case of a linear displacement, the equation may be
solved. In the Lagrangian description we have

u(x) = (AAA− 111) · x+ b , (9-44)
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from which we derive the displacement field in the Eulerian description,

u′(x′) = (111−AAA −1) · x′ +AAA −1 · b . (9-45)

which is very different from the Lagrangian expression.

Writing the inverse needle transformation in the form

ai =
∑

j

F ′ija
′
j (9-46)

we find the Eulerian deformation gradient

F ′ij(x
′) =

∂xi

∂x′j
= δij −∇′ju′i(x′) . (9-47)

Since ∑

k

F ′ik(x′)Fkj(x) =
∑

k

∂xi

∂x′k

∂x′k
∂xj

= δij , (9-48)

the two deformation gradients are each other’s inverses. This relation also con-
nects the two displacement gradients, ∇jui(x) and ∇′ju′i(x′). Defining

a · b =
∑

ij

G′ija
′
ib
′
j , (9-49)

we obtain,
G′ij ≡ δij − 2u′ij =

∑

k

F ′kiF
′
kj , (9-50)

where u′ij is the non-linear strain tensor in the Eulerian description

u′ij =
1
2

(
∇′iu′j +∇′ju′i −

∑

k

∇′iu′k∇′ju′k
)

. (9-51)

This tensor was introduced by Almansi in 1911 and Hamel in 1912. The relation
between the Green and Almansi strain tensors becomes

u′ij =
∑

kl

F ′kiF
′
ljukl , (9-52)

where all quantities are calculated at corresponding positions. For small displace-
ment gradients (9-14), all differences between the two descriptions disappear.
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Problems

9.1 Prove that
2a · b = |a+ b|2 − |a|2 − |b|2 . (9-53)

and use this to show that the change in a scalar product under a deformation is derivable
from changes in length.

9.2 Show that the general displacement rule for a an infinitesimal needle (9-10) may
be written

a′ = a+ �× a+UUU · a (9-54)

where φ = 1
2
r × u and UUU = {uij} is Cauchy’s strain tensor (9-17). What does the

second term mean?

9.3 Show that the most general solution, for which Cauchy’s strain tensor (9-17)
vanishes, is

ux = A + Dy + Ez

uy = B −Dx + Fz

uz = C − Ex− Fy

where A, B, C are arbitrary constants and D, E, F are small.

9.4 Calculate the displacement gradients and the strain tensor for the displacement
field u = α(y2, xy, 0) with |α| ¿ 1/L, where L is the size of the body.

9.5 Calculate the principal directions of strain and the dilatation factors for problem
9.4.

9.6 A deformable material undergoes two successive displacements, x′ = x + u(x)
and x′′ = x′ + u′(x′), both having small strain. Calculate the final strain tensor for
the total deformation euij relative to the original reference state.

9.7 Show that the infinitesimal change in the area S = |a× b| is

δS = |a| |b| uaa + ubb − 2uab cos φab

sin φab
(9-55)

9.8 Calculate the strain tensor for u = (y, x, 0). Determine the principal directions
of strain and the change in length scales along these.

9.9 Show that the matrix 111 + 2uuu, where uuu is the strain tensor, is positive definite.

9.10 Calculate the relative volume change in a uniform expansion.

9.11 A deformable material undergoes two successive finite displacements, x′ = x+
u(x) and x′′ = x′ + u′(x′). Calculate the final strain tensor for the total deformationeuij relative to the original reference state.
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∗ 9.12 Calculate the non-linear strain tensor for the displacement field u = (Ax +
Cy, Cx−By, D) where A, B, C, D are constants.

∗ 9.13 Show that rigid body translation and rotation are the only displacement fields
with vanishing strain tensor.

∗ 9.14 Show that the infinitesimal strain tensor satisfies the relation

∇i∇jukl +∇k∇luij = ∇i∇lukj +∇k∇juil . (9-56)

Conversely, if this relation is fulfilled for a symmetric tensor field uij then there is a
displacement field such that the strain tensor is given by (9-17).

9.15 Show that the characteristic polynomial for the strain tensor may be written in
the form

‖uij − λδij‖ = −λ3 + uiiλ
2 − 1

2
(uiiujj − uijuij)λ + det uij (9-57)

∗ 9.16 Calculate displacement and strain tensor for the deformation

x′ = 5x− y + 3z

y′ = x + 8y

z′ = −3x + 4y + 5z

∗ 9.17 Show that

δij + 2uij =
X

k

(δik +∇iuk)(δjk +∇juk) , (9-58)

and use this to prove that the matrix {δij + 2uij} is positive definite. Show that

det {δij +∇iuj} =
p

det {δij + 2uij} . (9-59)

Use this to demonstrate that the infinitesimal volume change (9-28) is valid for any
deformation with small strain tensor without assuming a slowly varying displacement
field.

∗ 9.18 Show that a non-singular matrix A may be written in the form A = U ∗ DV
where U and V are orthogonal matrices and D is diagonal.
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