
Part III

Deformable solids





8
Stress

In a fluid at rest, pressure is the only contact force. For solids at rest or in motion,
and for viscous fluids in motion, this simple picture is no longer valid. Besides
pressure-like forces acting along the normal to a contact surface, there may also
be shear forces acting tangentially to it. In complete analogy with pressure, the
relevant quantity turns out to be the shear stress, defined to be the shear force
per unit of area. Friction forces are always due to shear stresses.
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The force on a small piece
of a surface can be resolved
in a normal pressure-like
force and a tangential shear
force.

The two major classes of materials, fluids and solids, react differently to stress.
Whereas fluids respond by flowing, solids respond by deforming. Although the
equations of motion in both cases are derived from Newton’s second law, fluids
and solids are in fact so different, that they usually are covered in separate
textbooks. In this book, we shall as far as possible maintain a general view of
the physics of continuous systems, applicable to all types of materials.

The integrity of a solid body is largely due to internal elastic stresses, both
normal and shear. Together they resist deformation of the material and prevent
the body from being pulled apart. Unlike friction, elastic forces do not dissipate
energy, and ideally the work done against elastic forces during deformation may
be fully recovered. In reality, some elastic energy will always be lost because of
emission of sound waves that eventually decay and turn into heat. Baron Augustin Louis

Cauchy (1789–1857).
French mathematician.
Contributed to the foun-
dations of elasticity, hy-
drodynamics, and complex
analysis

In this chapter the emphasis is on the theoretical formalism for contact forces,
independently of whether they occur in solids, fluids, or intermediate plastic forms
such as clay or dough. The vector notation used up to this point is not adequate
to the task, because contact forces not only depend on the spatial position but
also on the orientation of the surface on which they act. A collection of nine
stress components, called the stress tensor, was introduced by Cauchy in 1822 to
describe the full range of contact forces that may come into play in a body.
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8.1 Friction

The concept of shear stress is best understood through friction, a shear force
known to us all. We hardly think of friction forces, even though we all day long
are served by them and do service to them. Friction is the reason that the objects
we hold are not slippery as a piece of soap in the bathtub, but instead allow us
to grab and drag, heave and lift, rub and scrub. Most of the work we do is in
fact done against friction, from stirring the coffee to making fire by rubbing two
sticks against each other.
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Balance of forces on a crate
standing still on a horizontal
floor. The normal reaction
N balances gravity mg0 and
the tangential reaction T
balances the external force
F . The point of attack A
for the external force is here
chosen to be at floor level to
avoid creating a moment of
force which could turn over
the crate.

Static and sliding friction

Consider a heavy crate standing on a horizontal floor. Its weight mg0 acts ver-
tically downwards on the floor, which in turn reacts back on the crate with an
equal and opposite normal force of magnitude N = mg0. If you try to drag
the crate along the floor by applying a horizontal force F , also called traction,
you may discover that the crate is so heavy that you are not able to budge it,
implying that the force that you are able to apply must be fully balanced by a
tangential friction force between the floor and the crate of the same magnitude,
T = F , but of opposite direction.

Empirically, such static friction can take any magnitude up to a certain max-
imum, which is proportional to the normal load,

T < µ0N . (8-1)

The dimensionless constant of proportionality µ0 is called the coefficient of static
friction which in our daily doings may take a quite sizable value, say 0.5 or
greater. Its value depends on what materials are in contact and on the roughness
of the contact surfaces.
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Sketch of tangential reac-
tion T as a function of
applied traction F . Up to
F = µ0N , the tangential
reaction adjusts itself to
the traction, T = F . At
F = µ0N , the tangential
reaction drops abruptly to a
lower value, and stays there
independently of the applied
traction. Since the forces
are no more in balance the
body has to move.

If you are able to pull with a sufficient strength, the crate suddenly starts to
move, but friction will still be present and you will have to do real work to move
the crate any distance. Empirically, the dynamic (kinetic or sliding) friction is
proportional to the normal load,

T = µN , (8-2)

with a coefficient of dynamic friction, µ, always smaller than the corresponding
coefficient of static friction, µ < µ0 This is why you have to heave strongly to get
the crate set into motion, whereas afterwards a smaller force suffices to keep it
going at constant speed. The law of sliding friction goes back to Coulomb (1785)
(and Amontons (1699)). The full story of dynamic friction is complicated, and in
spite of the everyday familiarity with friction, there is still no universally accepted
microscopic explanation of the phenomenon [43].Charles-Augustin de

Coulomb (1736–1806).
French physicist best known
from the electrostatic law
that carries his name.

Example 8.1.1: The proportionality between friction and load is also the reason
that a car’s braking distance in the leading approximation is independent of how
heavily it is loaded. Anti-skid brake systems automatically adjust braking pressure
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so that you can avoid skidding and thus all the time exploit that static friction is
greater than sliding friction in order to minimize braking distance.

Stress and friction

Shear stress is, just like pressure, defined as force per unit of area, and the
standard unit of stress is the same as the unit for pressure, namely pascal (Pa =
N/m2). If the crate on the floor has a contact area A, we may speak both about
the average normal stress σn = N/A and the average tangential (or shear) stress
σt = T/A that the crate exerts on the floor. In terms of the stresses, the laws of
static and dynamic friction take the form

σt < µ0 σn , σt = µ σn . (8-3)

Depending on the mass distribution of the contents of crate and the stiffness of
its bottom, the local stresses may vary across the contact area A. For a planar
contact area the total normal and tangential reactions become integrals over the
normal and tangential local stresses,

N =
∫

A

σn(x) dS , T =
∫

A

σt(x) dS . (8-4)

If the stress distributions everywhere obey the local friction laws (8-3), the global
friction laws (8-1) and (8-2) follow automatically.

8.2 Internal stresses

The stresses acting between the crate and the floor are external and are found in
the true interface between a body and its environment. In analogy with pressure,
we shall also speak about internal stresses, even if we may be unable to define a
practical way to measure them. Internal stresses abound in the macroscopic world
around us. Whenever we come into contact with the environment (and when do
we not) stresses are set up in the materials we touch, and in our own bodies. The
precise distribution of stress in a body depends not only on the external forces
applied to the body, but also on the type of material the body is made from and
on other macroscopic quantities such as temperature. In the absence of external
forces there is usually no stress in a material, although fast cooling may freeze
stresses permanently into certain materials, for example glass, and provoke an
almost explosive release of stored energy when triggered by a sudden impact.
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Clamped slab of homoge-
neous material. The shear
force F at the upper clamp
is balanced by an oppositely
directed fixation force F
on the lower clamp. The
shear stress σ = F/A is
everywhere the same on all
inner surfaces parallel with
the clamps.

Estimating internal stress

In many situations it is quite straightforward to estimate average stresses in a
body. Consider, for example, a slab of homogeneous solid material bounded by
two stiff flat clamps of area A, firmly glued to it. A tangential force of magnitude
F applied to one clamp with the other held fixed will deform the slab a bit in the



150 8. STRESS

direction of the applied force. Here we shall not worry about how to calculate
the deformation of the slab, but just assume that the response of the slab is the
same everywhere, so that there is a uniform shear stress σ = F/A acting on the
surface of the slab.

The fixed clamp will of course act back on the slab with a force of the same
magnitude but opposite direction. If we make an imaginary cut through the slab
parallel with the clamps, then the upper part of the slab must likewise act on the
lower with the shear force F , so that the internal shear stress everywhere in the
cut again must be σ = F/A. If pressure had also been applied to the clamps, we
would have gone through the same type of argument to convince ourselves that
the normal stress would be the same everywhere in the cut.

For bodies with a more complicated geometry and non-uniform external load,
internal stresses are not so easily calculated, although their average magnitudes
may be estimated. In analogy with friction, for many non-exceptional materials
and body geometries one may assume that variations in shear and normal stresses
are roughly of the same order of magnitude.
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The classic gallows.

Example 8.2.1: The classic gallows is constructed from a vertical pole, a hori-
zontal beam, and sometimes a diagonal strut. A body of mass M = 70 kg hangs
at the extreme end of the horizontal beam, of cross-section A = 100 cm2. The
body’s weight must be balanced by a vertical shear stress in the beam of magnitude
σ ≈ Mg0/A ≈ 70, 000 Pa, or 0.7 bar. The actual distribution of shear stress will
vary over the cross-section of the beam and the position of the chosen cross-section,
but its average magnitude should be of the estimated value.

Example 8.2.2: The half-inch water mains in your house have an inner pipe
radius a ≈ 0.6 cm. Tapping water at a high rate, internal friction in the water
(viscosity) creates shear stresses opposing the flow, and the pressure drops perhaps
by ∆p ≈ 0.1 bar = 104 Pa over a length of L ≈ 10 m of the pipe. In this case, we
may actually calculate the shear stress on the water from the inner surface of the
pipe without estimation errors, because the pressure difference between the ends
of the pipe is the only other force acting on the water. Setting the force due to
the pressure difference equal to the total shear force on the inner surface, we get,
πa2∆p = 2πaLσ, from which it follows that σ = ∆p a/2L ≈ 3 Pa. This stress is
indeed of the same size as we would have estimated from the corresponding pressure
drop ∆p · a/L over a stretch of pipe of the same length as the radius.

Tensile strength

Metal MPa

Lead 17
Zink 130
Cast iron 180
Copper 300
Titanium 330–500
Carbon steel 450
Nickel 460
Stainless steel 550

Typical tensile strength for
common metals. The val-
ues may vary widely for dif-
ferent specimens, depending
on heat treatment and other
factors.

When external forces grow large, a solid body may fracture and break apart. The
maximal tension, i.e. negative pressure or pull, a material can sustain without
fracturing is called the tensile strength of the material. For metals it is typically
in the region of hundreds of megapascals.

Example 8.2.3: Plain carbon steel has a tensile strength of 450 MPa. A quick
estimate shows that a steel rod with a diameter of 2 cm breaks, if loaded with more
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than 14, 000 kg. Adopting a safety factor of 10, one should not load it with more
than 1, 400 kg.

The yield stress is defined as the stress beyond which otherwise elastic solids
begin to undergo permanent deformation.

8.3 Nine components of stress

Shear stress is more complicated than normal stress, because there is more than
one tangential direction on a surface. In a coordinate system where a force dFx

is applied along the x-direction to material surface dSy with its normal in the
y-direction, the shear stress will be denoted σxy = dFx/dSy, instead of just σ.
Similarly, if the shear force is applied in the z-direction, the stress would be
denoted σzy = dFz/dSy, and if a normal force had been applied along the y-
direction, it would be consistent to denote the normal stress σyy = dFy/dSy. By
convention, the sign is chosen such that a positive value of σyy corresponds to a
pull or tension.
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Components of stress acting
on a surface element in the
xz-plane.

Cauchy’s stress hypothesis

Altogether, it therefore appears to be necessary to use at least nine numbers to
indicate the state of stress in a given point of a material in a particular coordinate
system. Cauchy’s stress hypothesis (to be proved below) asserts that the force
dF = (Fx,Fy,Fz) on an arbitrary surface element, dS = (dSx, dSy, dSz), with
arbitrary orientation with respect to the coordinate frame, is of the form

dFx = σxxdSx + σxydSy + σxzdSz ,

dFy = σyxdSx + σyydSy + σyzdSz ,

dFz = σzxdSx + σzydSy + σzzdSz .

(8-5)

where each coefficient σij = σij(x, t) depends on the position and time, and thus
is a field in the normal sense of the word. Collecting them in a matrix

σσσ = {σij} =




σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 . (8-6)

the force may be written compactly,

dF = σσσ · dS . (8-7)

The force per unit of area, dF/dS = σσσ ·n, where n is the normal to the surface,
is sometimes called the stress vector, although it is not a vector field in the usual
sense of the word because it depends on the normal.
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The stress tensor

Together the nine fields, {σij}, make up a single geometric object, called the
stress tensor, first introduced by Cauchy in 1822. Using index notation, we may
write

dFi =
∑

j

σijdSj . (8-8)

Since the force dFi as well as the surface element dSi are vectors, it follows
that σij is indeed a tensor in the sense of in section 2.6 (see also problem 2.17).
This collection of nine fields {σij} cannot be viewed geometrically as consisting
of nine scalar or three vector fields, but must be considered together as one
geometrical object, a tensor field σij(x, t) which is neither scalar nor vector. As
for ordinary tensors (see section 2.6), there is unfortunately no simple, intuitive
way of visualizing the stress tensor geometrically.

Example 8.3.1: The stress tensor field of the form,

{σij} = {xixj} =

0@x2 xy xz
yx y2 yz
zx zy z2

1A (8-9)

is a tensor product and thus by construction a true tensor. The stress “vector”
acting on a surface with normal in the direction of the x-axis is

�x = σσσ · ex =

0@x
y
z

1Ax (8-10)

does not transform under rotations as a true vector because of the factor x on the
right hand side.

Hydrostatic pressure

For the special case of hydrostatic equilibrium, where the only contact force is
pressure, comparison of (8-7) with (4-7) shows that the stress tensor must be

σσσ = −p 111 , (8-11)

where 111 is the [3× 3] unit matrix. In tensor notation this becomes

σij = −p δij , (8-12)

where δij is the index representation of the unit matrix, i.e. the Kronecker delta
(2-27).
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Average pressure

Generally, however, the stress tensor will have both diagonal and off-diagonal
non-vanishing components. A diagonal component behaves like a (negative) pres-
sure, and one often defines the pressures along different coordinate axes to be

px = −σxx , py = −σyy , pz = −σzz . (8-13)

Since they may be different, it is not clear what the meaning of the pressure
in a point should be. Furthermore, it should be remembered that the diagonal
elements of a tensor (σxx, σyy, σzz) do not behave as a vector under Cartesian
coordinate transformations and thus have no well-defined geometric meaning (see
section 2.6 and problem 2.21).

The pressure is defined to be the average of the three pressures along the
axes,

p =
1
3
(px + py + pz) = −1

3
(σxx + σyy + σzz) . (8-14)

This makes sense because the sum over the diagonal elements of a matrix, the
trace Tr σσσ =

∑
i σii = σxx + σyy + σzz, is invariant under Cartesian coordinate

transformations (problem 2.15). Defining pressure in this way ensures that it is
a scalar field, taking the same value in all coordinate systems.

Example 8.3.2: For the stress tensor given in example 8.3.1 the pressures along
the coordinate axes become

px = −x2 , py = −y2 , pz = −z2 . (8-15)

The average pressure,

p = −1

3
(x2 + y2 + z2) , (8-16)

proportional to the distance squared from the origin, is clearly invariant under ro-
tations of the Cartesian coordinate system.

∗ Proof of Cauchy’s stress hypothesis
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The tiny triangle and its
projections form a tetrahe-
dron.

Let us as in the proof of Pascal’s law (page 64) again take a surface element in
the shape of a tiny triangle with area vector dS = (dSx, dSy, dSz). The triangle
and its projections on the coordinate planes form together a little body in the
shape of a tetrahedron. Since we aim to prove the existence of the stress tensor,
we cannot assume that it exists. What we know is that the forces acting from the
inside of the tetrahedron on the three triangular faces in the coordinate planes are
vectors of the form dFx = σxdSx, dFy = σydSy, and dFz = σzdSz. Calling the
force acting from the outside on the fourth (skew) face dF , and adding a possible
volume force fdV , the equation of motion for the small tetrahedron becomes

dM w = fdV + dF − dFx − dFy − dFz , (8-17)
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where w is the acceleration of the tetrahedron, and dM = ρdV its mass, which
is assumed to be constant. The signs have been chosen in accordance with the
inward direction of the area projections dSx, dSy and dSz.

The volume of the tetrahedron scales like the third power of its linear size,
whereas the surface areas only scale like the second power (see section 4.1).
Making the tetrahedron progressively smaller, the body force term and the left
hand side of the above equation will vanish faster than the surface terms. In the
limit of a truly infinitesimal tetrahedron, only the surface terms survive, so that
we must have

dF = σxdSx + σydSy + σzdSz . (8-18)

This shows that the force on an arbitrary surface element may be written as
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Components of the stress
vector �x acting on a sur-
face element in the yz-plane.

a linear combination of three basic stress vectors, one for each coordinate axis.
Introducing the nine coordinates of these three vectors, σx = (σxx, σyx, σzx),
σy = (σxy, σyy, σzy), and σz = (σxz, σyz, σzz), we arrive at (8-5).

8.4 Mechanical equilibrium

Including a volume force density fi, the total force on a volume V with surface
S becomes according to (8-8)

Fi =
∫

V

fi dV +
∮

S

∑

j

σij dSj . (8-19)

Using Gauss’ theorem (4-20) this may be written as single volume integral

Fi =
∫

V

f∗i dV , (8-20)

where

f∗i = fi +
∑

j

∇jσij , (8-21)

is called the effective force density. The effective force is not just a formal quan-
tity, because the total force on a material particle of volume dV is dF = f∗ dV .
This may as in hydrostatics also be shown by considering a small box-shaped
rectangular particle.

r
(x, y, z) dx

dz dy
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The total contact force on
a small box-shaped mate-
rial particle is calculated
from the variations in
stress on the sides. Thus
dF = (�x(x + dx, y, z) −
�x(x, y, z))dSx ≈ ∇x�x dV
for the stress on dSx, plus
the similar contributions
from dSy and dSz.

Cauchy’s local equilibrium equation

In mechanical equilibrium, the total force on any piece of material must vanish,
for if it doesn’t the piece of material will begin to move. So the general condition is
that F = 0 for all volumes V . As for hydrostatic equilibrium, it is advantageous
to formulate the principle of mechanical equilibrium for infinitesimal material
particles, thereby liberating the formalism for the explicit volume of matter V .
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In complete mechanical equilibrium the effective force density has to vanish
everywhere, leading to the partial differential equations

fi +
∑

j

∇jσij = 0 . (8-22)

This equation is called Cauchy’s equation of equilibrium (1827) and governs in
spite of its apparent simplicity mechanical equilibrium in all kinds of continuous
matter, be it solid, fluid, or something else. In particular, for σij = −p δij we
recover the equation of hydrostatic equilibrium, fi −∇ip = 0.

The three individual equations in Cauchy’s equilibrium equation,

fx +∇xσxx +∇yσxy +∇zσxz = 0
fy +∇xσyx +∇yσyy +∇zσyz = 0
fz +∇xσzx +∇yσzy +∇zσzz = 0

(8-23)

are insufficient in number to determine the equilibrium, and must be supple-
mented by suitable constitutive equations connecting stress with the state of
matter. For fluids at rest, the equation of state serves this purpose by relating
hydrostatic pressure and mass density. In elastic solids, the constitutive equations
are more complicated and relate stress to deformation (chapter 10).

Fluids and solids in motion can by their nature not be in mechanical equi-
librium and obey instead dynamic equations that we shall discuss in chapters 14
and 12. In addition to hydrostatic pressure, fluids in motion will also be subject
to stresses that depend on the spatial variation in flow velocity (chapter 17).

Symmetry

There is one very general condition (also going back to Cauchy) which may always
be imposed, namely the symmetry of the stress tensor

σij = σji . (8-24)

Symmetry only affects the shear stress components, requiring
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A symmetric stress tensor
acts with equal strength on
orthogonal faces of a cubic
body.

σxy = σyx , σyz = σzy , σzx = σxz , (8-25)

and thus reduces the number of independent stress components from nine to six.

Being thus a symmetric matrix, the stress tensor may be diagonalized. The eigen-
vectors define the principal directions of stress and the eigenvalues the principal
tensions or stresses. In the principal basis, there are no off-diagonal elements,
i.e. shear stresses, only pressures. The principal basis is generally different from
point to point.
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Proof of symmetry: The technical “proof” of symmetry rests on exploiting
an ambiguity in the definition of the stress tensor and will be given in section 8.5.
Here we shall only present a simple argument valid for mechanical equilibrium.
Consider again a material particle in the shape of a tiny rectangular box with
sides a, b, and c. The force acting in the y-direction on a face in the x-direction
is σyxbc whereas the force acting in the x-direction on a face in the y-direction is
σxyac. On the opposite faces the contact forces have opposite sign in mechanical
equilibrium (their difference and the volume forces are as we have seen of order
abc). The total moment of force on the box then becomes (calculated around the
lower left corner)

Mz = a σyxbc− b σxyac = (σyx − σxy)abc .

This shows that if the stress tensor is asymmetric, σxy 6= σyx, there will be a

-
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σxyac

6

σyxbc

¾
−σxyac
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−σyxbc
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An asymmetric stress tensor
will produce a non-vanishing
moment of force on a small
box (the z-direction not
shown).

resultant moment on the box. In mechanical equilibrium this cannot be allowed,
since such a moment would begin to rotate the box, and consequently the stress
tensor must be symmetric. Conversely, when the stress tensor is symmetric,
mechanical equilibrium of the forces alone guarantees that all moments of force
will vanish.

Boundary conditions
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1 2

¾n
σσσ1 σσσ2

Contact surface separat-
ing body 1 from body 2.
Newton’s third law requires
continuity of the stress vec-
tor σσσ ·n across the boundary,
i.e. σσσ1 · n = σσσ2 · n.

Cauchy’s equation of equilibrium is a differential equation, and differential equa-
tions require boundary conditions. The stress tensor is a local physical quan-
tity, or rather collection of quantities, and may, like pressure in hydrostat-
ics, be assumed to be continuous in regions where material properties change
continuously. Across real boundaries, interfaces, where material properties
may change abruptly, Newton’s third law only demands that the stress vector,
σσσ · n = {∑j σijnj}, be continuous across a surface with normal n. This does
not mean that all the components of the stress tensor should be continuous.
Since Newton’s third law is a vector condition, it imposes continuity on three
linear combinations of stress components, but leaves for the symmetric stress
tensor three other combinations, among these the average pressure, free to jump
discontinuously.
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Only the three components
of the stress vector need to be
continuous on the interface.

Example 8.4.1: Consider a plane interface in the yz-plane. The stress compo-
nents σxx, σyx, and σzx must then be continuous, because they specify the stress
vector on such a surface. Symmetry implies that σxy and σxz are likewise continuous.
The remaining three independent components σyy, σzz, and σyz = σzy are allowed to
jump at the interface. In particular the average pressure, p = −(σxx +σyy +σzz)/3,
may jump.



8.5. “PROOF” OF SYMMETRY OF THE STRESS TENSOR 157

∗ 8.5 “Proof” of symmetry of the stress tensor

If the stress tensor is manifestly asymmetric, we shall now show that it is always
possible to make it symmetric by exploiting an ambiguity in its definition. The
argument which will now be presented is adapted from Martin, Parodi, and
Pershan1 (see also [10, p. 7]).

The stress tensor was introduced in the beginning of this chapter as a quantity
which furnished a complete description of the contact forces that may act on any
surface element. But surface elements are not in themselves physical bodies. The
only way we can determine the magnitude and direction of a force is by observing
its influence on the motion of a real physical body having a volume and a closed
surface. The resultant of all contact forces acting on the surface of a body is

∮

S

∑

j

σij dSj =
∫

V

∑

j

∇jσij dV ,

and this shows that the relevant quantity for the dynamics of continuous matter
is the effective density of force

∑
j ∇jσij rather than the stress tensor itself.

Two stress tensors, σij and σ̃ij , are therefore physically indistinguishable,
if they give rise to the same effective density of force everywhere. This is, for
example, the case if we write

σ̃ij = σij +
∑

k

∇kχijk (8-26)

where χijk is antisymmetric in j and k,

χijk = −χikj . (8-27)

For then
∑

j

∇j σ̃ij =
∑

j

∇jσij +
∑

jk

∇j∇kχijk =
∑

j

∇jσij ,

where the last term in the middle vanishes because of the symmetry of the double
derivatives and the assumed antisymmetry of χijk.

It remains to show that there exists a tensor χijk such that σ̃ij becomes
symmetric. Let us put

χijk = ∇iφjk +∇jφik −∇kφij (8-28)

where φij is an antisymmetric tensor, φij = −φji, chosen to be a solution to
Poisson’s equation with the antisymmetric part of the original stress tensor as
source,

∇2φij =
1
2
(
σij − σji

)
. (8-29)

1P. C. Martin, O. Parodi, and P. S. Pershan, Phys. Rev. A6, 2401 (1972)
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Such a solution can in principle always be found, and then we obtain from (8-26)

σ̃ij =
1
2
(
σij + σji

)
+

∑

k

∇k

(∇iφjk +∇jφik

)
(8-30)

which is manifestly symmetric. Notice, however, that the new symmetric stress
tensor is not just the symmetric part of the old, but contains extra terms.

Non-classical continuum theories

The conclusion is, that if somebody presents you with a stress tensor which is
asymmetric, you may always replace it by a suitable symmetric stress tensor,
having exactly the same physical consequences.

But even if it is formally possible to choose a symmetric stress tensor, it may
not always be convenient, because of the non-locality inherent in the solution
to Poisson’s equation in (8-29). Asymmetric stress tensors have been used in
various generalizations of classical continuum theory, containing elementary vol-
ume and surface densities of moments (body couples and couple stresses) and
sometimes also intrinsic angular momentum (spin). We shall not go further into
these extensions of continuum theory here (so-called micropolar materials are,
for example, discussed in [33, p. 493]).
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Problems

8.1 A crate standing on a horizontal floor is pulled with a force F attacking at a
height h above the floor. Show that the vanishing of the moment of force implies that
the normal reaction force N must attack in a point which is positioned a horizontal
distance d from the center of gravity.

Determine the angle α with the vertical of the total reaction force for a crate being
dragged over a horizontal floor with sliding friction coefficient µ.

8.2 A car with mass m moves with a speed v. Estimate the minimal breaking distance
without skidding and the corresponding braking time. Do the same if it skids from the
beginning to the end. For numerics use m = 1000 kg and v = 100 km/h. The static
coefficient of friction between rubber and the surface of a road may be taken to be
µ0 = 0.5, whereas the sliding friction is µ = 0.4.

8.3 A body of mass m stands still on a horizontal floor. The coefficients of static
and kinetic friction between body and floor are µ0 and µ. An elastic string with string
constant k is attached to the body in a point close to the floor. The string can only
exert a force on the body when it is stretched beyond its relaxed length. When the free
end of the string is pulled horizontally with constant velocity v, intuition tells us that
the body will have a tendency to move in fits and starts.

a) Calculate the amount s that the string is stretched, just before the body begins
to move?

b) Write down the equation of motion for the body when it is just set into motion,
for example in terms of the distance x that the point of attachment of the string
has moved and the time t elapsed since the motion began.

c) Show that the solution to this equation is

x =
v

ω
(ωt− sin ωt) + (1− r)s(1− cos ωt)

where ω =
p

k/m, r = µ/µ0.

d) Assuming that the string stays stretched, calculate at what time t = t0 the body
stops again?

e) Find the condition for the string to be stretched during the whole motion.

f) How long time will the body stay in rest, before moving again?

8.4 A strong man pulls a jumbo airplane slowly but steadily exerting a force of 2000 N
on a rope. The plane has 32 wheels each touching the ground in a square area with side
40 cm. a) Estimate the shear stress due to friction between the rubber and the tarmac.
b) Estimate the shear stress between the tarmac and his feet of size 10 × 25 cm2.

8.5 Estimate the maximal height of a mountain made from rock with a density of
3, 000 kg/m3 when the maximal stress the material can tolerate before it deforms per-
manently is 1000 MPa.

8.6 Buy a stick of rubbery candy and estimate (or measure) its tensile strength.
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8.7 Show that if the stress tensor is diagonal in all coordinate systems, then it can
only contain pressure.

8.8 A stress tensor has all components equal, i.e. σij = τ for all i, j. Find its eigen-
values and eigenvectors.

8.9 Show without using Gauss’ theorem that the sum of all mechanical forces on an
infinitesimal rectangular box of volume dV = dxdydz is f∗ dV .

∗ 8.10 Show that the minimum and maximum of σjknjnk, where n is a unit vector,
occurs along the principal axes.

∗ 8.11 One may define three invariants, i.e. scalar functions, of the stress tensor in any
point. The first is the trace I1 =

P
i σii, the second I2 = 1

2

P
ij(σiiσjj − σijσij) which

has no special name, and the determinant I3 = detσσσ. Write the characteristic equation
for the matrix σσσ in terms of the invariants. Can you find a further invariant for an
asymmetric stress tensor?


