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Subsonic flight

The takeoff of a large airplane never ceases to wonder passengers and bystanders
alike. After building up speed during a brief half-minute run, gravity lets go and
the plane marvellously lifts off. For this to happen, it is obvious that the engines
and the airflow must together generate a vertical force which is larger than the
weight of the aircraft. After becoming airborne the airplane accelerates further
for a while, and then goes into a fairly steep steady climb until it levels off at
its cruising altitude. Aloft in level flight at constant speed, the aerodynamic
lift must nearly balance the weight, whereas the engine thrust almost entirely
goes to oppose the drag. What is not obvious to most passengers is how the lift
depends on the forward speed, the angle of attack, and the shape of the airframe,
especially the wings.

The general explanation of aerodynamic lift is quite simple, even if it was
only in the beginning of the twentieth century — about the same time as the
first generation of airplanes were built — that the details became understood. In
nearly ideal flow, pressure is the dominant stress acting on any surface. Conse-
quently, for a lift to exist, the pressure must be higher underneath the wing than
above. Bernoulli’s theorem then implies that the airspeed must be higher above
the wing than below, effectively creating a circulation around the wing, a kind
of bound vortex superimposed on the general airflow. Without this circulation,
caused by the shape and flying attitude of the wing, there can be no lift.

In this chapter we shall only study the most basic theory for subsonic flight
with emphasis on concepts and estimates. Aerodynamics is a huge subject (see
for example [53, 56]) of importance for all objects moving through the air, such
as rifle bullets, rockets, airplanes, cars, birds and sailing ships, and to some
extent for submarines moving through water. The potential for triumphant rise
and tragic fall unavoidably associated with flying machines makes aerodynamics
different from most other branches of science.
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The symmetry plane and
wing plane of normal winged
aircraft.

yaw
roll pitch

The three axes of a mnor-
mal winged airplane. The
asreraft  rolls  around the
longitudinal axis, pitches
around the lateral axis, and
yaws around the directional
azis. The nose lies at the
end of the longitudinal azis
and the wings in the plane
of the longitudinal and
lateral azes.

Wilbur and Orwille Wright
(1867-1912, 1871-1948).
American  flight pioneers.
From their bicycle shop
in Dayton, Ohio, the in-
separable brothers carried
out systematic empirical
investigations of the condi-
tions for flight, beginning
in 1896. Built gliders and
airfoil models, wind tunnels,
engines, and propellers.
They finally succeeded in
performing the first heavier-
than-air, manned, powered
flight on  December 17,
1903, ot Kitty Hawk, North
Carolina.

27.1 Aircraft controls

Historically aircraft design went through many phases with sometimes weird
shapes emerging, especially during the 19’th century. In the 20’th century, where
sustained powered flight was finally attained, most of the design problems were
solved through systematic application of theory and experiment. The history of
the evolution of aerodynamics, the courageous men and their wonderful flying
machines, is dramatic to say the least (see for example [54]).

Control surfaces

The majority of all winged aircraft that have ever been built are symmetric under
reflection in a midplane. The wings are typically placed in a plane orthogonal
to the midplane, but often swept somewhat backwards and a bit upwards. On
the wings, and also on the horizontal and vertical stabilizing wing-like surfaces
found at the tail-end of most aircraft, there are smaller movable control surfaces,
connected physically or electronically to the “stick” and the “pedals” in the
cockpit. Normally, there are even smaller movable sections of the control surfaces,
allowing the pilot to trim the aircraft. When the aircraft is trimmed for steady
flight, the cockpit controls are relaxed and do not require constant application
of force to keep the airplane steady. At cruising speed the aircraft is typically
handled with quite small movements of the controls, often carried out by the
autopilot, whereas at low speeds, for example during takeoff and landing, much
larger moves are necessary.

Main aircraft axes

The symmetry plane and the wing plane of normal aircraft define three orthogonal
axes. The first is the longitudinal axis, running along the body of the aircraft in
the intersection of the midplane and the wing plane. Rotation around this axis
is called roll, and is controlled by the ailerons usually found at the trailing edge
of the wings near the wing tips. When the pilot moves the stick from side to side
the ailerons move oppositely to each other and create a rolling moment around
the longitudinal axis. The second is the lateral axis which lies in the wing plane
and is orthogonal to the midplane. Rotation around this axis is called pitch and
is normally controlled by the elevator, usually found in the tail of the aircraft.
The pilot moves the stick forward and backward to create a pitching moment
around the lateral axis. The third is the directional axis which is orthogonal to
both the wings and the body, and thus vertical in straight level flight. Rotation
around this axis is called yaw and normally controlled by the rudder, also placed
in the tail end. In conventional aircraft, the pilot presses foot pedals to move
the rudder and create a yawing moment around the directional axis. It was the
Wright brothers who first introduced controls for all three axes of their aircraft
[54, p. 243].
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Takeoff, cruise and landing

The takeoff of a normal passenger aircraft begins with a run typically lasting half
a minute. In modern aircraft with nose wheel, the body stays horizontal during
the whole run, whereas in older aircraft with tail wheel or slider, the tail would
lift up well into the run and first then make the body nearly horizontal. Having
reached sufficient speed for flight, about 250 — 300 km/h for large passenger
jet planes, the pilot gently pulls the stick back and thereby raises the elevator,
creating a pitching moment that lifts the nose wheel off the runway while the
main undercarriage stays in contact with it. After a bit of acceleration in this
attitude the undercarriage also leaves the runway, and the aircraft is airborne. For
safety reasons the aircraft should not lift off until the speed is somewhat above
the minimal speed for flight. In older airplanes, the actual liftoff was almost
imperceptible, whereas the powerful engines of modern aircraft make the liftoff
much more noticeable through the rather steep climb angle that the aircraft
is capable of assuming immediately after. The climb normally lasts until the
aircraft has reached cruising altitude, typically 10,000 m, at which point it levels
off and accelerates further until it reaches cruising speed, around 800 — 900 km/h
for a modern jet. At normal temperature and pressure the sound speed is about
1200 km/h but at cruising altitude the fall in temperature has reduced it by about
10% — as can be seen from (16-8). The airspeed is thus about 85% of sound
speed, also called Mach 0.85.

Landing is by far the hardest part of flying. The aircraft has to be brought
down to the ground and the speed must be reduced. At low speed the aircraft
controls need to be worked harder than at high speed, and random winds and
turbulence influence the aircraft much more. Keeping the air speed above stall
speed is uppermost in the pilot’s mind, because a stall at low altitude makes
the airplane crash into the ground. Landing speeds are comparable to takeoff
speeds, but the aircraft has to be maneuvered into the narrow space that the
runway presents, and in all kinds of weather. Landing lengths can be made
shorter than takeoff lengths by diverting jet exhaust into the forward direction
or reversing propeller blades, in addition to application of wheel brakes.

Example 27.1.1: Jet engines develop nearly constant thrust (force) at a given
altitude such that their power (energy output per unit of time) increases propor-
tionally with airspeed, all other factors being equal. Propeller engines yield instead
roughly constant power so that the thrust decreases with airspeed. Ignoring air re-
sistance (drag), the constant thrust from jet engines translates into nearly constant
acceleration during the takeoff run. A typical large passenger jet airliner (Boeing
747-200) has a maximal weight of 374,000 kg and four engines that together yield a
maximum thrust of 973,000 N, corresponding to a runway acceleration of 2.6 m/ s
when fully loaded. At this acceleration the plane reaches takeoff speed of 290 km/h
in 31 s after a run of about 1250 m. Actual takeoff length is somewhat larger because
of drag and rolling friction. For safety reasons, runways are required to be at least
twice that length, typically between 3 and 4 km.
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Otto Lilienthal (1848-1896).
German engineer. One of
the great pioneers of manned
flight. Over more than two
decades he carried out sys-
tematic studies of lift and
drag for many types of wing
surfaces and demonstrated
among other things the su-
periority of cambered air-
foils. Constructed (and ex-
ported!)  manned gliders,
and also took out patents on
such flyers in 1893. Stalled
and crashed from a height
of about 17 meters outside
Berlin on August 9, 1896.
Whether he would actually
have invented powered flight
before the Wright brothers
did in 1908 is not clear [54]

Extreme flying

An aircraft can in principle move through the air in any attitude — and some
pilots enjoy making their planes do exactly that — but there is an intended
normal flying attitude with the wings nearly horizontal and orthogonal to the
airflow. In this attitude, the aircraft is designed such that the the flow of over
the wings and body of the aircraft is as laminar as possible, because laminar flow
yields the largest lift force and smallest drag.

In other attitudes, steep climb, dive, roll, loop, tight turn, spin, tail-glide,
sideways crabbing, and what not, the airflow over the wings may become turbu-
lent resulting in almost complete loss of lift. When that happens, the aircraft is
said to have stalled. Stalling an aircraft in level flight at sufficient altitude is a
common — and fun — training exercise. First the engine power is cut to make the
aircraft slow down. While the airspeed is falling the pilot slowly pulls back the
stick to pitch the nose upwards so that the aircraft keeps constant altitude. This
can of course not continue, and at a critical point the laminar flow over the wings
is lost and replaced by turbulence. The aircraft suddenly and seemingly by its
own volition pitches its nose downwards and begins to pick up speed in a dive.
A modern aircraft normally recovers all by itself and goes into a steady glide at
a somewhat lower altitude. A stall close to the ground can be catastrophic, as
the many hang-glider accidents can confirm (the first fatal one happened in 1896
and cost the life of flight pioneer Otto Lilienthal).

Most aircraft are today equipped with mechanical stall detection devices near
the leading edge of the wings, and audible stall warnings are frequently heard in
aircraft cockpits during landing, just before touchdown. The warnings indicate
that a stall in the wing flow is imminent, although the aircraft will usually not
go into a proper stall before touching down.

Other situations may arise in which only a part of the lifting surfaces stall.
In a tight turn at low speed, the inner wing may stall whereas the outer wing
keeps flying, and the aircraft goes into a vertical spin. In the early days of flight
it was nearly impossible to recover from such a situation which easily could arise
if the aircraft was damaged, for example in air combat. In those days pilots
were not equipped with parachutes, and they often saw no other way out than
jumping from the airplane, rather than burn with it. Today’s passenger aircraft
are not cleared for spin, but it can be fun to take a modern small aircraft that is
cleared for aerobatics into a spin at sufficient altitude, for example by pulling hard
back and sideways at the stick just before it otherwise would go into a normal
stall, as described above. Most people find the experience quite unpleasant and
disorienting, especially due to the weightlessness that is felt while the aircraft
slowly tumbles over before it goes into a proper spin. Again, modern aircraft are
so stable that they tend to slip out of a spin by themselves if the controls are left
free.
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27.2 Aerodynamic forces and moments

There are several stages in the process of getting to understand flight. The first
of these concerns the global forces and moments that act on a moving body
completely immersed in a nearly ideal fluid such as air. Initially we put no
constraints on the shape of the object or on the motion of the air relative to
the object, although mostly we shall think of an aircraft under normal flight
conditions, and mostly we shall discuss only the forces acting on it and apart
from scattered comments leave the discussion of moments to more specialized
treatments [53].

Total force

The total force F acting on a body determines the acceleration of its center of
mass. The only way a fluid can act on an immersed body, is through contact
forces, described by the stress tensor ¢ = {0;;}. Including the weight Mg, and
engine thrust T the total force becomes,

(27-1)

F=T+Mgy+R

where

’R:%UdS, (27-2)
s

is the resultant of all contact forces, also called the reaction force. In principle
this includes hydrostatic buoyancy forces (see chapter 5), which serve to diminish
the effective gravitational mass of a body. For heavier- than-air flying, buoyancy
can normally be disregarded.

Lift and drag

It is convenient to resolve the reaction force into two components, the lift which
is orthogonal to the instantaneous center-of-mass velocity U of the aircraft, and
the drag which is parallel with it,

R=°L+D (27-3)

satisfying
L-U=0, DxU=0. (27-4)

The drag is always acts in the opposite direction of the center-of-mass velocity
whereas the lift may take any direction orthogonal to it.

Lift may even point directly downwards. It is for this reason dangerous to fly
an aircraft inverted on the back close to the ground, because the gut reaction of
pulling the stick towards you to get away from the ground will generate an extra
lift which sends you directly into the ground. During banked turns an airplane
also generates lift away from the vertical, creating in this way the force necessary
to change its direction.
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Sketch of the forces acting
on a body moving with in-

stantaneous center-of-mass
velocity U. The thrust
T propels the object for-
ward, gravity Mg, pulls it
down, and the aerodynamic
reaction force R may be
resolved into lift £ and drag
D. Notice that the reaction
R and its components are
plotted as acting in a single
point C, called the aerody-
namic center, although this
concept may not always be
meaningful. For stability the
center of thrust should lie
forward of the aerodynamic
center.
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The two situations above
are physically equivalent.
In the wupper drawing the
center-of-mass moves with
velocity U to the left. In the
lower, the center-of-mass
does not move, but the
surrounding air moves with
velocity U to the right at
great distances from the
object.

* Total moment of force

The total moment of all forces acting on the body is

M=Mr+zgx Mgy+ Mg |, (27-5)

where M is the moment of thrust, ¢ the center of gravity of the body, and
the moment of the contact forces is,
MR:%wxaodS. (27-6)
s

The total moment depends on the choice of origin for the coordinate system, but if
the total force F on the body vanishes, the total moment becomes independent
of the origin. In that case one may calculate the total moment around any
convenient point, for example the center of gravity. The individual contributions

to the total moment will depend on the choice of origin, even if their sum is
independent.

27.3 Steady flight

In steady flight the aircraft moves with constant center-of-mass velocity in a
non-accelerated frame of reference, so that the sum of all forces must vanish

T+Mgy+L+D=0. (27-7)
Even if passenger comfort demands that the pilot tries to achieve nearly vanish-
ing total force on an airplane, irregular motion of the air may buffet the plane
around. In extreme cases, unannounced clear air turbulence may suddenly cause
unfettered passengers to fly around inside the cabin. We shall disregard such
phenomena and assume that the aircraft is capable of flying with a steady ve-
locity through an atmosphere that would have been at rest were it not for the
moving aircraft. Since forces in Newtonian mechanics are the same in all inertial
reference frames, we shall feel free to work in the rest-frame of the aircraft where
the air asymptotically moves at constant speed.

In the same way as floating bodies, ships and icebergs, should be in stable hydro-
static equilibrium, aircraft should also preferably be dynamically stable in steady
flight, meaning that a small perturbation of the aircraft’s steady, non-rotating fly-
ing attitude should generate a moment counteracting the perturbation. In general
this requires the center of thrust to lie forward of the aerodynamic center. Most
modern aircraft are dynamically stable when properly trimmed, and that is very
good for amateur pilots, but in military fighter planes, dynamic stability is some-
times traded for maneuverability. Certain modern fighter planes can in fact only
maintain a stable attitude through corrections continually applied to the control
surfaces by a fast computer.
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The main attitude parameter responsible for lift is the angle of attack «, also
called the angle of incidence, between the airflow and the plane of the aircraft,
formed by the longitudinal and lateral axes. In normal flight at high speed the
angle of attack is usually quite small, typically a couple of degrees.

Steady climb

After acceleration and takeoff a powered aircraft normally goes into a steady
climb forming a constant positive climb angle (or angle of ascent) 6 with the
horizon.

Cockpit instruments usually indicate the rate of ascent or climb rate U tan6
rather than the climb rate. Having reached cruising height the pilot reduces
power to a fuel-economic setting and the aircraft levels off with # = 0 and a
tiny angle of attack. Finally, approaching its destination, the aircraft power
is reduced, though usually not cut completely off, and the aircraft goes into a
powered descent with negative 6. Just before landing, power is lowered to near
zero, the aircraft flares out almost horizontally (6 ~ 0) with nose up under a
fairly large angle of attack before the final touchdown.

Assuming that the thrust is directed along the longitudinal axis (as is normally
the case for fixed-wing aircraft!), we obtain the following expressions for lift
and drag by projecting the forces on the direction of motion and the direction
orthogonal to it,

D=Tcosaw— Mgpsing , L=-Tsina+ Mggcosb . (27-8)
Given the values of all the parameters on the right hand sides, we may calculate
the values of lift and drag that are required to keep the aircraft in steady flight.

This is, however, not really the way a pilot operates an aircraft. Typically, the
pilot selects a power setting for the engine(s) and a certain rate of climb, and then
waits until the aircraft steadies on a certain airspeed, angle of attack, and angle of
climb. This procedure of course presupposes that there are such solutions within
the aircraft’s flight envelope for the specified values of power and climb rate (if
not, the aircraft will stall). We shall later see that aerodynamic theory allows us
to calculate lift and drag for a given aircraft in terms of the airspeed, the angle
of attack, and the air density. The steady flight equations (27-8) may then be
solved for the airspeed U and the angle of attack «, given the air density, the
weight, the engine power, and the climb rate. There is the further complication
that for a given engine setting the thrust 7" tends to fall inversely with airspeed
for propeller engines whereas it stays more or less constant for jets. On top of
that, the air temperature, pressure, and density all vary with flying altitude.

1In other types of aircraft, the engine thrust can also have a component orthogonal to the
longitudinal axis. Such a thrust component will contribute to lift, and in the extreme case of a
helicopter there is almost no other lift, and the engine thrust balances by itself both drag and
weight.
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The angle of attack « is the
angle between airflow U and
the plane of the aircraft.

Mgo \\

Forces acting on an aircraft
in powered steady climb at
an angle 0 with angle of
attack «.  All the forces
are assumed to lie in the
symmetry plane of the
aircraft.  For convenience
we have moved all forces to
the center of gravity.
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et
In steady level flight with small angle of attack, # = 0 and « = 0, it follows
v, Mgo that lift must balance weight and thrust must balance drag. During steady climb
with a small angle of attack, o < 1, the steady flight equations (27-8) may be

Sketch of forces in steady
horizontal powered  flight
with a small angle of attack.
Lift balances the weight and
drag balances the thrust.

JMQO

",
U/

Sketch of forces in unpow-
ered steady descent at a
glide angle . Lift and drag
collaborate to balance the

weight.  The airplane can
glide with many different
angles of attack (here shown
with o = «y) but there is a
best angle of attack which
yields the smallest glide
angle, or equivalently the
highest glide ratio.

written
T — Dy
Mgo

sinf ~ ) L~ Mggcosb , (27-9)
where Dy is the residual drag at zero angle of attack. Thus, the ratio of the
excess of power T — Dgy to the weight of the aircraft Mgy determines the climb
angle. To get a finite positive angle of climb, the thrust must not only overcome
the drag but also part of the weight of the airplane. From climb angle, one
can afterwards calculate the lift that the airflow over the wings and body of the

aircraft necessarily must generate to obtain a steady climb.

Example 27.3.1: During initial climb, speed is fairly low, and if drag can be
ignored relative to thrust it follows that sin@ < T'/Mgo. For the fully loaded Boeing
747-200 of example 27.1.1 we find T//M go ~ 0.27 and thus 6 < 15°.

Unpowered steady descent

Most freely falling objects quickly reach a constant terminal velocity. Stones
fall vertically, whereas aircraft, paper gliders, paragliders, and parachutists in
free fall in addition will attain sometimes large horizontal speeds. An aircraft
in unpowered flight is able to glide towards the ground with constant velocity
and constant rate of descent. It is part of early training for pilots to learn how
to handle their craft in unpowered steady descent, and usually the aircraft is so
dynamically stable, that it by itself ends up in a steady glide, if the engine power
is cut and the stick is left free. Paper gliders on the other hand often go through
a series of swooping dives broken by stalls, or spiral towards the ground in a spin.

During steady unpowered descent the air hits the aircraft from below at an
angle v with the horizontal, called the glide angle, corresponding to a glide slope
tan~y. The ratio of horizontal to vertical air speed is called the glide ratio, and
equals the inverse of the glide slope, i.e. coty. An aircraft can glide steadily with
different airspeeds for a large range of angles of attack. The angle of attack that
yields maximal glide ratio determines how far an aircraft at best can reach by
gliding down from a given altitude, also called its glide range.

Typical commercial aircraft have best glide ratios of 10—20 with 17 for the Boeing
747 and 8 for the Concorde. So if the engines set out at an altitude of 10 km,
the pilot has to look for a place to land inside 100 — 200 km, depending on the
aircraft. These glide ratios are comparable to those of gliding birds like the swift
(10) and soaring birds like the albatross (20). Modern sailplanes may reach glide
ratios around 30 — 55 and in extreme cases even higher. The space shuttle, on the
other hand, approaches the runway at a glide angle v = 19°, corresponding to a
glide ratio of around 3. With its stubbed wings and large weight it is a rather
bad glider, comparable to a sparrow. The human body is even worse, with a best
glide ratio of about unity.
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In steady unpowered descent the aerodynamic reaction force must be equal
and opposite to the weight of the aircraft, or in size R = Mgg. Resolving the
reaction force into lift and drag we find,

L = Mggcosy , D= Mgysiny . (27-10)
These equations could also have been obtained from the steady flight equations
(27-8) with T' = 0 and § = —v. From the glide angle and the weight of an
aircraft, we may thus determine both the lift and drag that acts on it in this
flight condition. The glide ratio evidently equals the ratio of lift to drag in
unpowered descent,

coty = £ (27-11)

D
Aerodynamics tells us (see the following section) that the ratio of lift to drag
essentially only depends on the angle of attack, so the best glide ratio is obtained
by choosing that angle of attack which maximizes £/D.

Notice that neither lift nor drag are horizontal in unpowered descent. The
lift is tilted forward and the drag backwards.

The forward tilt of the lift also allows us to understand broadly how birds and
insects generate thrust in level flight by flapping their wings straight up and down.
In this unsteady flight mode, there is no instantaneous balance of aerodynamic
forces and gravity, but during the downstroke, the air will hit the wing from below
and generate a tilted lift, propelling the bird forward (and upwards), provided
the drag is not too large. During upstroke the picture is inverted, and air hits
the wing from above, but the lift is still tilted forwards and thus again propels
the bird forwards, provided drag does not overwhelm it. Insects and birds that
hover instead of flying horizontally get lift by interacting with vortices created at
the leading edge of the wings during the downstroke and by other mechanisms?.

Horizontal banked turn

Consider an aircraft flying steadily under power with velocity U in a horizontal
circle of radius R. From the (rotating) rest frame of the aircraft, the air again
flows steadily past with velocity U, but now there is also a centrifugal force
MU?/R directed away from the center of the circle. The engine thrust is assumed
to balance the drag, and the lift must therefore balance the vector sum of the
weight and the centrifugal force. Denoting by 8 the angle between the vertical
and the lift vector, we obtain by projecting the lift on the horizontal as well as
the vertical directions,

MU?
o

2See for example R. B. Srygley and A. L. R. Thomas, Unconventional lift-generating mech-
anisms in free-flying butterflies, Nature 420, 660 (2002) and references therein.

LcosfB = Mgy Lsinf =

(27-12)
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Sketch of forces during bird
wing upstroke in  forward
flight. The total force does
not vanish in this case, but
accelerates the bird down-
wards. The lift provides
forward thrust, when the
drag is not too large.

Sketch of forces in the trans-
verse plane during a steady
horizontal banked turn, here
with tilt angle B =~ 45°.
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e

d

A wing is characterized by
three lengths: the span L,
the chord ¢, and the thick-
ness d. The wing profile de-
picted here also carries aero-
dynamic twist.

The lift divides out in the ratio of these equations, and we get

2

U
tanf = — . 27-13
= (27-13)

Airplanes are normally tilted (banked) through the precisely this angle 8 during
turns, such that the floor of the aircraft remains orthogonal to the lift. In such
a clean turn, the effective gravity experienced inside the airplane is (in units of
the standard gravity)

geff: L _ 1
go Mgy cosp’

(27-14)

also called the load factor or the g-factor.

Example 27.3.2: In a clean 60° banked turn, one pulls a g-factor of 2. Fighter
jets may generate g-factors up towards 10, corresponding to bank angles § < 84°.
To avoid passenger discomfort, most commercial aircraft rarely bank beyond 15°
with a nearly imperceptible increase in load factor of about 3%. At a speed of 900
kilometers per hour and 8 = 15°, the clean turn diameter is 2R = 2U? cot B/go0 = 50
kilometers, and a full turn at this speed takes T'= 2w R/U = 10 minutes.

27.4 Estimating lift

Aerodynamic lift in nearly ideal flow is almost entirely caused by pressure differ-
ences between the upper and lower wing surfaces. In this section we shall describe
the basic physics of lift and estimate its properties from relatively simple physical
arguments, and in the following section we shall make similar estimates of the
various contributions to drag. It should however be borne in mind that we would
rather want to calculate lift and drag from fluid mechanics, in terms of the angle
of attack, velocity, air density, and the shape of the wing. Such theoretical knowl-
edge makes it possible to predict which parameter intervals allow an aircraft to
become airborne and sustain steady flight. In section 27.7 we explicitly calculate
the lift for thin airfoils.

Wing and airfoil geometry

An airplane wing may be characterized by three different length scales: the tip-
to-tip length or span L, the transverse width or chord ¢, and the thickness d.
A wing can only in the coarsest of approximations be viewed as a rectangular
box. Typically wings are both thin and long, d < ¢ < L. Many wings taper
towards the tip and are swept back towards the rear. Other wing shapes are also
found, for example the delta-wing of the Concorde. For a rectangular wing, the
dimensionless number L/c is called the aspect ratio. For tapering and unusually
shaped wings, one may instead use the average cord length ¢ = A/L, where
A is the planiform area of the wing (the area of the wing’s “shadow” on the
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wing plane), so that the aspect ratio becomes L/c = L?/A. The wing may
furthermore twist slightly along the span leading to a varying angle of attack.
This is in particular true for propellers that basically are wings mounted on a
rotating shaft.

Example 27.4.1: The Boeing 747-400 has a wing span of L ~ 64 m and a wing
area A ~ 520 m?, leading to an average cord length of ¢ ~ 8 m and an aspect
ratio of L/c ~ 8. For comparison, the albatross with its narrow long wings has
an aspect ratio of about 20, at par with modern sailplanes. At the extreme end
one finds NASA’s solar-cell powered flyer Helios which has an aspect ratio of nearly
31. Incidentally, a man with his arms stretched out as wings has an aspect ratio of
about 20, so aspect ratio is not everything.

The transverse wing profile, also called the airfoil, is normally slightly curved,
or cambered, along the cord, with a soft leading edge and a sharp trailing edge.
The angle of attack of an airfoil is defined to be the angle between the asymptotic
airflow and the chord line which is a straight line of length ¢ connecting the
leading and trailing edges. Depending on how the wings are attached to the
aircraft there may be a small difference between the angles of attack of the wing
and the aircraft.

Average pressure difference
The chordwise Reynolds number,

Rec:@a
14

(27-15)
is an important dimensionless combination of the asymptotic flow speed U, the
chord ¢, and the kinematic viscosity of air, v = 1/py. The chordwise Reynolds
number indicates the character of the airflow around the wing and will always be
assumed to be very large, of the order of many millions, so that the flow pattern
around the wings just outside the omnipresent boundary layers may be taken to
be very nearly ideal with pressure completely dominating the stress tensor.

Consider now an airplane with almost planar wings flying horizontally under a
small angle of attack. The only way pressure can lift the airplane is by being lower
above the wing than below. The actual pressure varies around the wing (see fig.
27.1) but the average pressure difference between the upper and lower surfaces,
also called the wing loading, may be estimated from the total aerodynamic lift
on the wings and the total wing area A,

L
Ap~ —— . 27-16
P~ -~ (27-16)
In steady level flight, lift equals weight, £ = Mgg, as discussed in the preced-
ing section, and wing loading is easy to calculate from aircraft dimensions and

performance.
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Sketch of streamlines around
a wing with positive lift. The
wing profile and angle of
attack accelerates the flow
across the top of the wing
and retards it below, and
thus creates a lower pressure
above than below. Notice the
presence of front and rear
stagnation points with van-
ishing airspeed.

Figure 27.1: Pressure distribution around an airfoil at Reynolds number Re. = 10,000
and angle of attack o = 6°, obtained by numeric simulation. Notice the higher stagna-
tion pressure (light) at the leading edge and the lower lifting pressure (dark) above the
wing. It typically acts about one quarter of the chord length downstream from the lead-
ing edge of the wing. The pressure below the wing is not much higher than the pressure
at infinity.

Example 27.4.2: The cruising speed for the Boeing 747-400 is U = 250 m/s, and
with an average chord length of ¢ = 8 m, the chordwise Reynolds number becomes
Re. ~ 2 x 108. The maximal takeoff mass is M = 400,000 kg distributed over a
wing area of about A ~ 520 m?, leading to a wing loading of about Ap ~ 7,500 Pa,
which is only 7.5% of atmospheric pressure at sea level, but about 25% of the actual
pressure at the normal cruising altitude of 10 km.

Average flow velocity difference

In nearly ideal flow, Bernoulli’s theorem for incompressible fluids (16-16) may
be used to relate the pressures and velocities above and below the wing. As
discussed in section 16.4 on page 269, air is effectively incompressible at speeds
much lower than the speed of sound, i.e. for small Mach number Ma = v/vsound-
This excludes us from discussing modern passenger jets flying at Ma = 0.8, but
the following discussion is fine for Ma < 0.3.

Consider now two streamlines coming in from afar and passing on each side of
the wing. Although they begin in different places, they start out with the same
velocity U and pressure p = P, so that by Bernoulli’s theorem,

P 1 1 1
4+ _U2 _ Pabove + _'Ugbove _ Pbelow + _Ugelow )

27-17
po 2 Po 2 Po 2 ( )

From this we get the pressure difference between nearby points above and below
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the wing,

1
Ap = Pabove — Pbelow = _gpo(vzbove - vgelow) ’

1
~ _ipO(’Uabove + Ubelow) . (Uabove - Ubelow) )

_POUAU )

Q

where Av = Vapove — Ubelow 1S the local velocity difference. In the last line we have
assumed that the local velocity difference is much smaller than the mainstream
velocity, Av < U, and that the flow velocity over most of the wing surface
cannot deviate much from the mainstream velocity, i.e. Vapove = Ubelow ~ U.
This assumption must necessarily break down near the leading and trailing ends
of the wing, where there are stagnation points with vanishing flow speed. For a
sufficiently thin planar wing, these end effects can be disregarded in our estimate.

Combining this result with (27-16) we obtain an estimate of the (average)
flow velocity difference in units of the mainstream velocity

Ao Ap L

N —— & . 27-18
U poU2 poUQA ( )

Again this is easy to estimate from aircraft dimensions and performance data,
using that £ = Mgg for level flight.

Example 27.4.3 (Cessna 150): The popular Cessna 150 two-seater has a wing
span of L ~ 10 m, wing area A ~ 15 m?, and thus an average chord of ¢ ~ 1.5 m,
and an aspect ratio of L/c ~ 6.7. With a maximum takeoff mass of M = 700 kg, the
wing loading becomes Ap = 460 Pa which is merely 0.5% of atmospheric pressure
at sea level. At cruising speed U = 200 km/h = 55 m/s, the Reynolds number is
Re. ~ 5 x 10%. The Mach number is Ma ~ 0.17, and the average velocity difference
between the upper and lower wing surfaces Av & 8.5 m/s, or Av/U = 0.15.

Circulation and lift

The difference in flow velocity between the wing surfaces (outside the boundary
layers) not only gives rise to a pressure difference and thereby lift, but also gen-
erates a circulation which can be estimated from the (average) velocity difference

= f V- dl X CUsbove — CUbelow = CAD .
C

Here the sign is determined by letting the contour C circle the wing in the
direction of the asymptotic airflow U on top and against it below (just outside
the boundary layers). Using (27-18) we obtain the relation,

L~ poULT |. (27-19)
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Sketch of wvortexr bound to
the (left) wing of an air-
craft. The circulation is the
same for the two curves C
and C', provided there is
no flur of vorticity through
the surface bounded by these
curves. Notice how C' can
be slid off the tip of the
wing and shrunk to a point if
the flow is truly irrotational
(which it therefore cannot
be).

The bound wvorter turning
into a trailing vortex at the
wing tip.

The momentum flux through
the area A from the uniform
flow with wvelocity U is the
product of the momentum
density poU and the volume
flux UA.

This is the famous Kutta-Joukowsky theorem from the beginning of the twentieth
century relating lift and circulation. Although derived here from coarse estimates,
we shall see in section 27.6 that in nearly ideal irrotational flow around an in-
finitely long wing with constant chord length this relation is in fact exact. The
realization that lift and circulation are two sides of the same coin, was probably
the single most important insight into the mechanics of flight. With this in hand,
the road was opened for calculating the lift produced by any specific airfoil for
which the circulation could be obtained, analytically or numerically.

The horseshoe vortex system

In nearly ideal irrotational flow, the circulation is the same around any curve
encircling the wing, because Stokes’ theorem relates the difference in circulation
between two such curves to the flux of vorticity (which is assumed to vanish)
through the surface bounded by the two curves. The lift-generating circulation
thus forms a bound vortex that ideally cannot leave the wing. For an infinitely
long wing this creates no problem, but for a wing of finite span, the assumption
of vanishing vorticity has to break down, because one of the curves may be
“slid over” the tip of the wing and shrunk to a point with no circulation. The
inescapable conclusion is that since lift requires non-zero circulation, vorticity
must come off somewhere along the finite span of a real wing.

The shedding of vorticity from a wing of finite span depends strongly on
its shape. A wing that tapers towards the tip will shed vorticity everywhere
along its trailing edge, though most near the tip. If the wing is rectangular with
constant chord, the vorticity will tend to appear very close to the tip. In any
case, the vorticity coming off the tip is turned backwards with respect to the
direction of flight, forming a trailing vortex in continuation of the bound vortex.
Alternatively one may see the trailing vortex as created by the flow around the tip
from below to above the wing, seeking to equalize the higher pressure underneath
the wing with the lower pressure above. Together with the bound vortex the two
trailing vortices coming off the wing tips form a horseshoe-shaped vortex system
associated with all winged aircraft in flight.

Lift coeflicient

The dimensionless quantity ont the right hand side of (27-18) is of great impor-
tance for flight. Conventionally, the lift coefficient of a wing is defined to be twice
as large, and written

L

==
- $poU%A

(27-20)

The denominator is proportional to the momentum flux poU - UA through an
area A orthogonal to the mainstream direction, and thus sets the scale for the
total force that the incoming airstream can exert on this area. The factor 1/2
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in the denominator is conventional (although some justification is given in the
following section).

Being dimensionless, the lift coefficient can only depend on dimensionless
quantities, such as the angle of attack «, the Reynolds number Re. = Uc¢/v, the
aspect ratio L/c, and other quantities characterizing the shape of the wing. The
mainly empirical studies by scientists and engineers in the 19’th century, up to
and including the Wright brothers, led to the understanding that the angle of
attack was the decisive parameter in the lift coefficient. The dependence on the
other dimensionless parameters was found to be weaker, in fact so weak that it
was mostly ignored before 1900.

The weak dependence of the lift coefficient on the Reynolds number allows us
to conclude that the lift itself,

1 2
L=~ 3P0 U“ACL , (27-21)
is directly proportional to the square of the velocity. At takeoff and especially
during approach to landing, where speeds are low, the pilot can increase the
wing area by means of flaps. Since lift always nearly equals weight, it follows
from this expression that the increase in area will be compensated by a decrease
in required airspeed (for a fixed angle of attack). Fully extended flaps also have
a considerably larger angle of attack than the wing itself, increasing thereby the
lift coefficient and leading to a further reduction in the required landing speed.

Dependence on angle of attack

Empirically, the lift coefficient is surprisingly linear in the angle of attack,

Cr=A(a—ag), (27-22)
where A = dC,/da is called the lift slope, and «y is the angle of attack at which
the lift vanishes. In section 27.7 we shall see theoretically that for thin airfoils
the slope is universally A = 27 (with the angle of attack measured in radians).
The zero-lift angle oy depends mainly on the shape of the airfoil, and is usually
small and negative, for example ag &~ —2° (see example 27.4.3).

It follows from the above equations and the constancy of required lift that the
relative angle of attack o — oy must vary inversely with the square of the velocity,
a — ag ~ 1/U?. The rapid rise of the required angle of attack with decreasing
airspeed leads quickly to boundary layer separation on the wing, accompanied by
a dramatic loss of lift and increase in drag. This phenomenon is called stall, and
happens typically at a critical angle of attack, the stall angle aga ~ 15 — 20°
for normal aircraft. Whereas the lift slope and zero-lift angle are essentially
independent of the Reynolds number in the linear regime, the stall angle increases
a bit with the increasing Reynolds number.

For special aircraft the stall angle can be fairly high, for example 35° for delta-
winged aircraft such as the space-shuttle or the Concorde. The higher stall angle
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Sketch of a lift curve rising
linearly wuntil it veers off
rather sharply at an angle of
typically 15 — 20°, signalling
stall. Beyond this angle, lift
drops precipitously, and so
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tack. The boundary layer
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edge and replaces the pre-
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the wing with turbulent flow
yielding small lift and large
drag.



552

27. SUBSONIC FLIGHT

ol

2
Sketch of the wariation of
the lift slope with aspect
ratio.

Cp
|
~ l
l l
01‘0 s%all ma
Sketch of a typical drag

curve for a cambered airfoil
as a function of angle of
attack. Notice that the drag
of such an airfoil actually
decreases for small angles of
attack. Beyond the critical
angle of attack, the drag
coefficient rises steeply.

is offset by a smaller lift slope, say A & 3 (per radian) rather than 27. In order to
get sufficient lift, such aircraft are forced to take off and land under remarkably
high angles of attack.

Dependence on aspect ratio

The shedding of vorticity from finite wings makes the lift slope depend on the
aspect ratio L/c. An expression useful for estimating this effect for thin airfoils
is [53, p. 380]

27

AR ——F
14+2—
+ L

(27-23)

which in the limit of infinite aspect ratio, L/c — oo, converges upon 2.

Example 27.4.4 (Cessna 150): For the Cessna 150 (page 549) at cruising
speed U = 200 km/h we estimated Av/U = 0.15, implying a lift coefficient C, ~ 0.3.
With aspect ratio L/c ~ 8 the lift slope is A &~ 5, and the relative angle of attack
becomes a — ap ~ 0.06 = 3.5°, and since ay ~ —2° for this airfoil, the true angle of
attack becomes « & 1.5°. At half the cruising velocity, i.e. for U = 100 km/h, the
relative angle of attack is four times larger, i.e. 14°, and the true angle of attack
12°. Since the stall angle is 16° for this airfoil, stall is imminent when the speed
drops below about 85 km/h.

27.5 Estimating drag

Whereas lift has but one cause, i.e. the pressure difference between the upper
and lower wing surfaces, drag has several. First, there is skin friction from the
air flowing over the wing. Second, there is form drag due to the wing obstructing
the free air flow and leaving a trail of turbulent air behind, and third there is
induced drag coming from the vortices that always trail the wing tips. For real
aircraft, the body shape and various protrusions (radio antenna, Pitot tube) also
add to drag. As for lift, it is convenient and customary to discuss drag in terms
of the dimensionless drag coefficient

D
Cp = W y (27-24)
2

which has the same denominator as the lift coefficient (27-20).

The denominator can be understood in the following way. At the leading edge of a
wing there is always a streamline that ends with vanishing airspeed (stagnation).
The pressure increase at the stagnation point relative to infinity is Apstag =
%poU 2 according to Bernoulli’s theorem. If the wing were raised squarely into
the oncoming airflow, it would present an area A to this pressure, and assuming
that the turbulent “dead” air behind the wing exerts essentially no extra pressure
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on the back of the wing, the total drag force would be Apstag A = %ngzA, which
is the denominator. If this argument is right, we predict Cp ~ 1 for a thin flat
plate with its face into the wind, and that agrees in fact quite reasonably with
both theory and experiment. For a circular disc we thus have Cp = 1.17 (see
section 20.4 on page 388). That the true drag coefficient is larger than unity can
be interpreted as the average true pressure drop across the disc being smaller
than Apstag.

Skin friction

Close to the wing surfaces there are thin boundary layers (see chapter 25 on
page 483), in which the flow velocity changes rapidly from zero right at the skin
of the wing to the mainstream airspeed just outside. The maximal thickness
of the boundary layer on a wing may be estimated from the flat plate laminar
Blasius solution (25-28) or from semi-empirical turbulent expression (25-41),

0 {5Rec_1/2 laminar

~ . 27-25
0. 16Rec_1/7 turbulent ( )

c
Boundary layers do not have the same thickness everywhere on the wing surface,
but are generally thinnest at the leading edge of the wing and become thicker
towards the rear. Usually, the Reynolds number is so high that the boundary
layers also develop turbulence somewhere downstream from the leading edge. For
aircraft with chordwise Reynolds numbers in the millions and chords of the order
of meters, a fully laminar boundary layer is only millimeters thick whereas a fully
turbulent layer is an order of magnitude thicker.
To estimate the skin friction we again use flat-plate Blasius’ result (25-32) in
the laminar regime and the semi-empirical expression (25-34) in the turbulent,

. laminar
Oskm — ~ 27-26
P 1poU2A T ) 0.063 Re; Y7 (27-26)

Dekin 2.65 Re, /2
turbulent

Notice that this is roughly half the relative thickness estimate (27-25). The
skin drag coeflicient always decreases with increasing Reynolds number, but like
the thickness it varies much slower in the turbulent region than in the laminar.
Turbulent drag is considerably larger than laminar drag, but precise theoretical
prediction of skin drag is quite hard because it is difficult to predict the line
along the span where the boundary layer becomes turbulent. This is one of the
reasons that wind tunnel experiments, and in more recent times numeric (CFD)
simulations, have been and still are so important for aerodynamics engineering.

Example 27.5.1: For the Cessna 150 of example 27.4.3 at cruising speed with
Re. &~ 5x10°, the estimate of the maximal laminar boundary layer thickness becomes
0 ~ 3.5 mm whereas the estimate of the maximal turbulent thickness becomes
8 ~ 27 mm. The corresponding laminar skin drag coefficient is C5%™ ~ 0.0012
whereas the turbulent one is about six times larger, C" ~ 0.0070. In view of the
large Reynolds number, the truth presumably lies close to the larger value.
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Figure 27.2: Horizontal velocity distribution (ve) around an airfoil at Reynolds number
Re. = 10,000 and o =~ 1°, obtained by numeric simulation. Notice the faster flow
above the wing (light), the stagnating flow at the leading edge (dark), and the strong
slowdown of the flow in the boundary layers and the trailing wake (very dark). The
boundary layers are thin and laminar, thicken towards the rear especially on the upper
surface where the initial acceleration of the air is followed by deceleration. There is
no turbulence in the boundary layers at a Reynolds number as low as here. At more
realistic Reynolds numbers in the millions, the boundary layers are mostly turbulent and
about an order of magnitude thinner than here. Well behind the airfoil the wake has a
thickness comparable to the boundary layers. The slow viscous expansion of the laminar
wake is not visible at the scale of this figure.

Form drag

The flow around a highly streamlined body, such as a thin wing narrowing down
into a sharp trailing edge, will be nearly ideal everywhere, except in the boundary
layers. It has been pointed out before (and we shall prove it in the following
section) that a body in a truly ideal, irrotational flow does not experience any
drag at all, independently of its shape. Both skin friction and form drag therefore
owe their existence to viscosity, but where skin friction is due to shear stresses
in the boundary layer, form drag arises from changes in the pressure distribution
over the body caused by the presence of boundary layers.

Airfoil boundary layers tend to become turbulent at some point downstream
from the leading edge of the wing. At the sharp trailing edge the boundary layers
separate from the wing and continue as a trailing wake of essentially infinite ex-
tent after the wing (see figs. 27.2 and 27.3). The unsteady turbulent wake found
immediately behind the trailing edge of a wing expands slowly and eventually
calms down and becomes steady and laminar at some downstream distance from
the wing. Further downstream the laminar wake continues to expand by viscous
diffusion at a considerably faster rate than the turbulent wake. In section 27.8
we shall determine the general form of the field in the distant laminar wake.
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Inside the trailing wake immediately behind the body the pressure will be
lower than the stagnation pressure Apgias = %pOU 2 at the leading edge (see
fig. 27.1) and this pressure difference is the cause of drag. The thickness of the
turbulent wake immediately after the trailing edge of the wing may be estimated
from the boundary layer thickness 4, leading to the form drag estimate Diorm ~
ApgagLd. In terms of the drag coefficient we thus find for the turbulent case,

s
Cform o~ Re, /7 (27-27)

Form drag usually amounts to some fraction of skin friction for streamlined ob-
jects where the boundary layers are thin everywhere.

With growing angle of attack, flow separation may occur on the upper side
of the wing at some point before the trailing edge of the airfoil, thereby increas-
ing form drag and diminishing lift. At a certain angle of attack, the point of
separation for the turbulent boundary layer on the top side of the wing may
suddenly shift forward from the trailing edge, creating a highly turbulent region
everywhere above the wing. This leads to loss of almost all of the lift and at the
same time an increased drag. The wing and the aircraft are then said to have
stalled.

The efforts of aircraft designers between the world wars in the 20’th century
were mainly directed towards form drag reduction by streamlining. A smaller
drag generally implies higher top speed, greater payload capacity, and better fuel
economy. Besides streamlining of lift surfaces, drag reduction was also accom-
plished by internalizing the wing support structure and the undercarriage, and
providing the engines with carefully designed cowlings.

Induced drag

The two vortices trailing from the wing tips of an aircraft rotate in opposite
directions and carry roughly the same circulation I' as the vortex bound to the
wing. They are created at a rate determined by the speed U of the airplane and
persist indefinitely in a truly ideal fluid. In a viscous fluid they spin down and
dissolve after a certain time.

The process of “spinning up” and “feeding out” the trailing vortices from the
wing-tips of the aircraft is accompanied by a continuous loss of energy, which
causes an extra drag on the aircraft. We can estimate the order of magnitude of
this drag from the kinetic energy contained in a vortex with circulation I' and core
radius a. Since the maximal flow speed is of order vy ~ I'/27a, the kinetic energy
of two vortex segments of length b becomes of magnitude 7 ~ povéwazb ~ pol'?b
(dropping all simple numeric factors). This loss of energy must cause a drag on
the aircraft of magnitude

T
Dinduced = z ~ poFQ ~ p()UQCQC% ,

where we in the last estimate have used the relation between lift and circulation
(27-19) and the definition of the lift coefficient (27-20). The estimate of the
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induced drag coefficient thus becomes

i Dinduced c
Clnduccd _ uced 702 ) 27-98
D Tot2A " L7 (27-28)

Classical wing theory yields an expression of precisely this form but roughly a
factor m smaller. Since induced drag is a byproduct of the lift-generating flow
around a finite wing, it is also called drag due to lift. It is the unavoidable price
to pay for wings of finite span.

Induced drag is normally smaller than skin drag, but grows rapidly with in-
creased angle of attack and may win over skin drag at low speeds at, for example,
takeoff and landing where the angle of attack is large and the skin friction small.
Most importantly, induced drag decreases with increasing aspect ratio L/c, ex-
plaining why large aspect ratios are preferable, up to the point where the sheer
length of the wing begins to compromise the strength of the wing structure.

Example 27.5.2: For the Cessna 150 of example 27.5.1 cruising in level flight
with Cr = 0.3 and aspect ratio 8 we find Cinducea = 0.0036 (including the factor
1/7). The induced drag is thus about half of turbulent skin drag. At half this speed
the angle of attack is four times bigger, so that the induced drag coefficient becomes
16 times bigger whereas the turbulent skin drag coefficient stays roughly constant.

Lift-to-drag ratio

The total drag coefficient C'p is the sum of all the contributions from various
sources: skin drag, form drag, induced drag, etc. The lift-to-drag ratio, £L/D =
CL/Cp, is a measure of the aerodynamic efficiency of an airplane. Like lift and
drag, it is strongly dependent on the angle of attack and less on the Reynolds
number and aspect ratio. The quadratic growth of induced drag as a function of
angle of attack normally overcomes the linear rise in lift and creates a maximum
in £/D for a certain angle of attack, typically at about half the stall angle. We
have seen earlier, that in a steady glide the best glide ratio (27-11) is obtained
for an angle of attack given by the maximal value of lift-to-drag. In view of the
problems in calculating drag with some confidence, empirical lift-to-drag curves
are usually plotted for particular airplanes to document their performance.

Example 27.5.3: For the Cessna 150 of the preceding examples cruising in level
flight with C, =~ 0.3 and aspect ratio 8 we estimate the different contributions to
drag as 0.007 from skin friction, 0.007 from form drag, and 0.004 from induced drag.
The total drag coefficient becomes thus 0.018, corresponding to a lift-to-drag ratio
of £L/D = 17. This is an overestimate by about a factor of two compared to the
actual performance of this aircraft which has a quoted glide ratio of about 8. The
reason is that in our calculation of drag we have left out the contributions from the
passenger compartment, the fixed undercarriage with wheels, the struts supporting
the wing, and other features that increase drag.
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27.6 Lift, drag, and the trailing wake

An often recurring question that can lead to heated discussions is whether an
airplane stays aloft in steady flight because of the pressure differences between the
upper and lower wing surfaces, or whether it gets lift from diverting momentum
downwards. The general treatment of momentum balance in section 17.5 on
page 296 indicates that the total contact force on the airplane should be balanced
by an opposite momentum flux at great distances, where all stresses have died
away. Either position is in fact tenable in a discussion, but as we shall see the
correct answer is more subtle than might be guessed at first glance.

Momentum balance in a box

Let the steadily moving body — an aircraft or wing — be surrounded with a huge
imaginary “box” S (of any shape), and let the volume of air between the body
surface and the box be our control volume. As can be seen from fig. 27.3 this
box will cut through the trailing wake somewhere behind the body. Disregarding
gravity, the only forces acting on the control volume of air are the contact forces
on the two bounding surfaces: the body and the box. At the body surface, the
force on the air is the opposite of the reaction force R on the body given by the
integral (27-2), and at the box surface the “air-to-air” reaction force Rg is an
analogous integral over the stresses acting on the surface of the box.

In steady flow the total momentum of the air contained in the control vol-
ume remains constant, apart from tiny time-dependent contributions from the
fluctuating velocity field in the turbulent wake, which we shall ignore here. Since
there can be no momentum flux through the impermeable surface of the body,
it follows from momentum balance (17-14) that the total force on the air in the
control volume must equal the flux of momentum out of the box, or

’R,S—’R:fpovvds
s

Expressing the box reaction force by an integral over the stress tensor, we find

R:—p()]{v'wds—&-j{a-ds
s s

where ¢ = {0;;} is the matrix form of the stress tensor o;; = —pd;; + n(V,v; +
V,;v;). The reaction force on the body can thus be calculated from the pressure
and velocity fields, all evaluated at the surface of the box. It must be emphasized
that this result is exact, valid for any shape and size of the body and box.

(27-29)

Box at spatial infinity

Let now the box expand to huge distances in all directions such that the velocity
field on its surface approaches the asymptotic value, v — U. Puttingv = U +Awv
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Figure 27.3: Sketch of a body (airfoil) and its trailing wake. Initially the trailing wake
is turbulent, but expands slowly and becomes laminar some distance downstream. The
thickness of the wake is greatly exaggerated compared to the distance from the body. The
dashed box surrounding the system (but crossing through the trailing wake) is used in
the text to define a control volume of air between the surfaces of the body and the box.

in the first (momentum) term of (27-29), it becomes
—po 7{ (UU 4+ UAv + AvU + AvAw) - dS
s

Using that the total vector area of a closed surface always vanishes, § dS = 0,
together with global mass conservation, f Av - dS = 0, the first two terms in
the integrand do not contribute to the integral. The last term is quadratic in
the small velocity differences Awv, so the conclusion is that only the third (linear)
term in the momentum integral can survive in the limit of an infinite box.

If we think of the “box” as a huge sphere with radius r and surface area
47rr?, the velocity field must behave like |Av| ~ 1/r? at infinity3. The velocity
derivatives in the stress tensor must then vanish like [V Av| ~ 1/r3, and cannot
contribute to the second (force) term in (27-29). Pressure is thus the only stress
component that has a possibility for surviving in the limit of an infinite box, so
that the reaction force on the body may be written,

R = fpof AvU«de%pdS . (27-30)
S S

A constant pressure gives no contribution, and we may without loss of generality
assume that the pressure vanishes at infinity at least as fast as |p| ~ 1/r%.

3Qutside the trailing wake! Inside the wake the velocity field behaves differently (see section
27.8) but the general conclusions remain valid.
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We are now in position to answer the question of whether there remains a
pressure contribution to lift far from the moving body. Although the derivation
of the above equation shows that the sum of the pressure and momentum flow
contributions is independent of the choice of the box shape, each term by itself
will depend on it. Thus, the limiting value of the pressure contribution may
depend on how the box is taken to infinity.

If we for example choose a cube or sphere and let it expand uniformly in all
directions, there will usually be a residual pressure contribution to lift, even in the
limit of an infinite box (see section 27.8 for an explicit calculation). Alternatively,
one may choose a box in the form of a huge cylinder with radius R and length
L, oriented with its axis parallel to the asymptotic flow U. The pressure integral
over the end caps cannot contribute to lift, because they are orthogonal to the
velocity. If we now let the radius R become infinite, before the end caps are
moved off to infinity, the pressure integral over the cylinder surface will behave
like the area 27 LR times the pressure p ~ 1/R?. Tt thus vanishes like L/R for
R — oo followed by L — oo, leaving no pressure contribution to lift in the limit.

Lift and drag

Let us rearrange (27-30) in the form
R = —pof U x (Av x dS) — f(p+ poAv-U) dS . (27-31)
S 5

The first integral is evidently orthogonal to the asymptotic velocity and represents
a pure lift,

L=—po 7@ U x (v xdS) |. (27-32)

Here we have also replaced Av by v, using that f dS =0.

In regions where the flow is irrotational and streamlines connect to spatial
infinity, the pressure is determined by Bernoulli’s theorem, p = %po(U2 —v?) ~
—poU - Av. Thus the integrand of the second term in R vanishes in all regions
where the flow is irrotational, i.e. outside the wake and the boundary layers. The
contributions to the second integral can only come from the region W, where the
box cuts through the wake. Choosing W to be planar and orthogonal to U, its
surface element dS will be parallel with U, and the second term becomes a pure
drag,

(27-33)

D:—/ (p+ poAv - U) dS
w

where dS is the area element of W. If we lift the restriction that W is a planar part
of S orthogonal to U, these formulas for lift and drag become slightly different
(problem 27.4). Otherwise they are valid for all kinds of bodies moving steadily
through a fluid at subsonic speed.
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d’Alembert’s paradox: a gift to powered flight

We have previously (page 283) shown that a cylinder or sphere in irrotational
(potential) flow experiences no drag. In irrotational flow, Bernoulli’s theorem is
fulfilled everywhere, so that the drag (27-33) must vanish. D’Alembert’s paradox
must be valid in full generality: there is no drag on a body of arbitrary shape in
completely irrotational flow. But bodies moving through viscous fluid cannot help
leaving a narrow trailing wake containing vorticity, and eq. (27-33) immediately
resolves the paradox: the drag on a body stems entirely from the trailing wake.

In general the drag will be smaller, the narrower the wake. As we have seen
in the estimates of the preceding section, drag is typically an order of magnitude
smaller than lift for properly streamlined bodies, such as airfoils. This indicates
that one should rather treat d’Alembert’s “paradox” as a theorem about the near
vanishing of drag for streamlined bodies at high Reynolds number. This theorem
is in fact what makes flying technically possible with engines producing a thrust
much smaller than the weight of the aircraft. Without d’Alembert’s theorem,
the Wright brothers would never have had a chance of flying at Kitty Hawk in
December 1903, given the puny engine power then available to them.

Lift and vorticity

The box S used in the lift integral (27-32) is assumed to be of essentially infinite
size. Let now S’ be another closed surface surrounding the body somewhere
inside the box S. From Gauss’ theorem we obtain

<£—%’>U><(vde)Z—/VUx(va)dV:—/VwadV7

where V' is the region between the two surfaces, and w = V X v is the vorticity
field. In the extreme case we may take S’ to be the body surface itself, where the
velocity and thus the integral over S’ vanishes because of the no-slip condition.
It then follows from the above equation that the lift (27-32) is also given by the
integral of the vorticity field over all of space,

L = poU x /de . (27-34)

This integral can only receive contributions from the regions of non-vanishing
vorticity, i.e. from the boundary layers and the trailing wake. Without vorticity
created by friction, there can be no lift!

More generally, if there is no vorticity found in V', the integral over the box S
equals the integral over S’. The original box may in other words be deformed into
any other closed surface as long as it crosses no region containing vorticity. The
box at infinity has now served its purpose and may be forgotten. In the following
the surface S in (27-32) may be taken to be simply any surface surrounding the
body, as long as there is no vorticity outside S.
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Lift and circulation

It is useful to introduce a “natural” coordinate system with the x-axis along
the direction of the asymptotic velocity U = Ue, and the y-axis along the lift
L = Le,. Working out the cross products, the lift (27-32) becomes

L= poU%(v x dS), = pOU]{ vzdSy — vy dS, | (27-35)
s S

together with the condition

%‘ v:dS, —v,dS, =0, (27-36)
s

expressing that there should be no lift along the z-direction. For a symmetric
aircraft in normal horizontal flight, this condition is automatically fulfilled.

The closed surface S may always be sliced into a set of planar closed contours
C(z) parallel with the zy-plane, and parameterized by the z-coordinate in some
interval z; < z < z9. The contours are given negative orientation in the xy-
plane, i.e. clockwise as seen from positive z-values. Let now d€ = (dx,dy,0) be
a line element on a point of the curve C(z); it is evidently a tangent vector to
the surface S. Let ds = (0,dy, dz) be another tangent vector to the surface in
the yz-plane with the same y-coordinate dy. Then the outward pointing surface
element becomes dS = ds x d€ = (—dydz, dzdz, —dzdy) and thus

V5dSy — vy dSy = (Vpda + vydy) dz = av - dldz .

This shows that the lift may be written as an integral over z

z2
L= poU/ I'(z)dz |, (27-37)
z1
with an integrand that is the circulation around C(z),
I'(z) = ]{ v-dl (27-38)
C(z)

If the contour is deformed, Stokes’ theorem (16-67) tells us that the circulation is
unchanged if the contour is swept through an area A devoid of vorticity. Since we
have assumed that vorticity is only found in the boundary layers and the trailing
wake, the contour may be freely deformed, as long as the piece of the contour
that crosses the wake is kept fixed, and the new contour does not pass through
the wake or into the boundary layers. This is of course the same conclusion as
was reached in the preceding subsection.

Again it should be emphasized that no approximations have been made, and
that this result is exactly valid, as long as the wake-crossing takes place at great
distance from the body along a line parallel with the y-axis.
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The Kutta-Joukowsky theorem
The lift integral (27-37) may be written in the form of a generalized Kutta-
Joukowsky theorem (27-19),
L=pULT) |, (27-39)
T - where
R 1 [*
C A= )=+ / T(2)dz | (27-40)
21

The dashed contour C hugs
the wing profile closely,
but is still attached to the
distant part where it crosses
the wake (top). For nearly
infinite Reynolds number,
the wvelocity is very nearly
the same above and below
the wake, allowing us to cut
off the tail (bottom).

Martin ~ Wilhelm  Kutta
(1867-1944). German
mathematician. Probably

best known for his extension
of a method developed by
Runge for numeric solutions
to differential  equations.
Obtained the first analytic
result for lift, and effectively
discovered  the relation
between lift and circulation
in 1902

Nikolai Yegorovich Joukow-
sky (1847-1921). Russian
mathematician and physicist
(also  spelled  Zhukovskii).
Constructed the first Rus-
stan wind tunnel in 1902
and many others early in the
20°’th century. Found and
used the relation between lift
and circulation in 1906

is the circulation along z averaged over the span L = z5 — z7. The only difference
is that the integration contour C(z) used to calculate I'(z) in (27-38) has to cross
the wake far away from the airfoil, whereas in the original Kutta-Joukowsky
theorem it is supposed to hug the airfoil tightly all around. We shall now see
how to get rid of the “tail” of the contour when the chordwise Reynolds number,
Re. = Uc/v and the aspect ratio L/c are very large.

In this limit the flow around the wing becomes nearly ideal and irrotational,
and the boundary layers turn into a “skin” of vorticity covering the airfoil with
nearly vanishing thickness § ~ 1/ v/Re,. Downstream from the airfoil, the skin
continues into the trailing wake which forms a horizontal sheet, also of nearly
vanishing thickness 6. Physically, the flow velocity in the wake cannot become
infinite, so that the downstream volume flux in the wake, which per unit of span
is of order wv,d, must itself vanish in the limit of infinite Reynolds number. It
then follows from mass conservation that the orthogonal velocity v, must be the
same above and below the sheet, for otherwise fluid would flow into the sheet.

The pressure must also be the same above and below the trailing wake sheet
because of Newton’s third law. Combining these two results with Bernoulli’s
theorem, which states that p+ % po(v? —l—vi +v?2) takes the same value everywhere
outside the wake, we conclude that v2+v2 must be the same just above and below
the wake. The span-wise induced flow v, is connected to the shedding of vorticity
along the span, especially the wing-tip vortices. When the aspect ratio is large,
this flow will be tiny compared to the downstream flow, i.e. |v.| ~ v,c/L < v, s0
that it may be ignored in the Bernoulli function. Consequently, v, itself takes the
same value just above and below the trailing sheet. The two oppositely directed
contributions to the integral (27-38) running along the tail of C' thus tend to
cancel each other for large Reynolds number and aspect ratio.

Since the orthogonal velocity v, may not be infinite inside the wake, the part
of the integral from the contour passing through the sheet will be of order of
magnitude vyd and thus vanish in the limit. The contribution from the tail of
the integration contour can thus be ignored in the leading approximation and we
may let it circle the wing while hugging tightly to the airfoil profile all around.
Finally, we have arrived at the (generalized) Kutta-Joukowsky theorem.
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27.7 Lift in two-dimensional airfoil theory

Most wings have fairly large aspect ratios in the vicinity of L/c & 10 — 20 with
airfoil cross sections that taper gently towards the wing tips. For nearly infi-
nite aspect ratio and nearly constant cross section, there is very little induced
flow along z towards the wing tips, so that the flow becomes essentially two-
dimensional,

v = (vz(;v,y)my(m,y)ﬂ) : (27-41)

For such an airfoil, the circulation I is also independent of z.

The field of the vortex sheet

In the limit of nearly infinite Reynolds number, vorticity only exists in the in-
finitesimally thin boundary skins of the airfoil. Outside these skins and outside
the infinitesimal sheet of the trailing wake, we assume that the flow is irro-
tational, described by a velocity potential ® that satisfies Laplace’s equation
V2® = 0. Being a linear equation, its solutions may be superposed. All the
non-linearity of the original Euler equation has been collected in the Bernoulli
pressure p = & po(U? —v?). The additivity of potential flows makes it possible to
view the irrotational flow outside the boundary layers as arising from a superpo-
sition of the asymptotic flow U and the field generated by the sheet of vorticity
covering the wing surface.

Due to the two-dimensional nature of the flow, the vortex sheet making up the
skin may be understood as a collection of elementary line vortex cores running
parallel with the z-axis (see fig. 27.4). The velocity field from a line vortex
passing through the origin of the coordinate system with the core parallel with
the z-axis is of the well-known form (see section 23.1 on page 448)

_ L (_y,-’f)
o2 x2 +y?

(27-42)

where T is its circulation or strength (counted positive clockwise in the xy-plane).

Denoting the infinitesimal strength of the vortex passing through the point
(2, y') on the airfoil outline A by dI”, the complete velocity field becomes a curve
integral around A,

_ A dr’
v(x,y):UJrf (Cyty,z—2) (27-43)

a@—a2+(y—y)? 2m

Mathematically, the points of the airfoil outline should be parameterized as a
pair of functions (f;(0), f,(6)) of a running parameter 6 in some interval, say
0 < 0 < 6, beginning and ending at the cusp. Then (2/,y") = (f.(¢), fy(0')) and
dl" = v(0") df’, where (') is the circulation density in . We shall usually for
clarity avoid this rather elaborate, though mathematically more concise, notation.
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Separating flow pattern near
the trailing end of an airfoil
with stagnation point before
the cusp. Such a flow may
have vanishing lift.

Highly laminar flow near
the trailing end of an airfoil
with stagnation point at the
cusp.

>

Figure 27.4: The irrotational field of the wing is viewed as a superposition of elementary
line vortices with singular cores arranged around the outline A of the airfoil. On the
top of the airfoil, the vortices tend to increase the velocity over the asymptotic flow U,
and conversely at the bottom. The airfoil is positioned with the chord-line on the x-axis
and the y-azis at the leading edge. Its geometry is described by two functions yi(x)
with 0 < z < ¢ where c is the chord length. The asymptotic flow is U = U(cos a, sin ),
where « is the angle of attack. The trailing wake, indicated by the dashed line, also
forms an angle o with the x-axis. The z-axis comes out of the plane.

The Kutta condition

We may now contract the integration contour in (27-38) until it coincides with
the airfoil outline A (fig. 27.4). Using that in ideal flow the velocity must be
tangential to A, the circulation becomes

r= jgv(:c,y) -de = %4 lv(z,y)|dl . (27-44)

Locally each little line element d¢ of A contributes the infinitesimal amount,

dl' =|v|dl | (on A), (27-45)

to the circulation.

Near the front and rear ends of the airfoil there are stagnation points where
the velocity field vanishes. In ideal flow there may be more than one velocity field
solution satisfying the Euler equation (16-1) and the boundary conditions. Such
solutions may have different stagnation points and thus different circulation and
lift. It is even possible to find a solution with vanishing circulation and lift. We
shall see below that if the rear stagnation point is not situated right at the cusp
of the trailing edge, unacceptable infinite velocity field values will arise at the
cusp. The Kutta condition (1902) enforces that the trailing edge cusp (c in fig.
27.4) is actually a stagnation point . The condition thus repairs a mathematical
problem in truly ideal flow by selecting a particular solution. In the real world,
a streamlined airfoil with small angle of attack in nearly ideal flow will in fact
fulfill the Kutta condition because of viscous friction in the boundary layers which
selects a unique laminar solution.
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In the neighborhood of the cusp the airfoil consists of two straight lines that
may be parameterized by z, such that y = Ay (z — ¢) where Ay are the (finite)
slopes of the upper and lower halves of the airfoil outline. Denoting the corre-
sponding circulation densities at the cusp by dI'/dz = v4, and keeping only the
two contributions to the integrand from the small interval ¢ — e < 2’ < ¢, we find
the divergent part of the velocity field

(>‘+a _1)fY+ + ()‘*7 _1)7* /C da’
1+ e X' —c

14+ A%
The cusp field is evidently logarithmically divergent, unless vy = v_ = 0, i.e.
unless the Kutta condition is fulfilled.

v(c,0) =

(27-46)

The fundamental airfoil equation

The circulation distribution dI' must be chosen such that the streamlines follow
the airfoil outline. This is equivalent to requiring the normal component of the
velocity field to vanish on the impermeable airfoil surface, i.e.

v-n=0 (on4) |,

(27-47)

where v = v(z,y) is the velocity and n = n(z,y) is the normal in the point (z,y)
on A. For every point of A we thus get one scalar condition, and together with
the Kutta condition that is sufficient to determine the vortex distribution dI".

We are not at liberty to impose a no-slip condition on the field, because the Euler
equation (16-1) is only of first order in the spatial derivatives. Although the field
(27-43) exists both inside and outside the airfoil outline, the outside solution now
fulfills the Euler equation and obeys the correct boundary conditions for inviscid
flow around a solid body. Consequently, we may with impunity replace the region
inside the airfoil outline with a solid body.

For convenience, the airfoil is positioned with its chord-line on the z-axis
such that the asymptotic velocity becomes U = U(cosa,sina) (see fig. 27.4).
In the f-parameterization, the tangent vector to the airfoil outline in the point
0is t = (&,y) = d(x,y)/dl, where a dot denotes differentiation with respect to
0, and the normal may be taken to be n = (—y,4). The boundary condition
(27-47) now takes the explicit form

iz —2)+yly—y) d’

Ul—isi Coy —
(—&sina + g cos a) ﬁ(m—x’)Q—F(@/—y')z or

(27-48)

where now both (z,y) = (fz(9), f,(6)) and (z',v") = (f=(¢'), f,(8')) are points
on A and dI” = v(0")dd’.

Marvellously this equation can be integrated over 6. Using that for § = 0 we
must have x = ¢ and y = 0, it may be verified by differentiation after 6 that the
following expression is the correct integral,
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Figure 27.5: A thin airfoil is represented by a single layer of vorticity v(z) = v4+(z) +

y—(x) along the camber line y(z) = 3 (y+(z) + y—(z)).

1 )2 2\ 2 dl—v
U((c—x)sina+ycosa):§j{10g (=) +y-y) (27-49)

A e R

This is the fundamental equation of two-dimensional airfoil theory. Given the
parameterized airfoil geometry through the functions (f,(0), f,(0)), this integral
equation should be solved for the vortex density v(¢). Having done that, the
total circulation I' may afterwards be obtained by integrating the result,

0o
= 7{; dr — /0 ~(0)do |. (27-50)

Finally, inserting this into the Kutta-Joukowsky theorem (27-39), we obtain the
lift. We have thus established a precise analytic or numeric procedure which for
ideal flow will yield the lift as a function of the geometry of the airfoil.

Thin airfoil approximation

Even if modern airfoils are much thicker than the airfoils of the early airplanes,
the ratio d/c of thickness to chord is rarely more than 10-15%. Using z as
parameter, a decent approximation for thin airfoils is obtained by replacing the
double layer of circulation density v4(x) on the two halves of the airfoil outline
by a single layer with v(z) = v4(x) 4+ v—(x) distributed along the camber line,

y(w) = 5+ @) +u-(2)) (27-51)

For a thin airfoil with d/c < 1 we always have |y(z) — y(z')| < |z — 2’|, so
that the fundamental airfoil equation (27-49) degenerates into the much simpler
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equation,

T c—ua'

a R
U((c— z)sina + y(z) cos ) = 2i / log T= L oyan | (21-52)
0

Given the camber line y(z), this linear equation must be solved for v(x).
It is remarkable that we can obtain the circulation directly by means of the
strange integral,

|z — 2’|

¢ c
lo dx = -2 , 27-53
/0 (c —x)\/x(c—x) S— ( )

which is true for all ¢ > 0 and all 2’ between 0 and c. It takes a fair bit of
complex analysis to prove this (see problem 27.6), but it may easily be checked
numerically. Using this result in (27-52) we get the circulation

_[° e = —c ¢ (c—x)sina + y(x) cos . _
F—/Ov( )da' = U/0 PR = dz . (27-54)

Using that foc dx/+/x(c — x) = 7, the first part of the integral is trivial, and we
finally get

= —Uc| msina + cosa ‘ y(z) T -
=t (rann o [ 0 a)] e

The integral converges because y(x) ~ ¢ — z for z — c.

Taking into account that the contour of integration in the Kutta-Joukowsky
theorem (27-39) is clockwise and not counterclockwise as assumed in the above
calculation, the lift is £ = —poULT". For small angles of attack, |a| < 1, the lift
coefficient takes the form (27-22),

L
Cp=-—" =29 — , 27-56
L %poUCL ﬂ—(a Oé()) ( )
with zero lift angle,
1 c
ag=—— / y(@) do | . (27-57)
T Jo (c—a)\/x(c—x)

Since airfoils have mostly positive camber, y(x) > 0, it follows that oy < 0. For
a flat plate we evidently have ay = 0 because y(z) = 0.
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x 27.8 The distant laminar wake

At short distances the velocity field is strongly dependent on the shape and
attitude of a moving body, but far from the body such details are lost. It is, as
we shall now see, possible to determine the general form of the laminar velocity
field at large distances from the body in terms of the lift and drag that the body
produces (see also [57, p. 67]). The analysis in this section should be viewed as
the natural continuation of d’Alembert’s theorem to fluids that are not perfectly
inviscid. Such fluids will not “close up” behind the moving body, but instead —
as we have discussed above — leave a trailing wake, a disturbance that never dies
completely out even at huge distance behind the body. In the real unruly and
turbulent atmosphere, the trailing wake from a passing airplane will of course
only be noticeable for a finite distance.

Oseen’s approximation

Sufficiently far from the body, the velocity field is laminar and approximatively
equal to the asymptotic value U both inside and outside the trailing wake. In-
serting v = U + Aw into the steady flow equation,

1
(v-V)v = —p—vp + V3, (27-58)
0
we obtain to first order in Aw,
1
(U-V)Av = —p—vp + vV Av . (27-59)
0

The linearity of this equation allows us to superpose its solutions. Let us write
the velocity difference as a sum,

Av=u+Vo, (27-60)
where @ is a generalized velocity potential chosen as a solution to

(U-V)d = —pﬁ + V2D (27-61)
0

Using this to eliminate p in (27-59), it follows that the field w must satisfy

(U-V)u=vVu|. (27-62)

The incompressibility condition, V - Av = 0, yields a relation between ® and u

Vi =-V-u|. (27-63)

The system of equations now closes in a simple way: If u is a solution to (27-62),
this equation determines ®, and then from (27-61) the pressure may be obtained.
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Flow inside the wake

The trailing wake is assumed to be narrow compared to the distance to the body.
In a coordinate system with the z-axis along the asymptotic velocity, U = Ue,,
we may assume that x > |y|,|z|, inside the wake. In the now familiar way, it
follows that the double x-derivative in the Laplacian of (27-62) is small compared
with the y, z-derivatives, and the equation for u becomes

ou 02 02

This is a standard diffusion equation of the same form as the momentum diffusion
equation (18-5) with two transverse dimensions and “time” ¢t = 2/U. Notice that
this is also the time, it takes for the asymptotic flow to reach the downstream
position = from the body.

At distances much larger than the body size, x > L, the body appears as a
point particle with no discernable shape, situated at the origin of the coordinate
system. By insertion into the above equation one may verify that the following
expression is an exact “shapeless” solution,

A 2 2
u="exp <—Uy te ) : (27-65)
T dvz

where A = (A,, Ay, A;) is a constant vector. It is in fact also the most general
solution at large downstream distance x (see problem 27.8). Evidently, the distant
wake has a Gaussian shape in the transverse directions with a narrow width
d = y/4vz/U. The width of the laminar wake is, however, the same in both
transverse directions, confirming that there is no imprint of the original shape
of the object on the Gaussian form of the distant wake. Taking y,z ~ \/z, the
solution decays as ' along the wake, rather than the expected r—2 ~ 272
This is consistent with the area of the wake being of order 62 ~ x such that the
integral of w over the cross section of the wake remains finite for z — oo. The
terms that have been left out in the above solution by dropping the z-derivatives
in the Laplacian are a further factor 2~! smaller than the above solution and
cannot contribute in the limit.

The generalized potential is determined by solving (27-63). Consistently leav-
ing out the double derivatives in the Laplacian, it becomes

0? 0?

On the right hand side one cannot leave out the V u, contribution to the diver-
gence because it is only a factor #—/2 smaller than the others. It may — with
some effort — be verified by insertion that the following potential is an exact
solution to this equation

v Ayy+A.z Ay y? + 22
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Here the first term in the first parenthesis is of order z=/2 and the second of
order z=!'. The leading corrections from leaving out the double derivatives in
the Laplacian are of order z73/2. Only the exponential in the second parenthesis
represents a true solution to the inhomogeneous equation (27-66), to which one
may add an arbitrary solution to Laplace’s equation V?® = 0. Here we have

added the solution which makes the potential regular for y = z = 0.

Drag and lift

The pressure is obtained in the same approximation from (27-61),

0P 0? 0? A,
= —poU — —+—|P= — . 27-68
p Po o =+ pov (ayg + 822) poV 72 ( )
Since it decays like 2=2 and the area of the wake is §2 ~ x, it cannot contribute
to drag for x — oo, so that the leading contribution to the integrand of (27-33)
becomes

p + poUAv, =~ poUu, . (27-69)

In the last step we have dropped the pressure and the potential derivative V,® ~
x~3/2 which are both negligible compared to u, ~ z~'. Integrating over all y, z,
we find from (27-33)

D= —pOU// Uy dydz = —4mpor A, . (27-70)

which fixes the coefficient A,. The errors committed in extending the integral
over the wake to all values of y and z are exponentially small.
The lift is obtained from the complete circulation integral (27-38),

F(z)z?( (u+ V). de = u-dﬁ%—/uydy.
C(2)

C(2)

In the second step we have used that ® is single-valued so that § V® - de = 0,
and in the third that w vanishes outside the wake slice, W(z). The minus sign
stems from the contour running through the wake against the direction of the
y-axis. Inserting this result into (27-37) we find

L= —poU// uy dydz = —4mvpo Ay , (27-71)

which fixes A,. Similarly, since there is no lift in the z-direction, we must have
A, =0.
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The complete field configuration inside the wake has now been obtained in
terms of the lift and drag that the body generates,

D 2 2
uz—(’wexp(_Uy + 2z > ’

A povx dvx

1 2zy y? + 22
P = L-D|[1- -U .
4rpoUz (y2 + 22 ) ( P ( dvx

The correction terms are all of relative order z~1.

(27-72)

Flow outside the wake

Outside the wake, the flow is assumed to be irrotational with Av = V& and

V2d = 0. We have before argued that Av ~ 1/r? at large distances, and

consequently we must have ® ~ 1/r. In spherical coordinates with the polar axis

in the z-direction and the null-meridian in the xy-plane, we may thus write
F(0,¢)

@:7_ 2—
; (27-73)

The spherical Laplacian (C-16) implies that F' has to satisfy

sin? 08—2 + cosHsian + > F=0 (27-74)
062 o0 0¢2) "

In view of the periodicity in ¢, the complete solution may be written as a Fourier
series

F=Ag(0) + ) An(0) cosng + B, () sinng , (27-75)
n=1
where the coefficients A,, and B,, satisfy the equation

d? d
2, 07 . a9 _ -~
(sm 9d92+00595m9d9 n)An 0. (27-76)

Surprisingly, this equation has the exact solutions (tan g)in (see problem 27.9).
Since F' has to be regular at § = 7, only the negative sign is acceptable. Further-
more, for § — 0, where A, ~ 6", this solution has to join continuously with the
inside solution (27-72), which for y,z > § and y, z < = behaves like

N 1 2zy r-D) ~ L cos¢ D
T arpoUz \ y2 + 22 T 2mpoU 10 AmpoUr

(27-77)

This shows that the only possible exponents are n = 0,1 with Ag = —D/4mpyU,
Ay = L/4wpoU and By = 0. Thus the potential far from the body outside the
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3T

T4t

Figure 27.6: Streamlines for the far field in the z = 0 plane. The parameters for the plot
are U =po=v=1,D =35, and L = 10, The parabola defines the width of the laminar
wake, y = 2+4/vx/U. The far field has been regulated such that it is well-defined and
finite everywhere (see problem 27.10). The regulated flow violates the compressibility
condition V - v = 0 near the center. The gap is an artefact of the regulation, which
makes the “body” appear to have a funnel at the center, making some the streamlines
converge behind the body. Notice the downwards flow behind the body, caused by the lift.

wake becomes

_ L cospcot(0/2) — D

d
dmpoUr

(27-78)

It joins continuously with the field of the wake. The streamlines for the combined
inside and outside fields are shown in fig. 27.6 in a convenient interpolating
approximation (see problem 27.10).

Pressure and lift

Since the leading contribution to pressure vanishes far downstream inside the
wake, it plays no role for the drag which as shown by (27-70) is entirely due
to a loss of fluid momentum. The lift contribution from pressure similarly
stems entirely from the outside solution. Using Bernoulli’s theorem and the
spherical derivatives (C-14), the outside pressure becomes, p = —poUV,P =
—poU(cos OV, —sinOVy)®. After a bit of algebra this reduces to,

D+ Lsinfcos¢
4r?

(27-79)
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It is immediately clear that the spherically symmetric first term cannot contribute
to the total contact force. Also since dS, = cosf - r2 sin §dfd¢, the second term
which is linear in cos ¢ cannot produce a force in the z-direction, i.e. a drag.

Due to its ¢-dependence the second term is, however, negative above the zz-
plane and positive below, and must therefore produce a lift. Using that dS, =
sin @ cos ¢ - 72 sin fdOd¢, we find

ffpdS = 4£//sin39cos2¢d0d¢ = éﬁ . (27-80)

™

Pressure thus produces one third of the lift, even for an infinite sphere. The
remaining two thirds of lift stems from momentum flux. As discussed before
(page 557), the partition of lift between pressure and momentum flux depends
on the choice of integration surface at infinity. The pressure contribution would
vanish if the “box” at infinity were taken to be a huge cylinder with length much
smaller than radius.
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Problems
27.1 The Concorde airliner has a powerplant of four engines that together develop

677 kN with afterburner. It maximal takeoff mass is 185,000 kg and its takeoff speed
360 km/h. Ignore drag and calculate the runway a) acceleration, b) time and c) length.

27.2 Show that the tangent to the bank angle in a horizontal banked turn is 27 times
the ratio between the time it takes to fall freely from rest to velocity U (with no air
resistance) divided by the time T it takes to make a complete turn.

27.3 Show that the induced drag is smaller if the single trailing vortex is divided into
a number of smaller vortices coming off the wing.

27.4 Let ey = U/U be a unit vector in the direction of the asymptotic flow. a) Show
that the drag is always of the form

D= ?{(p +poAv-Uey - dS (27-81)
s
and that the lift takes the form
£:—po}{Ux(Avde)+?§peUx(edeS). (27-82)
s s

b) Show that the last term vanishes if S cuts the wake in a planar region orthogonal to
the asymptotic velocity.

27.5 Show explicitly that the sheet vortex field (27-43) has circulation

= f v-de= f{ dr (27-83)

where C' is an arbitrary curve completely surrounding the airfoil A.

27.6 Show that

1 J—
/ ! log L= g — o (27-84)
o (1—t)/t(1—1t) -2

for all x.

27.7 Assume that a thin airfoil has camber function

Ay(z) = k\/g(a — ) (27-85)

where k < 1. Calculate the zero-lift angle ap.
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* 27.8 Consider the N-dimensional diffusion equation in the variables z = (z1,...,2n)
N
OF O*F
- = 27-86
roso 0

(a) Show that with initial data F(z,0) = Fo(x), the solution at time ¢ is

F(z,t) = (4nt)~N/? / Fo(y) exp G%) dVy (27-87)

where (z —y)* =, (zn — yn)*
(b) Show that if Fy(y) is bounded or decreases at least as rapidly as a Gaussian for
ly| — oo, the the solution for t — oo is

F(z,y) = (4rt) "% exp <—g) /Fo(y) dNy (27-88)

* 27.9 Find all solutions to

d? d
.2 : 2\ ¢ _ :
<sm 9@ —l—cos@smH@ n ) f=0. (27-89)

* 27.10 The streamline plot of fig. 27.6 is from the following field,

Ve = U + g + Vo | (27-90)
vy = Uy + Vy @, (27-91)
v. = V. (27-92)
where
D
e =7 dmpov (a+ 1) (27-98)
Uy = £ (27-94)
Y7 dmpov
1 (r+=)y
= —D)a-Ww) . 27
dmpoU T <£b2 +y2 + 22 ) (1=w) (27-95)

where r = /22 + y2 4 22, and W is the “wake-factor”

2 2
Yy +z
= -U-=>——)0(x) . 27-
w exp( U4V(a+:n)> (z) (27-96)
Here 6(z) = 1 for x > 0 and 0 for x < 0, and a and b are positive constants, in the
figure chosen to be a =1 and b = 0.3.

Show that this field is defined all over space and that it approximates the far field
at great distances both inside and outside the wake.
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