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Buoyancy

’Buoy’ mostly pronounced
’booe’, probably of Germanic
origin. A tethered floating
object used to mark a loca-
tion in the sea.

Fishes, whales, submarines, balloons and airships all owe their ability to float to
buoyancy, the lifting power of water and air. The understanding of the physics
of buoyancy goes back as far as antiquity and has probably sprung from the
interest in ships and shipbuilding in classic Greece. The basic principle is due
to Archimedes. His famous Law states that the buoyancy force on a body is
equal and oppositely directed to the weight of the fluid that the body replaces.
Actually the Law was not just one law, but a set of four propositions dealing with
different configurations of body and liquid [7]. Before his time one had thought
that the shape of a body determined whether it would sink or float. of Syracuse Archimedes

(287–212 BC). Greek math-
ematician. Discovered
the formulas for area and
volume of cylinders and
spheres. Considered the
father of fluid mechanics.

The shape of a floating body and its mass distribution does determine whether
it will float stably or capsize. Stability of floating bodies is of importance to
shipbuilding, and to anyone who has ever tried to stand up in a small rowboat.
Newtonian mechanics not only allows us to derive Archimedes’ Principle for equi-
librium of floating bodies, but also to characterize the deviations from equilibrium
and calculate the restoring forces. Even if a body floating in or on water is in
hydrostatic equilibrium, it will not be in complete mechanical balance in every
orientation, because the center of mass of the body and the center of mass of the
displaced water, also called the center of buoyancy, do not in general coincide.

The mismatch between the centers of mass and buoyancy for a floating body
creates a moment of force, which tends to rotate the body towards a stable
equilibrium. For submerged bodies, submarines, fishes and balloons, the stable
equilibrium will always be with the center of gravity situated directly below the
center of buoyancy. For bodies floating stably on the surface, ducks, ships, and
dumplings, the center of gravity is mostly found directly above the center of
buoyancy.
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78 5. BUOYANCY

5.1 Archimedes’ principle

Mechanical equilibrium takes a slightly different form than global hydrostatic
equilibrium (4-15) when a body of another material is immersed in a fluid. If its
material is incompressible, the body retains its shape and displaces an amount of
fluid with exactly the same volume. If the body is compressible, as a rubber ball,
the volume of displaced fluid will be smaller. The body may even take in fluid,
like the piece of bread you dunk into your coffee, but then the physics becomes
more complicated, and we shall disregard this possibility in the following. A
body which is partially immersed may formally be viewed as a body that is fully
immersed in a fluid for which the mass density and the equation of state vary
from place to place. This also covers the case where part of the body is in vacuum
which may be thought of as a fluid with the extreme properties, ρ = p = 0.

Weight and buoyancy

Let the actual, perhaps compressed, volume of the immersed body be V with
surface S. In the field of gravity an unrestrained body is subject to two forces:
its weight

FG =
∫

V

ρbody g dV , (5-1)

and the buoyancy due to pressure acting at its surface,
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Gravity pulls at a body all
over its volume, while
pressure only acts the
surface.

FB = −
∮

S

p dS . (5-2)

In general these two forces do not have to be in balance. The resultant F =
FG + FB determines the direction that the unrestrained body will begin to
move. In mechanical equilibrium the two forces must exactly cancel each other
so that the body can remain in place.
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displacement

For a body partially sub-
merged in water the
displacement is the amount
of water that has been
displaced by the volume of
the body below the waterline.

Assuming that the body does not itself significantly contribute to the field of
gravity, the local balance of forces in the fluid (4-19) will be the same as before
the body was placed in the fluid. In particular the pressure in the fluid cannot
depend on whether the volume V contains material that is different from the fluid
itself. The pressure on the surface of the immersed body must for this reason
be identical to the pressure on a body of fluid of the same shape. But then the
global equilibrium condition (4-15) tells us that the buoyancy force will exactly
balance the weight of the displaced fluid, so that

FB = −
∮

S

p dS = −
∫

V

ρfluid g dV . (5-3)

This theorem is indeed Archimedes’ principle: the force of buoyancy equals (mi-
nus) the weight of the displaced fluid.
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5.1. ARCHIMEDES’ PRINCIPLE 79

The total force on the body may then be written

F = FG + FB =
∫

V

(ρbody − ρfluid)g dV , (5-4)

explicitly confirming that when the body is made from the same fluid as its
surroundings, so that ρbody = ρfluid, the resultant force vanishes automatically.
In general, however, the distributions of mass in the body and in the displaced
fluid will be different. Freiherr Karl Friedrich

Hieronymus von
Münchhausen (1720-1797).
German (Hanoveran) sol-
dier, hunter, nobleman,
and delightful story-teller.
The stories of his travels
to Russia were retold and
further embroidered by
others and published as
”The Adventures of Baron
Munchausen” in 1793. In
one of these, he lifts himself
(and his horse) out of deep
snow by his bootstraps. In-
cidentally, this story is also
the origin of the expression
“bootstrapping”, or more
recently just “booting”, a
computer.

Notice that Archimedes’ principle is valid even if the gravitational field varies
appreciably across the body. Archimedes principle fails, if the body is so large
that its own gravitational field cannot be neglected, such as would be the case
if an Earth-sized body fell into Jupiter’s atmosphere. The extra compression of
the fluid near the surface of the body generally increases the buoyancy force in
the direction opposite to the ambient field of gravity. In semblance with Baron
von Münchausen’s adventure, the body in effect lifts itself by its bootstraps (see
problems 5.6 and 5.7).

Constant field of gravity

If the gravitational field is constant, g(x) = g0, the weight of the body is,

FG = Mbody g0 , (5-5)

and the buoyancy force becomes

FB = −Mfluid g0 . (5-6)

Since the total force is the sum of these contributions, one might say that buoy-
ancy acts as if the displacement were filled with fluid of negative mass −Mfluid.
In effect the buoyancy force acts as a kind of antigravity.

The total force on an unrestrained object is now,

F = FG + FB = (Mbody −Mfluid)g0 . (5-7)

If the body mass is smaller than the mass of the displaced fluid, the total force
is directed upwards, and the unrestrained body will begin to move upwards.
Alternatively, if the body is kept in place, the restraints must deliver a force −F
to prevent the object from moving.

A body can only hover motionlessly in a fluid if its mass equals the mass of
the displaced fluid,

Mbody = Mfluid . (5-8)

Fish achieve this balance by adjusting the amount of water they displace through
contraction and expansion of an internal air-filled bladder. Submarines on the
contrary change their mass by pumping water in and out of ballast tanks. Curi-
ously, no animals seem to have developed balloons for floating in the atmosphere,
although both the physics and chemistry of ballooning appears to be within reach
of biological evolution.
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80 5. BUOYANCY

5.2 The gentle art of ballooning
Joseph Michel Montgolfier
(1740-1810). Experimented
(together with his younger

brother Jacques Étienne
(1745-1799)) with hot-air
balloons. On November
21, 1783, the first human
flew in such a balloon for
a distance of 9 kilometers
at a height of 100 meter
above Paris. Only one of
the brothers ever flew, and
then only once!

Apart from large kites used in ancient China, balloons were the earliest flying
machines. The first balloons made by the Montgolfier brothers in 1783 contained
hot air which is lighter than cold. Hot-air balloons were a century later replaced
by balloons containing light gases, hydrogen or helium, with greater lifting power.
This also eliminated the need for a constant heat supply and made possible the
huge (and dangerous) hydrogen airships of the 1930’s. In the last half of the
twentieth century hot-air balloons again came into vogue, especially for sports,
because of the availability of modern strong lightweight materials (nylon) and
fuel (propane).

Gas balloons

A large hydrogen or helium balloon typically begins its ascent being only partially
filled, assuming an inverted tear-drop shape. During the ascent the gas expands
because of the fall in ambient air pressure, and eventually the balloon becomes
nearly spherical and stops expanding (or bursts) because the “skin” of the balloon
cannot stretch further. Since the density of the displaced air falls with height, the
balloon will reach a maximum height, a ceiling where it could hover permanently
if it did not lose gas. In the end no balloon stays aloft forever.

Let the total mass of the balloon be M0, including the mass of the gas, the
balloon skin, the gondola, people, and what not. The condition for upwards flight
is then that M0 ≤ V ρ where V is the total volume of air that the balloon displaces
and ρ the air density at its actual position. In the homentropic atmospheric model
the air density is given by (4-44), and the condition for flight at height z becomes,

M0 ≤ ρ0V

(
1− z

h2

)1/(γ−1)

(5-9)

where γ ≈ 7/5 is the adiabatic index of air, ρ0 ≈ 1.2 kg/m3 its density at sea
level, and h2 ≈ 30 km the isentropic scale height (4-43). If this inequality is
fulfilled on the ground, the balloon will start to rise. During the rise the volume
may expand towards a maximal value while the air density falls, and the balloon
will keep rising until the inequality is no more be fulfilled, and the balloon has
reached its ceiling.

Example 5.2.1: A gas balloon has a maximal spherical diameter of 10 m yielding
a volume V ≈ 524 m3. For the balloon to lift off at all, its mass must be smaller than
ρ0V = 628 kg. Taking M0 = 400 kg the ceiling becomes z ≈ 5 km. At this height the
air pressure and temperature are p = 0.53 atm and T = 245 K = −29◦ C. Assuming
that the balloon contains hydrogen H2 (with MH2 = 2 g/mol and γ = 7/5) at this
temperature and pressure, the total mass of the hydrogen is merely 28 kg. The
surface area of the balloon is 314 m2, so if the skin has thickness 2 mm and density
300 kg/m3, its mass becomes 188 kg, which leaves about 400 − 28 − 188 = 184 kg
for the proper payload. Filled with helium He (with Mmol = 4 g/mol and γ = 5/3),
the proper payload would be reduced to 156 kg.
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5.3. STABILITY OF FLOATING BODIES 81

Hot-air balloons

A hot-air balloon is open at the bottom so that the inside pressure is always
the same as the atmospheric pressure outside. The air in the balloon is warmer
(T ′ > T ) than the outside temperature and the density is correspondingly lower
(ρ′ < ρ). If M0 denotes the total mass of the balloon, the condition for flight is
now that M0 < (ρ− ρ′)V . From the ideal gas law (4-27) and the equality of the
inside and outside pressures it follows that ρ′T ′ = ρT , so that the inside density
is ρ′ = ρT/T ′. The condition for flight at height z becomes,
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T ′

ρ′
T

ρ

pp

A hot-air balloon has higher
temperature T ′ > T and
lower density ρ′ < ρ but
the same pressure as the
surrounding atmosphere
because it is open below.

M0 ≤
(

1− T

T ′

)
ρV =

(
1− T0

T ′

(
1− z

h2

)) (
1− z

h2

) 1
γ−1

ρ0V . (5-10)

On the right hand side we have inserted the expressions (4-42) and (4-44) for the
homentropic atmospheric temperature and density.

Example 5.2.2: A spherical hot-air balloon with diameter d = 10 m is desired
to reach a ceiling of z = 1000 m with air temperature T ′ = 100◦ C = 373 K. When
the ground temperature is T0 = 20 ◦C = 293 K and the density ρ0 = 1.2 kg/m3, it
follows that this balloon would be capable of lifting M0 ≈ 140 kg to the ceiling.

5.3 Stability of floating bodies

Although a body may be in buoyant equilibrium, so that the total force composed
of gravity and buoyancy vanishes, F = FG +FB = 0, it may not be in complete
mechanical equilibrium. The total moment of all the forces acting on the body
must also vanish; for else an unrestrained body will start to rotate.

Moments of weight and buoyancy

The total moment is like the total force a sum of two contributions,

M = MG + MB , (5-11)

with one contribution from gravity,

MG =
∫

V

x× ρbodyg dV , (5-12)

and the other from pressure, i.e. buoyancy,

MB =
∮

S

x× (−p dS) . (5-13)

If the total force vanishes, F = 0, the total moment will be independent of the
origin of the coordinate system (page 41).

Assuming again that the presence of the body does not change the pressure
distribution in the fluid, the moment of buoyancy is independent of the nature of
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82 5. BUOYANCY

the material inside V . In hydrostatic equilibrium the total moment on the same
volume of fluid must vanish, Mfluid

G + MB = 0, such that we get

MB = −
∫

V

x× ρfluidg dV . (5-14)

The moment of buoyancy equals the (minus) moment of gravity of the displaced
fluid. This result is a natural corollary to Archimedes’ principle, and of immense
help in calculating the buoyancy moment. A formal proof of the theorem is found
in problem 5.8.

Constant gravity and buoyant equilibrium

In the remainder of this chapter we assume that gravity is constant, g(x) = g0,
and that the body is in buoyant equilibrium so that it displaces exactly its own
mass of fluid, Mfluid = Mbody = M . The densities of body and displaced fluid
will, however, in general be different, ρbody 6= ρfluid.

The moment of gravity (5-12) may as before (page 41) be expressed in terms
of the center of the body mass distribution (here called the center of gravity),

MG = xG ×Mg0 , xG =
1
M

∫
xρbody dV . (5-15)

Similarly the moment of the mass distribution of the displaced fluid (5-14) is,

MB = −xB ×Mg0 , xB =
1
M

∫
xρfluid dV . (5-16)

Although each of these moments depends on the choice of origin of the coordinate
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Body in buoyant equilibrium
but with non-vanishing total
moment which here sticks
out of the paper. The mo-
ment will for a submerged
body tend to rotate it in
the anticlockwise direction
and thus bring the center of
gravity below the center of
buoyancy.

system, the total moment,

M = (xG − xB)×Mg0 , (5-17)

will be independent, as witnessed by the appearance of the difference of the two
center positions.

As long as the total moment is non-vanishing, the body is not in mechan-
ical equilibrium, but will start to rotate towards an orientation with vanishing
moment. Except for the trivial case where the centers of gravity and buoyancy
coincide, the above equation tells us that the total moment can only vanish if
the centers lie on the same vertical line,

xG − xB ∝ g0 . (5-18)

For xG 6= xB , there are two possible orientations satisfying this condition: one
where the center of gravity lies above the center of buoyancy, and another where
the center of gravity is lowest. At least one of these will be stable.
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5.3. STABILITY OF FLOATING BODIES 83

Submerged body

For a fully submerged rigid body, for example a submarine, both centers are
always in the same place relative to the body. If the center of gravity does not
lie directly below the center of buoyancy, but displaced a bit horizontally, the
direction of the moment will always tend to turn the body so that the center
of gravity is lowered with respect to the center of buoyancy. The only stable
orientation of the body is where the center of gravity lies vertically below the
center of buoyancy. Any small perturbation away from this orientation will soon
be corrected and the body brought back to the equilibrium orientation. A similar
argument shows that the other equilibrium orientation with the center of gravity
above the center of buoyancy is unstable and will flip the body over, if perturbed
the tiniest amount.
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A fully submerged body in
stable equilibrium must
have the center of gravity
directly below the center of
buoyancy. If G is moved to
G′ a restoring moment is
created which sticks out of
the plane of the paper.

This is why the gondola hangs below an airship or balloon, and why a fish goes
belly-up when it dies, because it loses control of the swim bladder which enlarges
into the belly and reverses the positions of the centers of gravity and buoyancy.
It mostly also loses buoyant equilibrium and floats to the surface.

Body floating on the surface

At the surface of a liquid, a body such as a ship or an iceberg will according to
Archimedes’ principle always arrange itself so that the mass of displaced liquid
exactly equals the mass of the body. Here we assume that there is vacuum or a
very light fluid such as air above the liquid. The center of gravity is always in
the same place relative to the body, but the center of buoyancy depends now on
the orientation of the body, because the volume of displaced fluid changes place
and shape (while keeping its mass constant) when the body orientation changes.
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A floating body may have
a stable equilibrium with
the center of gravity di-
rectly below the center of
buoyancy.

Stability can again only occur when the two centers lie on the same vertical
line, but there may be more than one stable orientation. A sphere made of
homogeneous wood floating on water, is stable in all orientations . None of them
are in fact truly stable, because it takes no force to move from one to the other.
This is however a marginal case.

A floating body may like a submerged body possess a stable orientation with
the center of gravity directly below the center of buoyancy. A heavy keel is, for
example, used to lower the center of gravity of a sailing ship so much that this
orientation becomes the only stable equilibrium. In that case it becomes virtually
impossible to capsize the ship, even in a very strong wind.

The stable orientation for most floating objects, such as ships, will in general
have the center of gravity situated directly above the center of buoyancy. This
happens always when an object of constant mass density floats on top of a liquid
of constant mass density, for example an iceberg on water. The part of the iceberg
that lies below the waterline must have its center of buoyancy in the same place
as its center of gravity. The part of the iceberg lying above the water cannot
influence the center of buoyancy whereas it always will shift the center of gravity
upwards.
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A floating body most often
has a stable equilibrium
with the center of gravity
directly above the center of
buoyancy.
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How can that situation ever be stable? Will the restoring moment not be
of the wrong sign? Why don’t ducks and tall ships capsize spontaneously? The
qualitative answer is that when the body is rotated away from such an equilibrium
orientation, the volume of displaced water will change position and shift the
center of buoyancy back to the other side of the center of gravity, reversing the
direction of the restoring moment.

5.4 Ship stability

Sitting comfortably in a small rowboat, it is fairly obvious that the center of
gravity lies above the center of buoyancy, and that the situation is stable with
respect to small movements of the body. But many a fisherman has learnt that
suddenly standing up may compromise the stability and send him out among the
fishes. There is, as we shall see, a strict limit to how high the center of gravity
may be above the center of buoyancy.

Most ships are mirror symmetric in a plane, but we shall be more general and
consider a “ship” of an arbitrary shape. We shall assume that the ship initially
is in full mechanical equilibrium and calculate the moment that arises when it is
brought slightly out of equilibrium. If the moment tends to turn the ship back into
equilibrium, the initial orientation is stable. To lowest order of approximation,
the stability turns out to be an essentially two-dimensional problem, depending
mainly on the shape of the outline of the ship’s hull in the waterline.

Ship’s shape

-
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The flat-earth coordinate
system.

In a flat Earth coordinate system with vertical z-axis the ship’s shape may be
described by its horizontal area A(z) in some interval z1 < z < z2. The waterline
is at z = z0 and the deepest point of the ship lies d = z0 − z1 below the surface,
also called the ship’s draught (or draft). Usually one chooses z0 = 0, but it is not
required. The volume of water that the ship displaces becomes,

V0 =
∫ z0

z1

A(z) dz . (5-19)

In equilibrium the total mass of the ship of course equals the mass of displaced
water, M = ρ0V0. Conversely, given the mass this equation determines the
draught d.
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The ship in an equilibrium
orientation, stable or un-
stable, shown in a vertical
plane containing the aligned
centers of gravity and buoy-
ancy. The horizontal dashed
line indicates the area A(z).

Similarly the vertical position of the center of buoyancy is,

zB =
1
V0

∫ z0

z1

z A(z)dz . (5-20)

In equilibrium the horizontal positions of the center of buoyancy and gravity
must be equal xB = xG and yB = yG, whereas the vertical position zG of its
center of gravity depends on the actual mass distribution of the ship.
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Center of roll

The ship is now tilted slightly through a small angle α around a line y = y0,
parallel to x-axis, so that the previous waterline area A0 = A(z0) comes to lie in
the plane z = z0 + α(y− y0). The net change in the displacement due to the tilt
is to lowest order in α given by the difference in volumes of the two wedge-shaped
regions between new and the old waterlines,

- x

6
y

A0

y0

.......................................................................................................................................................................................................................................................................................................................
................................

.........................
.....................
..................
.................
................
..............
..............
................
........................
.......................
......................
.....................
....................
...................
...................

..................
..................

.......................
...............................................................................................................................................................................................................................................................................................................................................................

The area A0 of the ship
in the waterline may be of
quite arbitrary shape. The
z-axis is vertical, sticking
out of the paper. The ship
is tilted around the line
y = y0.

δV = −
∫

A0

(z − z0) dxdy = −α

∫

A0

(y − y0) dxdy . (5-21)

Here we have disregarded the small corrections of order α2 due to the actual
shape of the hull just above and below the waterline.
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Tilt around the axis y = y0.
The change in displacement
is negative in the wedge to
the right and positive in the
wedge to the left.

For the ship to remain in buoyant equilibrium after the tilt, the change in
displacement must vanish, δV = 0, which is only possible for y0 = 1

A0

∫
A0

y dA.
Including also tilts around a line parallel with the y-axis, this defines a unique
point,

(x0, y0) =
1

A0

∫

A0

(x, y) dxdy , (5-22)

which we shall call the center of roll. It is not hard to show that a roll of the
ship around any axis through this point will generate no change in displacement.

The restoring moment

Without loss of generality we consider from now on only a roll around a line
parallel with the x-axis. Such a roll generates a restoring moment, which may
be calculated from (5-17),

Mx = −(yG − yB)Mg0 . (5-23)

Since we have yG = yB in the original mechanical equilibrium, the difference in
coordinates after the tilt may be written,

yG − yB = δyG − δyB , (5-24)

where δyG and δyB are the small horizontal shifts of order α in the centers of
gravity and buoyancy.

bb

r rr

GG′

B B′B′′

α

The tilt rotates the center
of gravity from G to G′,
and the center of buoyancy
from B to B′. In addition,
the change in displaced
water shifts the center of
buoyancy back to B′′. In
stable equilibrium this point
must for α > 0 lie to the left
of the new center of gravity.

The center of gravity is (hopefully!) fixed with respect to the ship and is to
first order in α shifted horizontally by a simple rotation,

δyG = −α(zG − z0) . (5-25)

There will also be a vertical shift, δzG = α(yG−y0), but that is of no importance
to the stability in the lowest order of approximation.
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The center of buoyancy is at first shifted in the same way as the center
of gravity by the tilt, but because the displacement also changes there will be
another contribution ∆yB ,

δyB = −α(zB − z0) + ∆yB . (5-26)

The change in displacement consists in moving the water in wedge-shaped region
from y > y0 into the region y < y0. Due to the choice of origin of the coordinates
the two regions have equal volumes. Averaging y − y0 over the volume of these
regions, the horizontal change in the center of buoyancy becomes,

- y

6
z

©©©©

©©©©

α −
+ y0

The change in displacement
consists in moving the water
in the wedge to the right
into the wedge to the left.

∆yB = 〈y − y0〉 = − 1
V0

∫

A0

(y − y0)(z − z0)dxdy = − α

V0

∫

A0

(y − y0)2 dxdy .

Finally, putting it all together we find the restoring moment

Mx = −α

(
zB +

I0

V0
− zG

)
Mg0 , (5-27)

where

I0 =
∫

A0

(y − y0)2 dxdy , (5-28)

is the second “moment of inertia” around the x-axis of the hull area A0 in the
waterline. It is a purely geometric quantity which may be calculated from the
outline of the ship in the waterline.

Rectangular waterline area: For a ship with rectangular waterline area with
sides 2a and 2b, the roll center coincides with the center of the rectangle, and the
second moment around the x-axis becomes,

I0 =
∫ a

−a

dx

∫ b

−b

dy y2 =
4
3
ab3 . (5-29)

If a > b this is the largest moment around any tilt axis.

Elliptic waterline area: If the ship has an elliptical waterline area with axes
2a and 2b, the second moment around the x-axis becomes,

I0 =
∫ a

−a

dx

∫ b
√

1−x2/a2

−b
√

1−x2/a2
y2 dy =

4
3
ab3

∫ 1

0

(1− t2)
3/2

dt =
π

4
ab3 . (5-30)

Notice that this is only about half of the rectangular result.
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The metacenter

For the ship to be stable, the restoring moment must counteract the tilt and
thus have opposite sign of the tilt angle α, which implies that the expression
in parenthesis in (5-27) must be positive. The stability condition may thus be
written,

zM > zG , (5-31)

where
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Stable ship. The metacenter
lies above the center of
gravity.zM = zB +

I0

V0
, (5-32)

is the z-coordinate of a fictitious point situated vertically above the original center
of buoyancy. This point is called the metacenter, and the ship is stable when the
metacenter lies above the center of gravity. A good captain should always know
the positions of the center of gravity and the metacenter of his ship before he
sails, or else he may capsize when casting off. - y
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Unstable ship. The meta-
center lies below the center
of gravity.

The restoring moment (5-27) is proportional to the vertical distance, zM−zG,
between the metacenter and the center of gravity. The closer the center of gravity
comes to the metacenter, the smaller will the restoring moment be, and the longer
will the period of rolling oscillations be. The actual roll period depends also on
the true moment of inertia of the ship around the roll axis (see problem 5.11).

The orientation of the coordinate system with respect to the ship’s hull was
not specified in the analysis and is therefore valid for a tilt around any direction.
For a ship to be fully stable, the stability condition must be fulfilled for all
possible tilt axes. Since the displacement V is the same for all choices of tilt axis,
the second moment of the area on the right hand side of (5-31) should be chosen
to be the smallest one. Often it is quite obvious which moment is the smallest.
Many modern ships are extremely long with the same cross section for most of
their length and a mirror symmetry through a vertical plane. For such ships the
smallest moment is clearly obtained with the roll axis parallel to the longitudinal
axis of the ship.

Example 5.4.1: An elliptical rowboat with vertical sides has major axis 2a =
2 m and minor axis 2b = 1 m. The smallest moment of the rectangular area is
I = π

4
ab3 ≈ 0.1 m4. If your mass is 75 kg and the boat’s is 50 kg, the displacement

will be V0 = 0.125 m3, and the draught d ≈ V0/4ab = 6.25 cm, ignoring the usually
curved shape of the boat’s hull. The coordinate of the center of buoyancy becomes
zB = −3.1 cm and the metacenter zM = 75 cm. Getting up from your seat may
indeed raise the center of gravity so much that it gets close to the metacenter and
the boat begins to roll violently. Depending on your weight and mass distribution
the boat may even become unstable and turn over.
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Floating block

The simplest non-trivial case in which we may apply the stability criterion is
that of a rectangular block of dimensions 2a, 2b and 2c in the three coordinate
directions. Without loss of generality we may assume that a > b. The center of
the waterline area coincides with the roll center and the origin of the coordinate
system with the waterline at z0 = 0. The block is assumed to be made from
a uniform material with constant density ρ1 and floats in a liquid of constant
density ρ0.

In hydrostatic equilibrium we must have M = 4abdρ0 = 8abcρ1, or

ρ1

ρ0
=

d

2c
. (5-33)

The position of the center of gravity is zG = c − d and the center of buoyancy

rG

rB

2b

2c

d

Floating block with height
h, draught d, width 2b, and
length 2a into the paper.

zB = −d/2. Using (5-29) and V0 = 4abd, the position of the metacenter is

zM = −d

2
+

b2

3d
. (5-34)

Rearranging the stability condition, zM > zG, it may be written as
(

d

c
− 1

)2

> 1− 2b2

3c2
. (5-35)

When the block dimensions obey a > b and b/c >
√

3/2 = 1.2247 . . ., the right
hand side becomes negative and the inequality is always fulfilled. On the other
hand, if b/c <

√
3/2 there is a range of draught values around d = c (i.e.

ρ1/ρ0 = 1
2 ),

1−
√

1− 2
3

(
b

c

)2

<
d

c
< 1 +

√
1− 2

3

(
b

c

)2

, (5-36)

for which the block is unstable. If the draught lies in this interval the block will
keel over and come to rest in another orientation (see problem 5.13).
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Stability diagram for the
floating block.

Ship with liquid cargo

Many ships carry liquid cargos, oil, water, etc. When the tanks are not completely
filled this kind of cargo may strongly influence the stability of the ship. In heavy
weather or due to accidents, car ferries may inadvertently also get a layer of
water on the car deck. The main effect of an open liquid surface inside the ship
is that the center of mass is shifted in the same direction by the redistribution of
real liquid as the shift in the center of buoyancy due to the change in displaced
water, i.e. towards negative y-values. This disturbs the stability and creates a
competition between the liquid carried by the ship and the water displaced by
the ship.
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Tilted ship with an open
container filled with liquid.
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For the case of a single open tank the calculation of the restoring moment
must now include the liquid cargo. A similar analysis as before shows that there
will be a change in center of gravity from the movement of a wedge of real liquid
of density ρ1,

∆yG = −α
ρ1I1

M
= −α

ρ1

ρ0

I1

V0
(5-37)

where I1 is the second moment of the open liquid surface. The metacentric height
now becomes

zM = zB +
I0

V0
− ρ1

ρ0

I1

V0
(5-38)

The effect of the moving liquid is to lower the metacentric height with possi-
ble destabilization as result. The unavoidable sloshing of the liquid may further
compromise the stability. The destabilizing effect of a liquid cargo is often coun-
teracted by dividing the hold into a number of smaller compartments by means
of bulkheads along the ship’s principal roll axis.

h

A “car ferry” with water on
the deck is inherently unsta-
ble because the movement of
the real water on the deck
nearly cancels the stabilizing
movement of the displaced
water.

In car ferries almost any level h of water on the car deck may cause the
ferry to capsize because ρ1 = ρ0 and I1 ≈ I0, making zM ≈ zB independently
of h. As several accidents have shown, car ferries are in fact highly susceptible
to the destabilizing effects of water on the car deck. Water-proof longitudinal
bulkheads on the car deck of a car ferry are usually avoided because it would
hamper efficient loading of the cars.

∗ Principal roll axis

It has already been remarked that the metacenter for absolute stability is deter-
mined by the smallest second moment of the waterline area. Instead of tilting the
ship around the x-axis, it is tilted around an axis n = (cosφ, sinφ, 0) forming an
angle φ with the x-axis. Since this configuration is obtained by a simple rotation
through φ around the z-axis, the transverse coordinate to be used in calculating
the second moment becomes y′ = y cos φ− x sin φ (see eq. (2-35b)), and we find
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Tilt axis n forming an angle
φ with the x-axis.

I ′0 =
∫

A

(y′)2 dA = Ixx cos2 φ + Iyy sin2 φ + 2Ixy sin φ cosφ = n · III · n (5-39)

where Ixx, Iyy and Ixy are the elements of the matrix

III =
(

Ixx Ixy

Iyx Iyy

)
=

∫

A

(
y2 −xy
−xy x2

)
dA (5-40)

The extrema of the positive definite quadratic form n · III · n are found from the
eigenvalue equation III·n = λn (see problem 5.10). The eigenvector corresponding
to the smallest eigenvalue is called the principal roll axis of the ship and its
eigenvalue determines the metacenter for absolute stability.
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Problems

5.1 A stone weighs 1000 N in air and 600 N when submerged in water. Calculate the
volume and average density of the stone.

5.2 A hydrometer with mass M = 4 g consists of a roughly spherical glass container
and a long thin cylindrical stem of radius a = 2 mm. The sphere is weighed down
so that the apparatus will float stably with the stem pointing vertically upwards and
crossing the fluid surface at at some point. How much deeper will it float in alcohol
with mass density ρ1 = 0.78 g/cm3 than in oil with mass density ρ2 = 0.82 g/cm3? You
may disregard the tiny density of air.

5.3 A cylindrical wooden stick (density ρ1 = 0.65 g/cm3) floats in water (density
ρ0 = 1 g/cm3). The stick is loaded down with a lead weight (density ρ2 = 11 g/cm3) at
one end such that it floats in vertical position with a fraction f = 1/10 of its length out
of the water. (a) What is the ratio (M1/M2) between the masses of the wooden stick
and the lead weight? (b) How large a fraction can stick out of the water (disregarding
questions of stability)?

5.4 A ship of length L has a longitudinally invariant cross section in the shape of an
isosceles triangle with half opening angle α and height h. It is made from homogeneous
material of density ρ1 an floats in a liquid of density ρ0 > ρ1. (a) Determine the
stability condition on the mass ratio ρ1/ρ0 when the ship floats vertically with the peak
downwards. (b) Determine the stability condition on the mass ratio when the ship
floats vertically with the peak upwards. (c) What is the smallest opening angle that
permits simultaneous stability in both directions?
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h

αα d

b

Triangular ship of length
L (into the paper) floating
with its peak vertically down-
wards.

5.5 A right rotation cone has half opening angle α and height h. It is made from ho-
mogeneous material of density ρ1 an floats in a liquid of density ρ0 > ρ1. (a) Determine
the stability condition on the mass ratio ρ1/ρ0 when the cone floats vertically with the
peak downwards. (b) Determine the stability condition on the mass ratio when the
cone floats vertically with the peak upwards. (c) What is the smallest opening angle
that permits simultaneous stability in both directions?

5.6 A barotropic compressible fluid is in hydrostatic equilibrium with pressure p(z)
and density ρ(z) in a constant external gravitational field with potential Φ = g0z. A
finite body having a “small” gravitational field ∆Φ(x) is submerged into the fluid.
(a) Show that the change in hydrostatic pressure to lowest order of approximation is

∆p(x) = −ρ(z)∆Φ(x) . (5-41)

(b) Show that for a spherically symmetric body of radius a and mass M , the extra
surface pressure is ∆p = g1aρ(z) where g1 = GM/a2 is the magnitude of surface
gravity, and that the buoyancy force is increased.

5.7 Two identical homogenous spheres of mass M and radius a are situated a distance
D À a apart in a barotropic fluid. Due to their field of gravity, the fluid will be denser
near the spheres. There is no other gravitational field present, the fluid density is ρ0

and the pressure is p0 in the absence of the spheres. One may assume that the pressure
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corrections due to the spheres are everywhere small in comparison with p0. (a) Show
that the spheres will repel each other and calculate its magnitude to leading order in
a/D. (b) Compare with the gravitational attraction between the spheres. (c) Under
which conditions will the total force between the spheres vanish.

∗ 5.8 Prove without assuming constant gravity that the hydrostatic moment of buoy-
ancy equals (minus) the moment of gravity of the displaced fluid (corollary to
Archimedes’ law).

∗ 5.9 Assuming constant gravity, show that for a body not in buoyant equilibrium (i.e.
for which the total force F does not vanish), there is always a well-defined point x0 such
that the total moment of gravitational and buoyant forces is given byM = x0 ×F .

∗ 5.10 Let III be a symmetric 2× 2 matrix. Show that the extrema of the corresponding
quadratic form n · III ·n = Ixxn2

x + 2Ixynxny + Iyyn2
y where n2

x + n2
y = 1 are determined

by the eigenvectors of III satisfying III · n = λn.

∗ 5.11 Show that in a stable orientation the angular frequency of small oscillations
around around a principal tilt axis of a ship is

ω =

r
Mg0

J
(zM − zG)

where J is the moment of inertia of the ship around this axis.

∗ 5.12 A ship has a waterline area which is a regular polygon with n ≥ 3 edges. Show
that the area moment tensor (5-40) has Ixx = Iyy and Ixy = 0.

∗ 5.13 A homogeneous cubic block has density equal to half that of the liquid it floats
on. Determine the stability properties of the cube when it floats (a) with a horizontal
face below the center, (b) with a horizontal edge below the center, and (c) with a
corner vertically below the center. Hint: problem 5.12 is handy for (d) c, which you
should be warned is quite difficult.
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