
29
Convection

Convection is a major driving agent behind most of the weather phenomena in
the atmosphere, from ordinary cyclones to hurricanes and thunderstorms and
tornadoes. Continental drift on Earth as well as transport of heat from the
center of a planet or star to the surface are also mainly driven by convection. At
a smaller scale, we use heat convection in the home to create a natural circulation
which transports heat around the rooms from the radiators of the central heating
system. Earlier, the circulation of water in the central heating system was also
driven by convection, but is today mostly driven by pumps.

The mechanism behind convection rests on a combination of material proper-
ties and gravity. Most fluids, even those we call incompressible, tend to expand
when the temperature is raised, leading to a slight decrease in density. Were it
not for gravity, the minuscule changes in density caused by local temperature
variations would be of very little consequence, but gravity makes the warmer
and lighter fluid buoyant relative to the colder and heavier, and the buoyancy
forces will attempt to set the fluid into motion. Such heat-driven motion is called
convection, and will in fact arise naturally wherever there are sufficiently large
local variations in the temperature of a fluid.

In this chapter we shall first discuss some examples of steady laminar convec-
tion flows driven by time independent temperature differences on the container
boundaries. Afterwards we shall address the thermal instabilities characterizing
the onset of convection. Of particular interest are the Rayleigh-Bénard instabil-
ities in a horizontal layer of fluid heated from below.
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596 29. CONVECTION

29.1 Convection

Convection is caused by buoyancy forces in combination with the tendency for
most materials to expand when heated1. The coupled partial differential equa-
tions controlling the interplay of heat and motion are generally so complex that
exact solutions are completely out of the question. Numeric simulations are, how-
ever, possible and used wherever practical problems have to be solved. Analytic
insight into convection is mainly obtained from an approximation developed by
Boussinesq in 1902.

Thermal expansion coefficient

The (isobaric) coefficient of thermal expansion is for all kinds of isotropic mat-
ter defined as the relative decrease in density per unit of temperature raise (at
constant pressure),

α = −1
ρ

(
∂ρ

∂T

)

p

, (29-1)

It is a material “constant” which for ideal gases where ρ ∝ p/T becomes α = 1/T ,
or about 3 × 10−3 K−1 at room temperature. For most liquids it is also of
this magnitude, the exception being water which has α ≈ 2.5 × 10−4 K−1 at
25 ◦C. Water is in many respects exceptional with a negative expansion coefficient
between 0 and 4 ◦C, and a solid phase (ice) that is lighter than the liquid.

Turning around the above definition we may calculate the change in density,

∆ρ = −α∆Tρ , (29-2)

due to a small change in temperature satisfying |α∆T | ¿ 1. In a constant field of
gravity g0, this density change causes an extra gravitational force density ∆ρg0

to appear on the right hand side of the Navier-Stokes equation.
In a flow with velocity scale U , length scale L, and temperature scale Θ, the

dimensionless ratio of the buoyancy term to the advective term becomes,

Ri =
|∆ρg0|

|ρ(v ·∇)v| ≈ αΘ
g0L

U2
. (29-3)

It is called the Richardson number, and when this number is small, advectionLewis Fry Richardson (1881-
1953). British physicist.
Applied as the first the
method of finite differences
to predict weather.

will dominate over convection. Conversely, when it becomes of order unity the
flow will be driven by convection with a typical speed U ∼ √

αΘ
√

g0L, which is
the product of the small quantity

√
αΘ ¿ 1 and the free-fall velocity

√
g0L from

height L/2.

1Concentration gradients in mixed fluids can also cause convective flow. In this book we
reserve the word “convection” to denote a flow that is mainly driven by temperature or concen-
tration differences in conjunction with buoyancy, whereas “advection” is used to denote heat
transport in a flow mainly driven by other forces. In practice both mechanisms are at play, and
sometimes it is useful instead to distinguish between free and forced convection.
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29.1. CONVECTION 597

The Boussinesq approximation
Valentin Joseph Boussi-
nesq (1842-1929). French
physicist and mathemati-
cian. Contributed to many
aspects of hydrodynamics:
whirlpools, solitary waves,
drag, advective cooling, and
turbulence.

Suppose an effectively incompressible fluid initially is at rest in constant gravity
g0 = (0, 0,−g0) with constant density ρ0, temperature T0, and hydrostatic pres-
sure p = p0 − ρ0g0z. At a certain time the boundary temperatures are changed,
and the resulting flow of heat changes the temperature in the fluid and thereby
its density, resulting in turn in a convective flow with velocity field v.

The main assumption behind the Boussinesq approximation is that the tem-
perature variations are small on the scale set by the thermal expansion coefficient,
i.e. |α∆T | ¿ 1 where ∆T = T − T0, and the change is density is to first order
given by (29-2) with ρ = ρ0. Adding the buoyancy term ∆ρg0 = −ρ0α∆Tg0

to the Navier-Stokes equations, and cancelling off the normal hydrostatic pres-
sure by writing p = p0 − ρ0g0z + ∆p, the Boussinesq equations for an effectively
incompressible fluid become,

∂∆T

∂t
+ (v ·∇)∆T = κ∇2∆T , (29-4a)

∂v

∂t
+ (v ·∇)v = −∇∆p

ρ0
+ ν∇2v − α∆Tg0 , (29-4b)

∇ · v = 0 . (29-4c)

The complete and correct derivation of the Boussinesq approximation is however
not without subtlety (see for example [65, p. 188]).

Steady convection in open vertical slot heated on one side

We have previously (page 584) discussed the steady heat flow in a fluid at rest
between two plates, one of which was situated at x = 0 with temperature T0

and the other at x = d with higher temperature T1 = T0 + Θ. The result was
that the temperature rises linearly across the slot. If the plates are vertical,
buoyancy forces will act on the heated fluid and unavoidably set it into motion.
For definiteness, the plates are assumed to be large but finite with the openings
at the top and bottom connected to a reservoir of the same fluid at the same
temperature T0 as the cold plate. This provides the correct hydrostatic pressure
at the top and bottom of the slot, a pressure which is necessary to prevent the
fluid in the slot from “falling out” under its own weight, even before it is heated.
Heating will cause the fluid in the slot to rise and merge with the fluid in the
reservoir, and it seems reasonable to expect that a steady flow of heat and fluid
may come about, in which the fluid rises fastest near the warm plate. The
reservoir is assumed to be so large that it never changes its temperature, except
near the exit from the slot.
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Steady convection between
vertical parallel plates held
at different temperatures.
The plates continue far
above and below the section
shown here.

From the planar symmetry of the configuration we expect that the velocity
field is everywhere vertical, and that it and the temperature field depend only
on x,

v = (0, 0, vz(x)) , T = T (x) . (29-5)
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598 29. CONVECTION

Under these assumptions, there will be no advective contribution to the heat
equation (29-4a), which becomes ∇2

x∆T = 0. The temperature thus varies lin-
early with x across the slot, and using the boundary conditions we get,

∆T = Θ
x

d
, (29-6)

just as in the static case (28-19).
From the assumed form of the velocity field it also follows that the advective

term in (29-4b) side vanishes, and from the x, y-components of this equation we
conclude that ∇x∆p = ∇y∆p = 0, so that the pressure can only depend on z.
From the z-component we then get

1
ρ0
∇z∆p(z) = ν∇2

xvz(x) + αΘ
x

d
g0 .

Since the left hand side depends only on z and the right hand side only on x,
both sides of this equation are constant, and since the pressure excess ∆p must
vanish at the top and bottom of the slot, it must vanish everywhere, ∆p = 0.
Using the no-slip boundary conditions on the plates the solution becomes,

vz =
αΘg0d

2

6ν

x

d

(
1− x2

d2

)
. (29-7)

Notice that the steady flow pattern is independent of the heat diffusivity κ as it0.2 0.4 0.6 0.8 1
x�d0.25

0.5

0.75

1

1.25

1.5

vz�U

Convective velocity profile
in units of the width of
the slot and the average
velocity. Its shape is remi-
niscent of the Poiseulle flow
(19-8) although skewed a bit
towards the right.

would be in forced convection.
The maximal velocity in the slot is found at bit to the right of the middle, at

x = d/
√

3. The average velocity in the slot becomes

U =
1
d

∫ d

0

vz(x) dx =
αΘg0d

2

24ν
. (29-8)

Due to the spurious absence of advection the velocity field scale is set by viscosity
rather than by advection. It disagrees with our earlier estimate

√
αΘg0L and is

a factor 1
2αΘ smaller than the average steady fall velocity through the slot, cal-

culated from (19-10) by setting G = ρ0g0. The Reynolds number corresponding
to this velocity is

Re =
Ud

ν
=

1
24
· αΘg0d

3

ν2
. (29-9)

The second factor on the right is called the Grashof number and denoted Gr.
Formally, the Richardson number becomes Ri = 24/Re.Franz Grashof (1826-93).

German engineer who
sought to transform ma-
chine building into a proper
science.

Example 29.1.1: For water with d ≈ 1 cm, Θ ≈ 10 K we find U ≈ 12 cm/s.
The corresponding Reynolds number is Re ≈ 1400, indicating that the flow should
be laminar, as was assumed implicitly in the above calculation. For air the velocity
is U ≈ 8 cm/s and the Reynolds number Re ≈ 50.
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29.1. CONVECTION 599

Entrance length for heat

The rate at which heat is transported by convection from the slot into the reser-
voir may be calculated from the extra internal energy carried by the fluid as it
exits the slot,

Q̇ =
∫ d

0

ρ0cp∆T vzLdx =
ρ0cpαΘ2g0d

3L

45ν
, (29-10)

where L is the size of the slot in the y-direction. This raises a puzzle because the
temperature gradient is constant, ∇x∆T = Θ/d, across the slot, and Fourier’s
law (28-12) then implies that the same amount of heat is added to the fluid at
the warm plate as is removed at the cold. Consequently, no net heat is added to
the fluid from the plates, in blatant contradiction with the above calculation and
common experience.

What is wrong is the assumption that the solution (29-6) and (29-7) is valid
at the bottom of the slot where the fluid enters. Here the temperature gradient
cannot be constant, because mass conservation in the steady state forces the cold
fluid to enter with the same average velocity U given by (29-8). Since it takes
a certain amount of time, t ≈ d2/4κ, for the heat supplied by the warm plate
to diffuse across the slot (see eq. (28-17)), the fluid will have moved through a
vertical distance

` ≈ Ut =
αΘg0d

4

96κν
, (29-11)

before the heat gets into contact with the cold plate. For consistency we should
compare the heat loss at the exit (29-10) with the total rate of heat transferred
into the fluid in the entrance region. It may be estimated from Fourier’s law (28-
12) applied to the entrance area L`. In this region the heated fluid only extends
about halfway across the slot leading to a heat flow estimate Q̇ ∼ `L · k Θ/(d/2),
and this is indeed of the same size as the heat loss (29-10) at the exit.

6

- x

z

0 d

T0 T1

........
........

........
........

........
........

........
........

........
........
........
........
........
........

The heat front (dashed) at
the entrance to the vertical
slot. The heat transferred to
the fluid at the warm plate
must diffuse across the slot
but is at the same time ad-
vected upwards with average
velocity U . It makes contact
with the cold plate after
having moved a distance `,
called the entrance length
for heat.

The entrance length may also be written,

` ≈ Ra

96
d , (29-12)

where the dimensionless quantity,

Ra =
αΘg0d

3

νκ
, (29-13)

is the famous Rayleigh number. In units of the slot width the entrance length for
heat `/d is about 1% of the Rayleigh number whereas the viscous entrance length
(21-22) in units of the slot width is estimated to be about 2% of the Reynolds
number.

Example 29.1.2: In the preceding example 29.1.1 the Rayleigh number for water
becomes Ra = 2× 105, and we get an enormous entrance length ` ≈ 20 m, whereas
for air we find Ra ≈ 900 and a much more manageable ` ≈ 9 cm. For comparison
the viscous entrance length is 42 cm in water and 1.5 cm in air.
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600 29. CONVECTION

∗ Thermal boundary layer

If the entrance length is much greater than the height of the slot, ` À h, the
heated fluid will never reach the cold plate before it exits from the slot. In this
limit, the cold plate can be ignored, and the appropriate model is instead that
of a warm vertical plate with constant temperature placed in a sea of cold fluid.
The heated fluid rising along the plate then forms a thermal boundary layer,
and we shall now determine the steady laminar flow pattern in such a boundary
layer by combining the Boussinesq approximation with Prandtl’s boundary layer
approximation (section 25.3 on page 491).
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Outline of thermal boundary
layers forming on both sides
of a thin plate with constant
temperature T1 = T0 + Θ,
placed vertically in an infi-
nite sea of fluid originally
at rest with temperature T0.
The layer has a z-dependent
thickness δ(z).

The coordinate system is chosen with the positive z-axis along the plate.
Replacing ` by z and d by δ(z) in the estimate of the heat entrance length (29-
11) we obtain an estimate of the z-dependent thickness of the boundary layer
(apart from a dimensionless numerical factor),

δ(z) ∼
(

κνz

αΘg0

)1/4

. (29-14)

Since for z →∞ we have δ/z ∝ z−3/4 the boundary layer may indeed be viewed
as thin, except for a region near the leading edge of the plate.

Under these circumstances we may apply the Prandtl formalism to the Boussi-
nesq equations (29-4) and discard the double derivative after z in the Laplace
operators together with the pressure excess ∆p. These simplifications lead to the
following (Boussinesq-Prandtl) equations for the velocity field, v = (vx, 0, vz),
and the temperature excess, ∆T = T − T0,

(vx∇x + vz∇z)∆T = κ∇2
x∆T , (29-15a)

(vx∇x + vz∇z)vz = ν∇2
xvz + α∆Tg0 , (29-15b)

∇xvx +∇zvz = 0 . (29-15c)

These equations must be solved with the boundary conditions that ∆T = Θ and
vx = vz = 0 for x = 0, and ∆T, vz → 0 for x →∞.

Since there is no other possible length scale for x than δ(z) we shall assume
that the fields only depend on x through the variable x/δ(z), or

s =
(

αΘg0

κνz

)1/4

x . (29-16)

Apart from dimensional prefactors, the fields are parameterized with dimension-
less functions of this dimensionless variable,

∆T = ΘF (s) , vz =
√

αΘg0z G(s) , vx =
(

αΘκνg0

z

)1/4

H(s) , (29-17)
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Figure 29.1: Structure of the self-similar thermal boundary layer for Pr = 1. (a) Plot
of the functions F (s), G(s), and H(s). Notice that asymptotically for s → ∞ there
is a horizontal flow towards the plate which feeds the convective upflow. (b) Doubly
logarithmic plot of the heat slope at the plate, −F ′(0), as a function of the Prandtl
number.

and the field equations become coupled differential equations in s alone,

4√
Pr

F ′′ + (sG− 4H)F ′ = 0 , (29-18)

4
√

PrG′′ + (sG− 4H)G′ + 4F − 2G2 = 0 , (29-19)
4H ′ + 2G− sG′ = 0 , (29-20)

where Pr = ν/κ is the Prandtl number. These equations can be solved nu-
merically with the boundary conditions F (0) = 1, G(0) = H(0) = 0, and
F (∞) = G(∞) = 0. The result is shown in fig. 29.1a for Pr = 1. Interestingly,
the solution has an asymptotic horizontal flow towards the plate (represented by
H(∞) = −1.10941 . . . for Pr = 1), rather than a vertical upflow from below, as
might have been expected. The divergence of the horizontal velocity for z → 0
is a spurious consequence of the Prandtl approximation.

The rate of heat flow out of one side of a plate of dimensions L×h is obtained
from Fourier’s Law (28-12),

Q̇ = −
∫

L×h

k
∂∆T

∂x

∣∣∣∣
x=0

dydz = −4
3
F ′(0)

(
αΘg0h

3

κν

)1/4

k ΘL . (29-21)

The slope −F ′(0) is shown in fig. 29.1b as a function of the Prandtl number.
The quantity in parenthesis is the Rayleigh number for the height of the plate.
Notice that the heat loss, Q̇ ∼ Θ5/4, grows a little faster than linear.

Example 29.1.3 (Heat radiator): A heat radiator consisting of a single plate
of height h = 70 cm and width L = 1 m is kept at T = 65 ◦C and placed in a room at
T0 = 20 ◦C. For air we have Pr = 0.73 and F ′(0) = −0.388 leading to a total heat
flow Q̇ = 235 W from the radiator (including both sides). The maximal vertical
velocity U = max vz is quite naturally found at the top of the radiator, z = h,
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602 29. CONVECTION

and inspection of fig. 29.1a yields U = maxx vz(x, h) ≈ 0.5
√

αΘg0h ≈ 50 cm/s
at s = 1.5 corresponding to a boundary layer width δ ≈ 1 cm. The horizontal
Reynolds number becomes Reδ = Uδ/ν ≈ 340, so there should be no turbulence in
this boundary layer. The asymptotic horizontal inflow is merely vx|x→∞ ≈ −1 cm/s
at z = 5 cm above the bottom of the radiator.

Example 29.1.4 (Human heat loss): For a naked grown-up human the skin
surface area is A ≈ 2 m2, and standing up the height about h ≈ 2 m and L ≈ 1 m.
Taking Θ = 10 K we find the heat loss Q̇ ≈ 40 W. Since this is less than half the
heat production of 100 W, a human being should easily be able to maintain a skin
temperature of 27◦C in calm air at 17◦C, perhaps by sweating a little (see example
28.2.5). As soon as there is even a very gentle wind, the heat loss grows and rapidly
begins to chill the body (see example 28.4.2).

29.2 Convective instability

Fluids with horizontal temperature variations, such as the vertical slot discussed
above, cannot remain in hydrostatic equilibrium but must immediately start to
convect (see problem 29.9). There is on the other hand nothing in the way of hy-
drostatic equilibrium if the fluid is only subject to vertical temperature variations
T = T (z). If the vertical temperature gradient is positive (dT/dz > 0), so that
the temperature rises with height, hydrostatic equilibrium is stable because a blob
of fluid that is quickly displaced upwards will have lower temperature and higher
density than its new surroundings, and thus experience a downwards buoyancy
force, tending to bring it down again. Hydrostatic equilibrium may, however, not
be stable if the temperature gradient is negative (dT/dz < 0) because a blob that
is suddenly displaced upwards into a region of lower temperature will experience
an upwards buoyancy force which tends to drive it further upwards.

Were it not for drag and heat loss, the displaced blob would rise with ever-
increasing velocity. Drag from the surrounding fluid grows with the upwards
blob velocity, to begin with linearly. Conductive heat loss lowers the excess
temperature of the blob and thereby its buoyancy. Both of these effects grow
proportionally with the surface area of the blob whereas buoyancy grows pro-
portionally with the volume, implying that large blobs of fluid tend to be more
unstable and rise faster than small. As we shall now see there is a critical blob
size below which blobs are not capable of rising at all. In the following section we
shall calculate the critical point for onset of instability in particular geometries.

Stability estimate for spherical blob of fluid
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A spherical blob of fluid
moving upwards with con-
stant velocity U . If the
temperature gradient is
negative (dT/dz < 0) the
temperature of the moving
blob will be larger than its
surroundings (∆T > 0).
The pressure is assumed
to be the same inside and
outside the blob.

For simplicity we begin with an incompressible fluid at rest in constant gravity g0

with a constant negative vertical temperature gradient, dT/dz = −G, so that the
temperature field is of the form T (z) = T0 − Gz. A constant gradient could, as
we have seen, be created in a horizontal slot with a fixed temperature difference
between the lower and upper plates.
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29.2. CONVECTIVE INSTABILITY 603

Imagine now that a spherical blob of fluid with radius a is set into upwards
motion with an infinitesimally small steady velocity U > 0. This is of course a
thought experiment, and we do not speculate on the technological difficulties in
creating and maintaining such a blob. While it slowly rises towards lower and
lower temperatures, the warmer blob will transfer its excess of heat to the colder
environment over a typical diffusion time t ∼ a2/4κ (see eq. (28-17)). In this
time the blob rises through the height ∆z ≈ Ut ∼ Ua2/4κ, and the environment
cools by ∆T ∼ G∆z ∼ GUa2/4κ. In the steady state the competition between
the falling temperature of the environment and the loss of heat from the blob
should lead to a time independent temperature excess of size ∆T , which in turn
determines the buoyancy force.

Unfortunately the estimate of ∆T is a bit weak because the Péclet number
Pe = 2aU/κ vanishes in the limit of vanishing U . This implies that for sufficiently
small U advection of heat will be negligible compared to diffusion, and that the
heat escaping from the blob will spread far beyond the blob radius and thereby
raise the temperature of the environment. The rising sphere thus finds itself
surrounded by a large “cocoon” of fluid (of its own making) that is warmer than
the environment and therefore provides smaller buoyancy than would be the
case if the temperature of the environment reigned all the way to the surface of
the sphere. So to calculate the buoyancy force we must know the temperature
distribution inside the blob relative to the temperature at its surface.
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The heat front reaches far
beyond the blob radius when
the blob velocity is tiny.
Here the blob is viewed
in its rest frame, where
there asymptotically is a
uniform downwards wind
−U carrying a continually
lower temperature.

It is most convenient to go to the rest frame of the blob where the flow
outside the blob is steady with the temperature of the environment dropping at
a constant rate. The true temperature field inside the blob must then be of the
form,

T ′ = T0 −G (z + Ut) + ∆T , (29-22)

where by assumption the temperature excess field ∆T is time independent. Inside
the blob, T ′ must obey Fourier’s heat equation for at fluid at rest (28-14), which
under the given assumptions becomes

−GU = κ∇2∆T . (29-23)

Seeking a spherical solution, we find ∆T = −(GU/6κ)r2 + const, and the differ-
ence between the temperature inside the blob and on its surface becomes

δT = ∆T − ∆T |r=a =
GU

6κ
(a2 − r2) . (29-24)

This is indeed of the same order of magnitude as the previous estimate ∆T ∼
GUa2/κ. The total upwards buoyancy force is obtained from the density change
δρ = −αδTρ0 inside the blob,

FB =
∫

V

δρ(−g0)dV = ρ0g0α

∫ a

0

δT (r)4πr2 dr =
4πρ0g0αGa5U

45κ
. (29-25)
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604 29. CONVECTION

Evidently, the buoyancy grows like the fifth power of the radius because its volume
grows like the third power and the diffusion time like the second.

The viscous drag on a sphere in slow steady motion is given by Stokes Law
(20-9),

FD = 6πηaU . (29-26)

It is valid for small Reynolds number Re = 2aU/ν ¿ 1, a condition which is
always fulfilled in the limit of vanishing U .

If the buoyancy is smaller than the drag, FB < FD, the sphere cannot con-
tinue to rise on its own. In dimensionless form, this becomes

FB

FD
=

2
135

g0αGa4

κν
< 1 , (29-27)

where ν = η/ρ0 is the kinematic viscosity (momentum diffusivity) of the fluid.
Evidently, this puts an upper limit on the size of stable blobs.

The critical Rayleigh number

In terms of the blob diameter d = 2a, the stability condition (29-27) may be
written as a condition on the Rayleigh number,

Ra ≡ g0αGd4

κν
< 1080 . (29-28)

Tracing back over the preceding calculation, we see that the large critical value
Rac = 1080 on the right hand side is mainly due to the “cocoon” of warm fluid
carried along with the blob and diminishing its buoyancy. The critical Rayleigh
number for blobs of general globular shape may presumably always be taken to
be around 1000, whereas blobs with radically different shapes, for example long
cylinders, will have quite different critical Rayleigh numbers, although typically
they will be large.

Example 29.2.1: For water in a pot on a warm plate held at 50◦C in a room
with temperature 20◦C we have Θ ≈ 30 K and a depth of perhaps h = 10 cm, so
that G = Θ/h = 300 K/m. The stability limit for spherical blobs is d . 3.7 mm,
and we expect convective currents to arise spontaneously everywhere in the pot.
If instead there is heavy porridge in the pot with heat properties like water but
kinematic viscosity, say ν ≈ 1 m2/s, the critical diameter becomes d ≈ 12 cm. Such
blobs cannot find room in the container, and only little convection is expected.

If the geometry of a fluid container cannot accommodate blobs larger than
a certain diameter d, and if the Rayleigh number for this diameter is below the
critical value, the fluid in the container will be stable with the given negative
temperature gradient. The critical Rayleigh number depends, however, strongly
on the geometry of the container, and cannot in general be calculated analytically.
In the following section we shall determine it for the simplest of all geometries,
the horizontal slot.
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Estimate of terminal blob speed

If the Rayleigh number for a blob is larger than the critical value, Ra > Rac, the
blob will on its own accelerate upwards with larger and larger speed. For large
Reynolds numbers form drag on a sphere, FD ≈ 1

4ρ0πa2U2 (see page 386), grows
quadratically with velocity, and will eventually balance the buoyancy force FB .
The terminal speed determined by solving FD = FB becomes for Ra À Rac,

U ≈ 2
45

g0αGd3

κ
, (29-29)

where d is the blob diameter. Rising blobs are of course strongly influenced by
high speeds, so this is only a coarse estimate.

Example 29.2.2: In example 29.2.1 a water blob with d = 1 cm will reach a
terminal speed of U ≈ 23 cm/s, in reasonable agreement with daily experience.

∗ 29.3 Linear stability analysis of convection

The onset of instability in dynamical systems is usually determined by linearizing
the dynamical equations around a particular “baseline” state that may or may
not be unstable. The solutions to the linearized dynamics represent the possible
fluctuations around the baseline state, and if no fluctuation can grow indefinitely
with time, the baseline state will be stable. The existence of a single run-away
mode indicates on the other hand that the baseline state is unstable. In the
space of parameters that control the system, the condition that all fluctuations
be damped leads to an inequality like (29-28), which in the limit of equality
defines a critical surface, separating the stable region in parameter space from
the unstable.

-

6

d

G
...........................................................................................................................................................................................................................................................................................................................................................................................................................................................stable

unstable

Stability plot for heat con-
vection in a system with
negative temperature gra-
dient G and size d. The
critical surface is G ∼ d−4.

Linearized dynamics of flow and heat

In the present case the baseline state is an incompressible fluid at rest in hydrody-
namic equilibrium with a vertical temperature distribution of constant negative
gradient, T = T0 −Gz. The pressure must obey the equations of hydrodynamic
equilibrium (4-20) on page 65 with the modified density ρ = ρ0(1 − α(T − T0))
of the heated fluid. Solving the hydrostatic equilibrium equations we find
p = p0 − ρ0g0z − 1

2ρ0g0αGz2.
A small velocity perturbation v will generate small corrections to the fields,

∆T and ∆p, so that the true temperature and pressure fields become,

T = T0 −Gz + ∆T , p = p0 − ρ0g0z − 1
2
ρ0g0αGz2 + ∆p . (29-30)

To first order in the small quantities ∆T , ∆p, and v, the heat equation (28-23)
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becomes,

∂∆T

∂t
−Gvz = κ∇2∆T . (29-31)

Dissipation does not contribute because it is of second order in v. Adding the
buoyancy term −α∆Tg0 = α∆Tg0ez to the incompressible Navier-Stokes equa-
tion (18-16) we obtain to first order in the small quantities,

∂v

∂t
= −∇∆p

ρ0
+ ν∇2v + α∆Tg0ez . (29-32)

The inertial acceleration is absent because it is of second order in v. Finally the
velocity field must satisfy the divergence condition,

∇ · v = 0 . (29-33)

These five coupled partial linear differential equations should now be solved for
the five fluctuation fields, ∆T , ∆p and v, with the appropriate boundary condi-
tions for the particular geometry under study.

Fourier transformation

Fourier transformation is method of choice for solving homogeneous linear partial
differential equations with constant coefficients. All fields are assumed to be
superpositions of elementary harmonic waves of the form exp(λt + ik · x) where
k is a real wave vector and λ may be a complex number. For a single harmonic
wave, we get from the linearized dynamics,

λ∆T̃ −Gṽz = −κk2∆T̃ , (29-34a)

λṽ = − ik

ρ0
∆p̃− νk2ṽ + α∆T̃ g0ez , (29-34b)

k · ṽ = 0 . (29-34c)

where now ∆T̃ , ∆p̃, and ṽ denote the amplitudes of the harmonic waves. Solving
the first equation for ṽz, and dotting the second equation with k (using the third)
and solving for ∆p̃, we obtain,

ṽz =
λ + κk2

G
∆T̃ ,

∆p̃

ρ0
= −α∆T̃ g0

ikz

k2 .

Inserting this into the z-component of the second equation, we find a linear
equation for ∆T̃ , which only has a non-trivial solution for

(λ + νk2)(λ + κk2) = αGg0

(
1− k2

z

k2

)
. (29-35)
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This equation expresses that the determinant of the system of five linear algebraic
equations (29-34) must vanish.

Being a quadratic equation in λ it always has two roots,

λ = −1
2

[
(ν + κ)k2 ±

√
(ν − κ)2(k2)2 + 4αGg0

(
1− k2

z

k2

)]
. (29-36)

Both roots are real and one of the roots is evidently negative whereas the other
may be positive. The condition that the second root also be negative is,

(ν + κ)k2 >

√
(ν − κ)2(k2)2 + 4αGg0

(
1− k2

z

k2

)
.

Squaring this inequality it becomes,

αGg0

κν
<

(k2
x + k2

y + k2
z)3

k2
x + k2

y

. (29-37)

The right hand side depends on the geometry of the fluid container and scales
like |k|4 ∼ d−4 where d is a typical length scale for the geometry. The inequality
may thus be viewed as a condition on the Rayleigh number of the same form as
(29-28). If there is no intrinsic length scale, the minimum of the right hand side
is zero, and there can be no stability.

Critical fluctuations

When the stability condition (29-37) is fulfilled with a non-vanishing right hand
side, all fluctuations are exponentially damped in time, and the fluid will essen-
tially stay at rest. If a fluctuation violates the stability condition it will grow
exponentially with time, resulting in more complicated and sometimes turbulent
flow. Right at the critical point where the inequality becomes an equality the
largest of the two stability exponents (29-36) will vanish, i.e. λ = 0. This indi-
cates that the critical fluctuations are time independent (for a rigorous proof of
this assertion see [10]).

At this point it is better to revert to ordinary space where the critical fluc-
tuations must obey the steady-flow versions of the linearized dynamic equations
(29-31)-(29-33),

−Gvz = κ∇2∆T , (29-38a)
∇∆p

ρ0
= ν∇2v + α∆Tg0ez , (29-38b)

∇ · v = 0 . (29-38c)
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These equations may in fact be combined into a single equation for the temper-
ature excess ∆T . Taking the divergence of the second equation we get,

1
ρ0

∇2∆p = αg0∇z∆T , (29-39)

and using this equation and (29-38a), vz and ∆p can be eliminated from the
z-component of the second equation, and we obtain,

(∇2)3∆T =
αGg0

κν
(∇2 −∇2

z)∆T . (29-40)

This equation is equivalent to the condition of vanishing determinant (29-35)
for λ = 0, and should be solved with the correct boundary conditions for the
geometry of the system. Being a kind of eigenvalue equation, each solution
determines a value of the coefficient αGg0/κν, and the one that yields the smallest
value determines the point where convection first begins.

For a system of characteristic size d, the Rayleigh number is defined as before,

Ra =
αGg0d

4

κν
. (29-41)

The smallest possible value of this quantity, called the critical Rayleigh number
Rac, defines the upper limit to convective stability of the baseline state.

The critical fluctuation is apparently another steady solution to the combined
heat and mass flow problem. It must however be kept in mind that an essential
assumption behind linear stability analysis is that the fluctuation amplitudes are
infinitesimal so that non-linear terms can be disregarded. These terms tend in
fact to be beneficial and exert a stabilizing influence on the critical field such that
it is able to persist somewhat above the critical point. This is in fact why critical
fluctuations can be observed at all.

∗ 29.4 Rayleigh-Bénard convection
Henri Bénard (1874-1939).
French physicist. Discovered
hexagonal convection pat-
terns in thin layers of whale
oil in 1900. Such cellular
convective structures have
later been named Bénard
cells.

Warming a horizontal layer of fluid from below is a common task in the kitchen as
well as in industry. It was first investigated experimentally by Bénard in 1900 and
later analyzed theoretically by Rayleigh in 1916. The most conspicuous feature of
the heated fluid is that convection breaks the original planar symmetry, thereby
creating characteristic convection patterns. That the symmetry must break is
fairly clear, because it is impossible for all the fluid in the layer to start to rise
simultaneously. A localized fluctuation current which begins to rise will have to
veer off into the horizontal direction because of the horizontal boundaries. We
shall see below that at the onset of convection the flow breaks up into an infinite
set of “rollers” with alternating sense of rotation.

.....................................................................
............................

......................
...................
.................
...............
................
...............
.................
...................
.......................

..............................
................................................................

.....................................................................
............................

......................
...................
.................
...............
.......

.................................................................................................................................................................................
6

A rising flow in a horizontal
layer of fluid has to veer off
horizontally both at the top
and the bottom.

Much later in 1956 it was understood that the beautiful hexagonal surface
tessellation observed by Bénard in a thin layer of heated whale oil was not caused
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by buoyancy alone but was driven by the interplay between buoyancy and tem-
perature dependent surface tension, a phenomenon now called Bénard-Marangoni
convection. Here we shall only discuss clean Rayleigh-Bénard convection in layers
of fluid so thick that the Marangoni effect can be disregarded. Carlo Marangoni (1840-

1925). Italian physicist.
Investigated surface ten-
sion effects using oil drops
spreading on water.

General solution

Let the horizontal layer of incompressible fluid have thickness d and be subject
to a constant negative temperature gradient G. The boundaries are chosen sym-
metrically at z = ±d/2, for reasons that will be come clear in the following. Since
the flow has to veer off at the boundaries, the fields must depend on z, implying
that kz 6= 0 in the stability condition (29-37). The wave numbers kx and ky

can in principle take any real values because of the infinitely extended planar
symmetry, but since the right hand side of the stability condition diverges for
both k2

x + k2
y → 0 and k2

x + k2
y → ∞, the minimum must occur at a finite value

of k2
x + k2

y. This argument demonstrates that the critical solution must have a
periodic horizontal structure.

6

-

z

x

The plates are placed sym-
metrically at z = ±d/2.

For given kx and ky we may without loss of generality rotate the coordinate
system to obtain ky = 0 and kx > 0, implying that the fields only depend on
x and z but not on y. The most general form of the temperature excess then
becomes of the form,

∆T = Θ cos kxxf(z) (29-42)

where Θ is a constant, and f(z) is a (so far unknown) dimensionless function of
z. From (29-38a) we find the vertical velocity,

vz = −κΘ
G

cos kxx(∇2
z − k2

x)f(z) , (29-43)

and from the divergence condition (29-38c) we get the horizontal velocity,

vx =
κΘ
Gkx

sin kxx(∇2
z − k2

x)f ′(z) . (29-44)

The third velocity component vy does not participate, but it can be shown (prob-
lem 29.3) that it must vanish, vy = 0.

Inserting ∆T into the determinant equation (29-40) we get a sixth order
ordinary differential equation for this function,

(∇2
z − k2

x

)3
f(z) = −αGg0

κν
k2

xf(z) . (29-45)

Using this relation one may verify that the pressure excess,

∆p

ρ0
= −κνΘ

Gk2
x

cos kxx(∇2
z − k2

x)2f ′(z) , (29-46)

satisfies (29-39).

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



610 29. CONVECTION

In a given physical context the actual solution depends on the boundary
conditions imposed on the fields. For the temperature excess the boundaries
are always assumed to be perfect conductors of heat such that ∆T = 0 for
z = ±d/2. For the velocity fields the boundary conditions depend on whether
the boundaries are solid plates or free open surfaces. We shall as Rayleigh did in
1916 first analyze the latter case which is by far the simplest.

Two free boundaries

The simplest choice which satisfies the temperature boundary conditions ∆T = 0
for z = ±d/2 is,

f(z) = cos kzz , kz =
(1 + 2n)π

d
(29-47)

where Θ is an arbitrary (infinitesimal) constant, and n = 0, 1, 2, . . . is an integer.
Inserting this into (29-45) and solving for the Rayleigh number we obtain

Ra ≡ αGg0d
4

κν
=

(k2
z + k2

x)3

k2
x

d4 . (29-48)

The minimum of the right hand side is found for kx = kz/
√

2 and n = 0, so that1 2 3 4 5
kxd

500

1000

1500

2000
Ra

unstable

stable

Plot of Ra versus kxd for
n = 0. The minimum
Ra = 27π4/4 ≈ 658 is found

at kxd = π/
√

2 ≈ 2.22

the critical Rayleigh number is,

Rac =
27
4

π4 ≈ 657.511 . . . . (29-49)

The complete critical solution becomes (with kx = π/d
√

2 and kz = π/d),

∆T = Θ cos kxx cos kzz , (29-50a)

vx =
√

2U sin kxx sin kzz , (29-50b)
vy = 0 , (29-50c)
vz = U cos kxx cos kzz , (29-50d)

where U = 3π2κΘ/2Gd2.
The solution is depicted in the three panels of fig. 29.2. The flow pattern

(middle panel) consists of an infinite sequence of nearly elliptic “rollers” with
aspect ratio

√
2. The temperature pattern (top panel) is 90◦ out of phase with

the flow pattern. This confirms the intuition that the central temperature should
be higher when fluid transports heat from the warm lower boundary towards the
cold upper boundary, and conversely.

From the above solution we immediately obtain the shear stress,

σxz = η(∇xvz +∇zvx) =
πUη√

2d
sin kxx cos kzz . (29-51)
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cL
bL
aL

Figure 29.2: Critical fields in the horizontal layer of fluid with free boundaries (eq. (29-
50)). The steady flow pattern consists of an infinity of approximatively elliptical rolls

of rotating fluid with aspect ratio
√

2 and alternating sense of rotation and temperature
excess. a) Contour plot of the temperature field ∆T with high temperature indicated
by white. b) Streamlines for the steady flow (vx, vz) with white indicating clockwise
rotation. c) Deformation of the originally parallel boundaries (strongly exaggerated).

It evidently vanishes for z = ±d/2, and since we trivially have σyz = 0, both
boundaries are completely free of shear. There is no practical problem in arrang-
ing the upper boundary to be shear-free; that is in fact what we do when we
cook. A shear-free lower boundary is on the contrary rather unphysical, so the
main virtue of the shear-free model is that it is easy to solve.

The pressure excess in the critical solution may be calculated from (29-46),

∆p =
2
3π

αΘρ0g0d cos kxx sin kzz , (29-52)

so that the excess in the normal stress becomes

∆σzz = −∆p + 2η∇zvz = − 10
9π

αΘρ0g0d cos kxx sin kzz . (29-53)

It does not vanish at the boundaries, showing the solution is not perfect. The non-
vanishing normal stress can, however, be compensated by hydrostatic pressure if
the layer thickness is allowed to vary a bit. Dividing by ρ0g0 we find the required
shift at the two boundaries,

∆z = − ∆σzz

ρ0g0

∣∣∣∣
z=±d/2

= ± 10
9π

αΘd cos kxx . (29-54)

The shape of the deformed layer is shown in the bottom panel of fig. 29.2.

Two solid boundaries

A horizontal slot bounded by two solid plates is easy to set up experimentally.
Numerous experiments have been carried out in the twentieth century and agree
very well with the theoretical results [?].
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Figure 29.3: Horizontal slot solution. a) The value of the determinant as a function
of µ for ξ = 0.75. One notices the regularly spaced solutions where the determinant
crosses zero. b) Stability plot for the lowest branch as a function of ξ. The minimum
µc = 6.42846 . . . for ξc = 0.785559 . . . determines the critical Rayleigh number.

For simplicity we choose the plate distance d = 1 in the following analysis.
The fundamental equation (29-45) is an ordinary 6’th order differential equa-
tion with constant coefficients, implying that the solution is a superposition of
exponentials eλz where λ is a root of the sixth order algebraic equation,

(λ2 − k2
x)3 = −Ra k2

x . (29-55)

The six roots are evidently,

λ = ±
√

k2
x + Ra1/3k

2/3
x

3
√−1 , (29-56)

where 3
√−1 = −1, (1± i

√
3)/2 is any one of the three third roots of −1. Parame-

terizing kx = µξ3 with µ = Ra1/4, the roots may be written λ = ±µξ
√

ξ4 + 3
√−1.

Assuming 0 < ξ < 1, the roots take the form λ = ±iµ0 and λ = ±µ1± iµ2, where

µ0 = µξ
√

1− ξ4 , (29-57a)

µ1 =
1
2
µξ

√
1 + 2ξ4 + 2

√
1 + ξ4 + ξ8 , (29-57b)

µ2 =
1
2
µξ

√
−1− 2ξ4 + 2

√
1 + ξ4 + ξ8 . (29-57c)

These quantities are all real for 0 < ξ < 1.
The boundary conditions are in this case ∆T = 0 and vx = vz = 0 at

z = ±1/2. Since the boundary conditions as well as the fundamental equation
(29-45) are invariant under change of sign of z, it follows that the solutions are
either symmetric (even) or antisymmetric (odd) in z. In the even case we have,

f(z) = A cos µ0z + B cosh µ1z cos µ2z + C sinhµ1z sin µ2z , (29-58)

where A, B, and C are constants. From the general solution (29-42), (29-43), and
(29-44) we see that f(z), f ′′(z), and f ′′′(z)− k2

xf ′(z) must vanish for z = 1/2.
The boundary conditions provides three homogenous equations for the deter-

mination of A, B, and C. Such equations only have a non-trivial solution if their
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bL

aL

Figure 29.4: Critical fields in a horizontal layer with solid boundaries. The steady flow
pattern consists of an infinity of approximatively circular cylindrical rolls of fluid with
alternating sense of rotation and alternating temperature excess. a) Contour plot of the
temperature field ∆T with high temperature indicated by white. b) Streamlines for the
steady flow (vx, vz) with white indicating clockwise rotation. Notice how the streamlines
“shy away” from the solid walls because of the no-slip conditions.

3×3 determinant vanishes. It takes a bit of algebra to show that the determinant
is proportional to,

det(µ, ξ) ∝ µ0(coshµ1 + cos µ2) sin
µ0

2
+ ((µ1 +

√
3 µ2) sinh µ1 + (µ2 −

√
3µ1) sin µ2) cos

µ0

2
. (29-59)

Solving the transcendental equation, det(µ, ξ) = 0, yields a family of solutions
µ = µ(ξ), as shown in fig. 29.3a. The minimum of the lowest branch deter-
mines the critical values µc = Ra1/4

c = 6.42846 . . . and ξc = 0.785559 . . . (see
fig. 29.3b). The critical Rayleigh number becomes (see also problem 29.4 for an
approximative calculation)

Rac = 1707.76 . . . . (29-60)

and the corresponding wave numbers,

µ0 = 3.9737 . . . µ1 = 5.19439 . . . µ2 = 2.12587 . . . (29-61)

Finally, solving the boundary conditions at the critical point, the coefficients
become (apart from an overall factor),

A = 1 B = 0.120754 . . . C = 0.00132946 . . . (29-62)

From these values the actual fields ∆T , vz, and vx may be determined. As can
be seen from fig. 29.4 the critical flow pattern consists of an infinity of roughly
circular cylindrical rolls, which because of the no-slip conditions appear to “shy
away” from the boundaries.
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cL

bL

aL

Figure 29.5: Critical fields in the horizontal layer of fluid with solid bottom and free top.
a) Contour plot of the temperature field ∆T with high temperature indicated by white. b)
Streamlines for the steady flow with white indicating clockwise rotation. Notice how the
no-slip condition makes the streamlines “shy away” from the bottom while it “hugs” the
free surface at the top. c) Deformation of the originally flat upper boundary (strongly
exaggerated).

Finally, it should be mentioned that the antisymmetric case,

f(z) = D sin µ0z + E coshµ1z sin µ2z + F sinhµ1z cos µ2z , (29-63)

is treated in the same way and leads to a critical Rayleigh number of Rac ≈
17610.4 . . . which is uninteresting because it is (much) larger than the even solu-
tion.

Solid bottom and free top

This is the situation most often found in the household and industry. Since the
boundary conditions are asymmetric, the solution is a superposition of all six
possibilities,

f(z) = A cosµ0z + B cosh µ1z cosµ2z + C sinhµ1z sin µ2z

+ D sin µ0z + E cosh µ1z sin µ2z + F sinhµ1z cosµ2z. (29-64)

Although more complicated, the solution is found in the same way as before,
and the critical values are µc = 5.75986 . . . and ξc = 0.775115 . . ., and thus the
Rayleigh number,

Ra = 1100.65 . . . . (29-65)

This value is probably by accident nearly the same value as the estimate for a
rising bubble (29-28). The wave numbers for this solution are

µ0 = 3.56895 . . . , µ1 = 4.55531 . . . , µ2 = 1.8947 . . . , (29-66)
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and the coefficients,

A = 1 , B = 0.086726 . . . , C = −0.00956513 . . . ,

D = 0.216993 . . . , E = 0.00778275 . . . , F = −0.08632 . . . , (29-67)

again apart from an overall factor.

Energy balance?

Where does the energy to drive the rolls come from? The steadily rotating fluid
could in principle be set to do useful work, and according to the First Law of
thermodynamics this work must be taken from the heat flowing between the
plates. In effect the plates act as heat reservoirs and the convection as a heat
engine converting heat to work by means of the buoyancy of warm fluid. In the
present setup all the work done by the rotating fluid is actually dissipated back
into heat by internal viscous forces, so in the steady state the energy of the fluid
is constant, and no steady inflow of heat into the system is required. The local
heat flow through the boundaries will, however, be uneven because of the local
variations in the temperature gradient.

Convective pattern formation

The spontaneous formation of convection patterns in otherwise featureless ge-
ometries is a common occurrence. The non-linear terms which have been left
out in the linear approximation will exert a stabilizing influence on the patterns
such that they are able to persist at Rayleigh numbers somewhat larger than the
critical one. At still larger Rayleigh numbers, the rolls of the critical pattern will
develop further instabilities and eventually turbulent convection may result (for
an account of convection patterns with numerous photographs see [65]).
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Problems

29.1 Calculate the critical Rayleigh number for a vertical “chimney” with perfectly
conducting walls and a quadratic cross section of size d × d (it may be assumed that
vx = vy = 0).

29.2 Find an approximative expression for the roots of cos x cosh x = 1. Calculate
the first positive root and its numerical error.

29.3 Show that vy = 0 in the Rayleigh-Bénard solution.

29.4 Show that an approximate solution to the vanishing determinant (29-59) for
Rayleigh-Bénard flow in a horizontal slot is

µ = 2
µ

µ0

�
π − arctan

µ1 +
√

3µ2

µ0

�
(29-68)

where the right hand side only depends on ξ. Show that the minimum of this function
occurs at µ = 6.44397 . . . and ξ = 0.787942 . . ., corresponding to a critical Rayleigh
number Rac = 1724.

29.5 Show that the total internal energy is conserved for planar heat diffusion (28-16).

29.6 Show that the spherical temperature distribution

T (r) = T0 + Θ

�
a2

a2 + 4κt

�3/2

exp

�
− r2

a2 + 4κt

�
(29-69)

is a solution to Fourier’s equation (28-14).

29.7 Consider two plates at y = y1 and y = y2 and fixed temperatures T1 and T2.
Show that if there is incompressible fluid at rest between the plates, the temperature
in the fluid is,

T = T1 + (T2 − T1)
y − y1

y2 − y1
. (29-70)

Show that this is also true if the fluid is inviscid and moves steadily along x.

29.8 Consider two coaxial cylinders with radii a1 and a2 and incompressible fluid at
rest between. Show that the temperature distribution between the cylinders is

T = T1 + (T2 − T1)
log(r/a1)

log(a2/a1)
(29-71)

Show that this is also true if the fluid is inviscid and moves steadily along z.

29.9 Show that there cannot be hydrostatic equilibrium in vertical gravity with hor-
izontal temperature differences. Estimate the speed with which the fluid rises.
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PROBLEMS 617

29.10 Calculate the ratio between the exit heat flow Q̇ and the heat flow Q̇0 out of
the warm plate in a vertical slot as a function of the plate dimensions. Show that this
ratio (called the Nusselt number) is

Nu =
Q̇

Q̇0

=
1

45
· d

h
· Ra (29-72)

where Ra is the Rayleigh number.
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618 29. CONVECTION
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