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4
Fluids at rest

If the Sun did not shine, if no heat were generated inside the Earth and no energy
radiated into space, all the winds in the air and the currents in the sea would
die away, and the air and water on the planet would in the end come to rest
in equilibrium with gravity. In the absence of external driving forces or time-
dependent boundary conditions, and in the presence of dissipative contact forces,
any fluid must eventually reach a state of hydrostatic equilibrium, where nothing
moves anymore anywhere and all fields become constant in time. This state must
be the first approximation to the sea, the atmosphere, the interior of a planet or
a star.

In a continuous system in mechanical equilibrium there is everywhere a bal-
ance between contact forces having zero range and body forces with infinite range.
Contact interactions between material bodies or even between parts of the same
body take place across contact surfaces. A contact force acting on a tiny piece
of a surface may in principle take any direction relative to the surface, but can
of course be resolved into its normal and tangential components. The normal
component is called a pressure force and the tangential a shear force. Solids and
fluids in motion can sustain shear forces, whereas fluids at rest can not.
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The force on a small piece
of a surface can always be
resolved in a normal pres-
sure force and a tangential
shear force.

In this chapter we shall establish the basic concepts and formalism for pressure
in hydrostatic equilibrium and apply it to the sea and the atmosphere. Along the
way we shall recapitulate some basic rules of thermodynamics. In the following
three chapters we shall continue the study of hydrostatic equilibrium for fishes,
icebergs and ships, the interior of planets and stars, and the shapes of large and
small fluid bodies.
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58 4. FLUIDS AT REST

4.1 Pressure

A fluid at rest can as mentioned only sustain pressure forces. If shear forces
arise, the fluid will tend to flow towards a new equilibrium without shear. This
expresses the most basic property of fluids and may be taken as a definition of
what constitutes a fluid at the macroscopic level. In this section we shall take
a first look at pressure defined as force per unit of area, discuss its microscopic
origins, and analyze a couple of elementary applications.

The SI unit of pressure is pascal (Pa = N/m2 = kg/m/s2), but often pressure is
quoted in units of bars where 1 bar = 105 Pa or in atmospheres where 1 atm =
1.01325 bar is close to the average air pressure at sea level. Modern meteorologists
are now abandoning these units and tend to quote air pressure in hectopascals
(hPa) rather than in millibars.

Microscopic origin of pressure

In a liquid the molecules touch each other and the containing solid walls. The
number of molecules that are in direct contact with a small area A of a wall is
proportional to the size of this area, and so is the total normal force F that the
molecules collectively exert on the area. The pressure defined as the normal force
per unit of area, p = F/A, is thus independent of the size of the small area.Daniel Bernoulli (1700–82).

Dutch born mathematician
who made major contribu-
tions to the theory of elastic-
ity, fluid mechanics, and the
mechanics of musical instru-
ments.

A gas consists mostly of vacuum with the molecules moving freely around
between collisions, and the pressure on a solid wall arises in this case from the
incessant molecular bombardment. We shall estimate the pressure using a simple
“molecular” model of a gas going back to Daniel Bernoulli, in which molecules of
mass m are only allowed to move back and forth along three orthogonal directions
with a fixed velocity v. When a molecule hits a wall orthogonal to one of these
directions, it is reflected directly back again and transfers a momentum 2mv to
the wall. Assuming that all 6 directions of motion are equally probable, the
number of molecules hitting an area A of the wall in a small time interval dt will
be dN = 1

6ρAvdt/m, such that the total momentum transfer to the area in the
time dt becomes dP = 2mvdN = 1

3ρAv2dt. The normal force exerted on the
area equals the rate of momentum transfer, F = dP/dt = 1

3ρAv2, and dividing
with the area we obtain the pressure,

���
���

�

s ³³³³³³ PPPPPP

In Bernoulli’s model a
molecule moves in any of
the 6 possible directions
along three orthogonal direc-
tions with equal probability
.

p =
F
A

=
1
3
ρv2 . (4-1)

In the kinetic theory of gases one finds the same result, except that v is replaced
by the root-mean-square average of the molecular velocities, v =

√
〈v2〉.

At normal pressure, p = 1 atm, and temperature, T = 18◦ C = 291 K, the density
of air is ρ ≈ 1.2 kg/m3, and the molecular velocity v ≈ 500 m/s. We shall later
see that this velocity is related to the velocity of sound, though somewhat larger.
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4.1. PRESSURE 59

Pressure field

So far we have only defined the pressure acting on the walls of a container. Is it
meaningful to speak about pressure in the middle of a fluid away from containing
walls? We could of course insert a tiny manometer to measure the pressure, but
then we would just obtain the pressure acting on the surface of the manometer,
which is another wall. There seems to be no simple way to determine what one
would call the true internal pressure in the fluid.

Cutting through these “philosophical” difficulties we shall simply postulate
that there is indeed a well-defined pressure field p(x) everywhere in the fluid and
that it acts along the normal to any surface in the fluid, whether it be a real
interface or an imagined cut through the fluid. This postulate is supported by
the microscopic view of continuous matter. In a liquid we may define the pressure
as the total force per unit of area exerted by the molecules at one side of the
cut on the molecules at the other side. Similarly, in a gas the pressure may be
defined by the rate of molecular momentum transfer per unit of area across the
cut.

Incompressible sea
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A column of sea water. The
pressure difference between
bottom and top must carry
the weight of the water in the
box.

Consider now a vertical box with cross-sectional area A and height h in a sea with
constant density ρ(x) = ρ0. In hydrostatic equilibrium the difference between
the pressure forces pA at the bottom and p0A at the top must balance the total
weight of the water in the box, or

pA− p0A = ρ0Ahg0 , (4-2)

where g0 the constant gravity. If this equation were not fulfilled, the total force
on the column of water would not vanish, and it would have to move. Dividing by
the area A the pressure difference between bottom and top of the box becomes,

p− p0 = ρ0g0h . (4-3)

In a flat-earth coordinate system with vertical z-axis and the surface of the sea
at z = 0, we find by setting h = −z,

p = p0 − ρ0g0z , (4-4)

where p0 is the surface pressure. The linear rise of the pressure with depth
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−z allows us immediately to calculate the total pressure force on the horizontal
and vertical sides of a container. Skew or curved container walls require a more
powerful formalism which we shall soon set up.

Using ρ0 ≈ 1000 kg/m3 and g0 ≈ 10 m/s2, the scale of the pressure increase per
unit of depth in the sea becomes ρ0g0 ≈ 104 Pa/m, or about 1 atm/10 m. At the
deepest point in the sea, z ≈ −11 km, the pressure is a little more than 1000 atm.
The assumption of constant gravity is well justified even to this depth, because it
changes only by about 0.35 %, whereas the density of water changes by a about
4.5 % (see page 69).

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



60 4. FLUIDS AT REST

Example 4.1.1: Water is stemmed up behind a sluice gate of width L to height
h. On the water surface and on the outer side of the gate there is atmospheric
pressure p0. On the inside of the gate the pressure is p(z) = p0 + ρ0g0(h − z), so
that the total force on the gate becomes

h

6
z

-p(z) ¾ p0

p0

Water stemmed up behind
a sluice gate. The pressure
varies linearly with height z
over the bottom.

F =

Z h

0

(p(z)− p0) Ldz =
1

2
ρ0g0Lh2 . (4-5)

Because the pressure rises linearly with depth, this result could have been calculated
without an explicit integral. The total force is simply the product of the area of
the sluice gate Lh with the average pressure excess 〈p− p0〉 = 1

2
ρ0g0h acting on the

gate.

Incompressible atmosphere?

Since air is compressible, it makes little sense to use the above expression (4-4)
for the pressure in a fluid with constant density (except for very small values of
z). If we anyway do so, we find a pressure which falls linearly with height and
reaches zero at a height,

z = h0 =
p0

ρ0g0
. (4-6)

Using p0 = 1 atm and air density ρ0 = 1.2 kg/m3 we get h0 = 8.6 km, which is a
tiny bit lower than the height of Mount Everest. This is of course meaningless,
since climbers have reached the summit of that mountain without oxygen masks.
But as we shall see, this height is nevertheless the correct scale for major changes
in the atmospheric properties.

Paradox of hydrostatics

The linear rise of water pressure with depth may, as we have seen, be used to
calculate the total pressure force on any vertical container wall. For a curved
container wall, like that of a vase or a boot, there seems to be no problem,
except handling the necessary mathematics. But if the water column does not
reach all the way to the surface, as when you fill a boot with water, what is then
the pressure at the flat horizontal bottom? Will it be constant along the bottom
as in the open sea, or will it vary? And if it is constant, what is it “up against”,
since there is only a short column of water above?
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Paradox: the pressure along
the vertical wall of the
“boot” rises linearly because
it has to carry the weight of
the water above, but what
about the pressure in the tip
of the “toe”?

The quick answer to this paradox is that the pressure is indeed constant along
the horizontal bottom. For if the pressure were lower in the “toe” than in the
“heel”, there would be unbalanced horizontal pressure forces directed towards
the toe acting on a horizontal box of water. But that is not allowed in complete
mechanical equilibrium. The only possible conclusion is that the material of the
toe of the boot must supply the necessary forces to compensate for the missing
weight of the water column.
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4.2. FORMAL DEFINITION OF PRESSURE 61

4.2 Formal definition of pressure

To establish a concise mathematical formalism for pressure we consider a surface
S that divides a body into two parts. This surface needs not be a real surface
where material properties change dramatically but may just be an imaginary
surface separating two parts of the same body from each other. A tiny surface
element is characterized by its area dS and the direction of its normal n. It is
convenient to combine these in the vector surface element
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All normals to an oriented
open surface have a con-
sistent orientation with
common positive and
negative sides.

dS = (dSx, dSy, dSz) = n dS . (4-7)

There is nothing intrinsic in a surface which defines the orientation of the normal,
i.e. whether the normal is really n and not −n. A choice must, however, be
made, and having done that, one may call the side of the surface element into
which the normal points, positive (and the other of course negative). Usually
neighboring surface elements are required to be oriented consistently, i.e. with
the same positive sides. By universal convention the normal of a closed surface
is chosen to be directed out of the enclosed volume, so that the enclosed volume
always lies at the negative side of its surface.
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A volume V defined by the
closed surface S has all
normals oriented towards
the outside.

Local and global pressure force

The contact forces due to microscopic molecular interactions have a finite range
at the molecular scale, but zero range at macroscopic distances. Across a tiny
but still macroscopic piece of surface, the number of neighboring molecules par-
ticipating in the interaction as well as the force they exert may for this reason
be expected to be proportional to the area of the surface. In a fluid at rest the
only contact force is the pressure force acting along the normal to the surface,
and the force exerted by the material at the positive side of a surface element on
the material at the negative side must be of the form

dF = −p dS , (4-8)

with a coefficient of proportionality p called the pressure. Convention dictates
that a positive pressure exerts a force directed towards the material on the neg-
ative side, and that explains the minus sign.
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The force on a vector sur-
face element under positive
pressure is directed against
the normal.

The total pressure force acting on a surface S is obtained by summing up all
the little vector contributions from each surface element,

F = −
∫

S

p dS . (4-9)

This is the force which acts on the cork in the champagne bottle, moves the
pistons in the cylinders of your car engine, breaks a dam, and sends off a bullet
from a canon. It is also this force that lifts fishes, ships, and balloons and thereby
cancels their weight so that they are able to float (see chapter 5).
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62 4. FLUIDS AT REST

Same pressure in all directions?

Newton’s third law guarantees that the material on the negative side of a surface
element reacts with an equal and opposite force, −dF = −p (−dS), on the
material on the positive side (provided there is no surface tension). Since the
surface vector seen from the negative side is −dS, the above relation shows that
the pressure also has the value p on the negative side of the surface. This is part
of a much stronger result, called Pascal’s law, which we shall prove below: the
pressure in a fluid at rest is independent of the direction of the surface element
on which it acts. It implies that pressure p(x) cannot depend on the normal n,
but only on the location x of a surface element, and is therefore a true scalar
field.Blaise Pascal (1623–1662).

French mathematician and
physicist. Founded probabil-
ity theory. Constructed what
may be viewed as the first
digital calculator. He spent
his later years with religious
thinking in the Cistercian
abbey of Port-Royal. More
than one property of pres-
sure goes under the name of
Pascal’s law.

The simple reason for pressure being the same in all directions in hydrostatic
equilibrium is that the pressure acts on the surface of a body whereas a body
force by definition acts on the volume. If we let the body shrink, the contribution
from the body force will vanish faster than the contribution from the surface
force because the volume vanishes faster than the surface area. In the limit of
vanishing body size only the surface force is left, but it must then itself vanish in
hydrostatic equilibrium where the total force on all parts of a body has to vanish.
This argument will now be fleshed out in mathematical detail.

∗ Proof of Pascal’s law: Assume first that the pressure is actually different in
different directions. We shall then show that for physical reasons this assumption
cannot be maintained. Consider a tiny body in the shape of a tetrahedron with
three sides parallel to the coordinate planes. The total pressure force acting on
the body is

dF = −pdS − pxdSx − pydSy − pzdSz , (4-10)

where we have denoted the pressures acting on the different faces of the tetrahe-
-
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A body in the shape of a
tetrahedron. The vector
normals to the sides are
all pointing out of the body
(dSx is hidden from view).
Any body shape can be
built up from sufficiently
many and sufficiently small
tetrahedrons.

dron by p, px, py, and pz and the outwards pointing normals by dS, dSx, dSy,
and dSz. It is sufficient to consider infinitesimal bodies of this kind, because an
arbitrary body shape can be put together from these. Each of the three trian-
gles making up the sides of the tetrahedron is in fact the projection of the front
face onto that plane. By elementary geometry the areas of the three projected
triangles are dSx, dSy and dSz, so that their vector surface elements become
dSx = (−dSx, 0, 0), dSy = (0,−dSy, 0), and dSz = (0, 0,−dSz).

Inserting this in the above equation we find the total force

dF = ((px − p)dSx, (py − p)dSy, (pz − p)dSz) . (4-11)

In hydrostatic equilibrium, which is all that we are concerned with here, the
contact forces must balance body forces,

dF + f dV = 0 , (4-12)

where f is the density of body forces.
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4.3. HYDROSTATIC EQUILIBRIUM 63

The idea is now to show that for sufficiently small tetrahedrons the body forces
can be neglected and the surface forces dF must consequently vanish. Consider
instead a geometrically congruent tetrahedron with all lengths scaled by a factor
λ. Since the volume scales as the third power of λ whereas the surface areas only
scale as the second power, the hydrostatic equation for the scaled tetrahedron
becomes λ2dF + λ3fdV = 0 or dF + λfdV = 0. In the limit of λ → 0 it follows
that the total contact force must vanish, i.e. dF = 0, and using (4-11) we find,

px = py = pz = p . (4-13)

As promised, the pressure must indeed be the same in all directions.

4.3 Hydrostatic equilibrium

In section 4.1 we intuitively used that in a fluid at rest the weight of a vertical
column of fluid should equal the difference in pressure forces between bottom
and top of the column. We shall now generalize this to an arbitrary macroscopic
volume of fluid, often called a control volume. The material in a control vol-
ume, fluid or solid or whatever, represents the most general “body” that can be
constructed in continuum physics.

Up to this point we have studied only two kinds of forces that may act on the
material in a control volume. One is a body force described by a force density
field f caused by long-range interactions, for example gravity f = ρg. The other
is a contact force, here the pressure field p, which has zero range and only acts
on the surface of the control volume. The total force on the control volume V
with surface S is the sum of two contributions

F =
∫

V

f dV −
∮

S

p dS . (4-14)

The first term is for the case of gravity just the weight of the fluid in the volume
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A control volume V with
its enclosing surface S, a
volume element dV and a
surface element dS.

and the second is the so-called buoyancy force. The circle in the symbol for the
surface integral is only there to remind us that the surface is closed.

Global hydrostatic equilibrium equation

In hydrostatic equilibrium, the total force must vanish for any volume of fluid,
F = 0, or

∫

V

f dV −
∮

S

p dS = 0 . (4-15)

This is the equation of global hydrostatic equilibrium, which states that buoyancy
must exactly balance the total volume force, i.e. the weight. If the cancellation
is not exact, as for example when a small volume of water is heated or cooled
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64 4. FLUIDS AT REST

relative to its surroundings, the fluid must start to move, either upwards if the
buoyancy force is larger than the weight or downwards if it is smaller.

The problem with the global equilibrium equation is that we have to know the
fields f(x) and p(x) in advance to calculate the integrals. Sometimes symmetry
considerations can get us a long way. In constant gravity, the sea on the flat Earth
ought to have the same properties for all x and y, suggesting that the pressure
p = p(z) can only depend on the depth z. This was in fact a tacit assumption used
in calculating the pressure in the incompressible sea (4-4), and it is not difficult
formally to derive the same result from the equation of global equilibrium (4-15).
But in general we need to establish a local form of the equations of hydrostatic
equilibrium, valid in each point x.

Effective force on material particle

A material particle is like any other body subject to pressure from all sides, but
being infinitesimal it is possible to derive a general expression for the resultant
force. Let us choose a material particle in the shape of a small rectangular box
with sides dx, dy, and dz, and thus a volume dV = dxdydz. Since the pressure
is slightly different on opposite sides of the box the resultant pressure force is to
leading approximation (in the x-direction)

r
(x, y, z) dx

dz dy

©©©

©©©
-p(x)

��
�

���
� p(x + dx)

Pressure difference over a
small rectangular box.

dFx ≈ (p(x, y, z)− p(x + dx, y, z))dydz ≈ −∂p

∂x
dxdydz .

Including the other coordinate directions we obtain

dF = −∇p dV . (4-16)

The resultant of all pressure forces acting on a tiny material particle is apparently
equivalent to a volume force with a density equal to the negative gradient of the
pressure. We shall see below that this result does not depend on the shape of
the material particle.

If there is also a true volume force, f , for example gravity (f = ρg), acting
on the material, the total force on a material particle becomes

dF = f∗ dV , (4-17)

where

f∗ = f −∇p . (4-18)

This quantity is called the effective force density. It must be emphasized that
the effective force density is not a true body force, but an expression which for
a tiny material particle equals the sum of the true body force and all pressure
forces acting on its surface.
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4.3. HYDROSTATIC EQUILIBRIUM 65

Local hydrostatic equilibrium

In hydrostatic equilibrium, the total force on an arbitrary body has to vanish.
Applying this to all the material particles in the body, it follows that the effective
density of force must vanish everywhere,

f∗ = f −∇p = 0 . (4-19)

This is the local equation of hydrostatic equilibrium. It is a differential equation
valid everywhere in a fluid at rest, and it encapsulates in an elegant way all the
physics of hydrostatics.

The flat earth case

Returning to the case of constant gravity in a flat-earth coordinate system we have
f = ρg0 = ρ(0, 0,−g0) and the local equilibrium equation takes the following
form when written out explicitly in coordinates,

∂p

∂x
= 0 , (4-20a)

∂p

∂y
= 0 , (4-20b)

∂p

∂z
= −ρg0 . (4-20c)

The two first equations show that the pressure does not depend on x and y, but
only on z, which confirms the previous argument based on symmetry. It also
resolves the hydrostatic paradox because we now know that independently of the
shape of the container, the pressure will always be the same at a given depth
in constant gravity. For the special case of constant density, ρ(z) = ρ0, the last
equation may immediately be integrated to yield the previous result (4-4) for the
pressure in the incompressible sea.

Constant density

More generally, if the density of the fluid is constant, ρ = ρ0, and the body force
is due to gravity, f = ρ0g = −ρ0∇Φ, the equation of hydrostatic equilibrium
(4-19) takes the form −∇(ρ0Φ + p) = 0, which implies that

H = Φ +
p

ρ0
, (4-21)

is a constant, independent of x. The first term is the gravitational potential and
the second term is naturally called the pressure potential. There is no agreement
in the literature about a name for H, but one might call it the effective potential,
because the effective density of force f∗ = ρ0g −∇p = −ρ0∇H.

The constancy of H contains the complete solution of the hydrostatic equa-
tion. In constant gravity we thus have Φ = g0z and recover immediately the
pressure in the sea (4-4) with H = p0/ρ0.
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66 4. FLUIDS AT REST

Gauss’ theorem

The equation of local equilibrium (4-19) has been obtained by applying the global
equilibrium equation (4-15) to a tiny material particle. Is it also possible to go
the other way and derive the global equation from the local?Johann Karl Friedrich Gauss

(177-1855). German math-
ematician of great genius.
Contributed to number the-
ory, algebra, non-Euclidean
geometry, and complex anal-
ysis. In physics he devel-
oped the magnetometer. The
older (cgs) unit of magnetic
strength is named from him.

The answer to the question is affirmative, because of a purely mathematical
theorem due to Gauss (to be proved below), which in its simplest form states
that

∮

S

p dS =
∫

V

∇p dV , (4-22)

for an arbitrary function p(x). Using Gauss theorem it follows immediately that
the total force (4-14) equals the integral of the effective density of force,

F =
∫

V

f dV −
∮

S

p dS =
∫

V

f∗ dV . (4-23)

One may thus with impunity think of a macroscopic volume of fluid as composed
of microscopic material particles, each acted upon by an effective force.

Gauss’ theorem is a fortiori also valid for a tiny material particle, where the
force on a material particle becomes,

∮

S

p dS =
∫

V

∇p dV ≈ ∇p V .

This confirms that the force on a material particle is indeed independent of its
shape as long as the pressure gradient is essentially constant across the particle.

Proof of Gauss’ theorem: To prove Gauss’ theorem, consider first a volume
V described by the inequalities a(x, y) ≤ z ≤ b(x, y) where a(x, y) and b(x, y) are
two functions defined in some area A of the xy-plane. We then find,

∫

V

∇zp dV =
∫

A

dxdy

∫ b(x,y)

a(x,y)

∂p(x, y, z)
∂z

dz

=
∫

A

dxdy
(
p(x, y, b(x, y))− p(x, y, a(x, y))

)

=
∮

S

p(x, y, z) dSz .

It is intuitively rather clear that a general volume may be cut up into pieces of this

-

6

x

z

..........

..........

...........
............
.............
...............
.................
.....................
................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................
............................

......................
...................
.................
...............
.......

b(x, y)

a(x, y)

A volume described by
a(x, y) ≤ z ≤ b(x, y).

kind. Adding the surface integrals the contributions from the mutual interfaces
between neighboring pieces will cancel each other in the sum, leaving only the
integral over the outermost surface of the total volume on the left hand side. On
the right hand side the volume integrals add up to a volume integral over the
total volume of all the pieces. Gauss’ theorem thus holds in full generality.
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∗ What about non-gradient forces?

The local equation of hydrostatic equilibrium, f = ∇p, demands that the force
density must equal a gradient field, and thus have a vanishing curl ∇ × f = 0
(see problem 2.15). A material with constant density, ρ = ρ0, has a gravitational
force density f = ρ0g = −ρ0∇Φ which is evidently a gradient field. But what
happens if a force has a manifestly non-vanishing curl? As an example one can
take f = a×x, which has ∇×f = 2a? Then the only possible conclusion is that
hydrostatic equilibrium cannot be established, and the fluid must start to move.
A physical example of this phenomenon is an electrically charged fluid with a
magnetic field that everywhere increases linearly with time. Such a magnetic field
induces a static electric field with non-vanishing curl, which indeed accelerates
the charged molecules, and thereby the fluid.

4.4 Equation of state

The local equation of hydrostatic equilibrium is not enough in itself, but needs a
relation between density and pressure. In the examples of the preceding section
we assumed that the fluid was incompressible with constant density and could
then integrate the hydrostatic equation and determine the pressure.

Ordinary thermodynamics [67, 6] provides us with a relationship between
density ρ, pressure p, and absolute temperature T , called the equation of state,
which may be written in many equivalent ways, for example

f(ρ, p, T ) = 0 . (4-24)

In continuum physics the equation of state should be understood as a local rela-
tion, valid in every point x,

f(ρ(x), p(x), T (x)) = 0 . (4-25)

As usual we shall suppress the explicit dependence on x when it does not lead to
ambiguity. The actual form of the equation of state for a particular substance is
derived from the properties of molecular interactions that fall outside the scope
of this book. Benoit Paul Émile Clapey-

ron (1799-1864). French
engineer and physicist.
Formulated the ideal gas
law from previous work by
Boyle, Mariotte, Charles,
Gay-Lussac, and others.
Contributed to early ther-
modynamics by developing
on Carnot’s work. Defined
the concept of reversible
transformations and formu-
lated the first version of the
Second Law of Thermody-
namics. Established what
is now called Clapeyron’s
formula for the latent heat
in the change of state of a
pure substance.

The ideal gas law

The oldest and most famous equation of state is the ideal gas law, credited to
Clapeyron (1834) and usually presented in the form,

p V = nR T . (4-26)

Here n is the number of moles of gas in a small volume V , and R =
8.31451(6) J/K/mol is the molar gas constant. This equation of state has played
an enormous role in the development of thermodynamics, and an ideal gas is still
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the best “laboratory” for understanding materials with a non-trivial thermody-
namics. In appendix D the thermodynamics of ideal gases is recapitulated in
some detail.

Using that ρ = M/V = nMmol/V , where M is the mass of the gas in V
and Mmol its molar mass, we obtain the ideal gas law in a form more suited for
continuum physics,

p

ρ
=

RT

Mmol
. (4-27)

The ideal gas law is not only valid for pure gases but also for mixtures of pure
gases provided one uses the molar average of the molar mass of the mixture (see
problem D.1). Real air with Mmol = 28.9635 g/cm3 is quite well described by
the ideal gas law, although in precise calculations it may be necessary to include
non-linear corrections as well as corrections due to humidity [2].

4.5 Barotropic fluid states

The problem with the equation of state (4-24) is, however, that it is not a simple
relation between density and pressure which may be plugged into the equation of
local hydrostatic equilibrium, but also involves the generally unknown tempera-
ture. To solve the general problem of hydrostatic equilibrium we need a further
equation connecting temperature, pressure, and density. Such a heat equation is
also provided by thermodynamics, and we shall derive it in chapter 28.

Barotropic relationship

At this stage it is, however, best to avoid these complications and for simplicity
assume that there exists a so-called barotropic relationship between pressure and
density,

p = p(ρ) or ρ = ρ(p) . (4-28)

The assumption of a barotropic relationship is not as far-fetched as it might
seem at first. The condition of constant density ρ(x) = ρ0 which we used in the
preceding section to calculate the pressure in the sea is a trivial example of such
a relationship.

A less trivial example is obtained if the walls containing a fluid at rest are
held at a fixed temperature T0. The omnipresent heat conduction will eventually
cause all of the fluid to attain this temperature everywhere, T (x) = T0, and in
this state of isothermal equilibrium the equation of state (4-25) simplifies to,

f(ρ(x), p(x), T0) = 0 (4-29)

which is indeed a barotropic relationship.

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



4.5. BAROTROPIC FLUID STATES 69

Isothermal atmosphere

Everybody knows that the atmosphere is not at constant temperature, but if we
nevertheless assume it to be, we obtain by combining the equation of hydrostatic
equilibrium (4-20) with the ideal gas law (4-27)

dp

dz
= −ρg0 = −Mmol g0

RT0
p . (4-30)

With the initial condition p = p0 for z = 0, this ordinary differential equation
has the solution

p = p0e
−z/h0 , (4-31)

where

h0 =
RT0

Mmol g0
=

p0

ρ0g0
. (4-32)

In the last step we have also used the ideal gas law at z = 0 to show that the
expression for h0 is identical to the incompressible scale height (4-6).

In the isothermal atmosphere the pressure thus decreases exponentially with
height on a characteristic length scale again set by h0. Now the pressure at
h = h0 = 8.6 km (roughly the top of Mount Everest) is finite and predicted to
be e−1 = 37% of the pressure at sea level, or 373 hPa.

Bulk modulus

The archetypal thermodynamics experiment is carried out on a fixed amount
M = ρV of a fluid placed in a cylindrical container with a moveable piston.
When you increase the force on the piston a bit, the volume of the chamber
decreases, dV < 0. The pressure in the fluid must necessarily increase, dp > 0.
For if this were not the case, an arbitrarily small extra force would send the
piston to the bottom of the chamber (and pumping your bicycle would take no
effort). Since a larger volume diminishes proportionally more for a given pressure
increase, we define the bulk modulus as the pressure increase dp per fractional
decrease in volume −dV/V , or

V

dV

The archetypal thought-
experiment in thermo-
dynamics: A cylindrical
chamber with a movable
piston.

K =
dp

−dV/V
=

dp

dρ/ρ
= ρ

dp

dρ
. (4-33)

In the second step we have used the constancy of the mass dM = ρdV +V dρ = 0
to eliminate the volume. The bulk modulus is a measure of incompressibility,
and the larger it is, the greater is the pressure increase that is needed to obtain a
given fractional increase in density. As a measure of compressibility one usually
takes β = 1/K.

The definition of the bulk modulus shows that it is measured in the same
units as pressure. In water under normal conditions it is fairly constant, K ≈
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Figure 4.1: Bulk modulus as a function of pressure in the Earth (data from [2]). The
surface of the Earth is to the left and the center to the right in this figure. The bulk
modulus varies approximately linearly with pressure, K ≈ 4p (the dashed line). The
dramatic change in density at the core/mantle boundary (see fig. 3.1) is barely visible
in the bulk modulus.

22, 000 atm, doubling only in value between 1 and 3000 atmospheres [2]. As long
as the pressure change is much smaller than the bulk modulus, dp ¿ K, we may
estimate the relative change in density from (4-33) to be dρ/ρ ≈ dp/K. In the
deepest abyss of the sea the pressure is a bit more than 1000 atm, implying that
the relative density change is dρ/ρ ≈ 1/22 ≈ 4.5% (see also problem 4.7).

K[GPa]

Mercury 25.0
Glycerol 3.94
Water 2.21
Benzene 1.04
Ethanol 0.89
Methanol 0.82
Hexane 0.60

Bulk modulus for common
liquids at normal tempera-
ture and pressure.

For an isothermal ideal gas it follows from the equation of state (4-27) that
the bulk modulus is KT = p where the index T reminds us that the temperature
of the gas must be kept constant. The bulk modulus of the nearly fluid material
of the Earth is plotted in fig. 4.1 and varies roughly like K ≈ 4p.

Pressure potential

For a barotropic fluid we may integrate the local equation of hydrostatic equilib-
rium in much the same way as we did for constant density in (4-21), by defining

H = Φ + w(p) , (4-34)

where now pressure potential is the integral,

w(p) =
∫

dp

ρ(p)
. (4-35)

It follows from the chain rule that ∇w(p) = (dw/dp)∇p = (1/ρ)∇p and using lo-
cal hydrostatic equilibrium (4-19) we obtain ∇H = 0. In hydrostatic equilibrium
H is always a constant.

For an ideal gas under isothermal conditions, the pressure potential is calcu-
lated by means of the ideal gas law (4-27),

w =
∫

RT0

Mmol p
dp =

RT0

Mmol
log p . (4-36)

In constant gravity Φ = g0z, the constancy of H immediately leads back to the
pressure in the isothermal atmosphere (4-31).

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



4.6. THE HOMENTROPIC ATMOSPHERE 71

4.6 The homentropic atmosphere

The assumption that the temperature is the same everywhere in the atmosphere
is certainly wrong, as anyone who has ever flown in a modern passenger jet can
testify. Temperature falls with height instead of staying constant. So the atmo-
sphere is not in isothermal equilibrium, and this is perhaps not so surprising,
since the “container walls” of the atmosphere, the ground and outer space,have
different temperatures. There must be a heat flow through the atmosphere be-
tween the ground and outer space, maintained by the inflow of solar radiation
and the outflow of geothermal energy. But air is a bad conductor of heat, so
although heat conduction does play a role, it is not directly the cause of the
temperature drop in the atmosphere.

Of much greater importance are the indirect effects of solar heating, the con-
vection which creates air currents, winds, and local turbulence, continually mix-
ing different layers of the atmosphere. The lower part of the atmosphere, the tro-
posphere, is quite unruly and vertical mixing happens at time scales that are much
shorter than the time scales necessary for reaching thermal equilibrium. There is
in fact no true hydrostatic equilibrium state for the real atmosphere. Even if we
disregard large-scale winds and weather systems, horizontal and vertical mixing
always takes place at small scales, and a realistic model of the atmosphere must
take this into account.

Blob-swapping

Let us imagine that we take a small blob of air and exchange it with another
blob of air of the same mass, but taken from a different height with a different
volume and pressure. In order to fill out the correct volume, one air mass would
have to be compressed and the other expanded. If this is done quickly, there
will be no time for heat exchange with the surrounding air, and and one air
mass will consequently be heated up by compression and the other cooled down
by expansion. If the atmosphere initially were in isothermal equilibrium, the
temperature of the swapped air would not be the same as the temperature of the
surrounding air, and the atmosphere would be brought out of equilibrium.

ÁÀ

Â¿

&%

'$
6
z

T1

T2

T0

Swapping air masses from
different heights. If the air
has temperature T0 before
the swap, the compressed air
would be warmer T1 > T0

and the expanded colder
T2 < T0.

If, however, the surrounding air initially had a temperature distribution, such
that the swapped air after the expansion and compression would arrive at pre-
cisely the correct temperatures of their new surroundings, a kind of thermo-
dynamic “equilibrium” could be established, in which the omnipresent vertical
mixing had essentially no effect. Intuitively, it is reasonable to expect that the
end result of fast vertical mixing and slow heat conduction might be precisely
such a state. It should however not be forgotten that this state is not a true equi-
librium state but rather a dynamically balanced state depending on the incessant
small-scale motion in the atmosphere.
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Isentropic processes in ideal gases

A process that takes place without exchange of heat between the system and
its environment is said to be adiabatic. If furthermore the process is reversible,
it will conserve the entropy and is called isentropic. From the thermodynamics
of ideal gases (see appendix D) it follows that an isentropic process in a fixed
amount M of an ideal gas will leave the expression pV γ unchanged. Here γ is
the so-called adiabatic index which for a gas like air with diatomic molecules is
approximately γ ≈ 7/5 = 1.4. In terms of the density ρ = M/V an isentropic
process thus obeys,

p ρ−γ = C . (4-37)

Whereas the “constant” C keeps its value during the isentropic process, it can in
principle vary with the position x.

Homentropic gas

The atmosphere of the flat Earth is translationally invariant in the horizontal di-
rections, implying that C can only depend on z, and the blob-swapping argument
furthermore indicates that C should- also be independent of z. The lower atmo-
sphere, the troposphere, at least approximatively in a so-called homentropic state
in which (4-37) is valid everywhere, and thus becomes a barotropic relationship
with p = Cργ everywhere.

The bulk modulus is immediately found to be,

KS = γp , (4-38)

where the S indicates that the entropy must be kept constant during the com-
pression. The pressure potential (4-35) is similarly obtained,

w =
∫

dp

ρ
=

∫
Cγργ−2 dρ = C

γ

γ − 1
ργ−1 ,

and by means of the ideal gas law (4-27) this may also be written,

w =
γ

γ − 1
p

ρ
=

γ

γ − 1
RT

Mmol
. (4-39)

The surprising result is that the pressure potential is linear in the absolute tem-
perature with a coefficient,

cp =
dw

dT
=

γ

γ − 1
R

Mmol
. (4-40)

This constant is the specific heat at constant pressure of the gas (see appendix
D). For air with Mmol ≈ 29 g/mol and γ ≈ 7/5 its value is cp ≈ 1000 J/K/kg.
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Figure 4.2: Three different models for the atmospheric pressure: constant density
(dashed), homentropic (fully drawn) and isothermal (large dashes), plotted together with
the standard atmosphere data (dots)[3]. The parameters are h0 = 8.6 km and γ = 7/5.

The atmospheric temperature lapse rate

In constant gravity we find from (4-34) thatH = g0z + cpT , implying that the
temperature drops linearly with height ,

T = T0 − g0

cp
z , (4-41)

where T0 is the temperature at the surface z = 0. The magnitude of the vertical
temperature gradient −dT/dz = g0/cp ≈ 0.01 K/m = 10 K/km is called the
atmospheric temperature lapse rate.

Introducing the temperature T0 at sea level, the above equation may be writ-
ten

T = T0

(
1− z

h2

)
, (4-42)

with the scale height,

h2 =
cpT0

g0
=

γ

γ − 1
h0 . (4-43)

With γ = 7/5 we find h2 ≈ 30 km. At this altitude the temperature has dropped
to absolute zero, which is of course unphysical. It is nevertheless a reasonable
scale for the height of the atmosphere.

The equation of state (4-27) combined with the adiabatic law (4-37) implies
that Tρ1−γ and p1−γT−γ are also constant, and the density and pressure become,

ρ = ρ0

(
1− z

h2

) 1
γ−1

, p = p0

(
1− z

h2

) γ
γ−1

. (4-44)

Both of these quantities vanish like the temperature for z = h2. At the top of
Mt. Everest the pressure is predicted to be 437 hPa whereas the typical value is
300 hPa.
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The real atmosphere of Earth

In fig. 4.2 the various atmospheric models for the pressure have been plotted
together with data for the standard atmosphere [3]. Even if the homentropic
model gives the best fit, it fails at higher altitudes. The real atmosphere is in
fact much more complicated than any of these models indicates.

Water vapor is always present in the atmosphere and will condense to clouds
in rising currents of air. The latent heat of condensation heats up the air, so
that the temperature lapse rate becomes smaller than 10 K/km, perhaps more
like 6 − 7 K/km, leading to a somewhat higher estimate for the temperature at
the top of Mount Everest. The clouds may eventually precipitate out as rain,
and when the dried air afterwards descends again, for example on the lee side of
a mountain, the air will heat up at a higher rate than it cooled during its ascent
on the windward side and become quite hot, a phenomenon known as föhn in the
Alps.

The fact that the temperature lapse rate is smaller in the real atmosphere
than in the isentropic model has a bearing on the stability of the atmosphere. If
a certain amount of air is transported to higher altitude without heat exchange
and condensation of water vapor, it will behave like in the isentropic model and
become cooler than the surrounding air. Consequently it will also be heavier than
the surrounding air and tend to sink back to where it came from. Conversely,
if the real temperature lapse becomes larger than in the isentropic model, the
atmosphere becomes unstable and strong vertical currents may arise. This can,
for example, happen in thunderstorms.
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Problems

4.1 Consider a canal with a dock gate which is 12 m wide and has water depth 9 m
on one side and 6 m on the other side.

(a) Calculate the pressures in the water on both sides of the gate at a height z over
the bottom of the canal.

(b) Calculate the total force on the gate.

(c) Calculate the total moment of force around the bottom of the gate.

(d) Calculate the height over the bottom at which the total force acts.

4.2 An underwater lamp is covered by a hemispherical glass with a diameter of 30 cm
and is placed with its center at a depth of 3 m on the side of the pool. Calculate the
total horizontal force from the water on the lamp, when there is air at normal pressure
inside.

4.3 Using a manometer, the pressure in an open container filled with liquid is found
to be 1.6 atm at a height of 6 m over the bottom, and 2.8 atm at a height of 3 m.
Determine the density of the liquid and the height of the liquid surface.

4.4 An open jar contains two non-mixable liquids with densities ρ1 > ρ2. The heavy
layer has thickness h1 and the light layer on top of it has thickness h2. a) An open
glass tube is lowered vertically into the liquids towards the bottom of the jar. Describe
how high the liquids rise in the tube (disregarding capillary effects). b) The open tube
is already placed in the container with its opening close to the bottom when the heavy
fluid is poured in, followed by the light. How high will the heavy fluid rise in the tube?

4.5 The equation of state due to van der Waals is�
P +

n2a

V 2

�
(V − nb) = nRT (4-45)

where a and b are constants. It describes gases and their condensation into liquids.
a) Calculate the isothermal bulk modulus. b) Under which conditions can it become
negative, and what does it mean?

4.6 The equation of state for water is to a good approximation (for pressures up to
100,000 bar) given by

p + B

p0 + B
=

�
ρ

ρ0

�n

(4-46)

with B = 3000 atm, n = 7, p0 = 1 atm and ρ0 = 1 g/cm3. (a) Calculate the bulk
modulus K for water. (b) Calculate the density and pressure in the sea. (c) What is
the pressure and the relative compression of the water at the deepest point in the sea
(z = −10.924 km)?

4.7 Calculate the pressure and density in the sea, assuming constant bulk modulus.
Show that both quantities are singular at a certain depth and calculate this depth.
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4.8 A vertical plate is inserted into a liquid at rest with constant density ρ0 in constant
gravity g0. Introduce a coordinate z going vertically down with the pressure defined to
vanish for z = 0. In the following we denote the vertical area moments by,

In =
1

A

Z
A

zn dS , n = 1, 2, . . . (4-47)

where dS is the surface element. The point zM = I1 is called the area center.

(a) Calculate the pressure in the liquid.

(b) Show that I2 ≥ I2
1 .

(c) Calculate the total pressure force on the plate.

(d) Calculate the total moment of force of the pressure forces around z = 0.

(e) Show that the point of attack of the pressure forces is found below the area center
zP ≥ zM .

(f) A thin isosceles triangle with height h and bottom length b is lowered into the
liquid such that its top point is at z = 0. Calculate the area center and the point
of attack of the pressure forces.

4.9 Determine the form of the pressure across the core/mantle boundary when the
bulk modulus is K ≈ γp with γ ≈ 4 throughout the Earth (see fig. 4.1).
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