
16
Nearly ideal flow

The most important fluids of our daily life, air and water, are lively and easily
set into irregular motion. Getting out of a bathtub creates visible turbulence
in the soapy water, whereas we have to imagine the unruly air behind us when
we jog. Internal friction, or viscosity, seems to play only a minor role in these
fluids. Other fluids, like honey and grease, are highly viscous, do not easily
become turbulent, and would certainly be very hard to swim in. Being sluggish
or lively is, however, not an absolute property of a fluid, but rather a condition
of the circumstances under which it flows. Lava may be very sluggish in small
amounts, but when it streams down a mountainside it appears to be quite lively.
We shall later see that there is a way of characterizing fluid flow by means of a
real number, called the Reynolds number, which is typically large for lively and
small for sluggish flow.

The earliest quantitative model of fluid behavior goes back about 250 years
and did not include viscosity. Although Newton introduced the concept, viscosity
first entered fluid mechanics in its modern formulation almost a century later.
Fluids with no viscosity have been called ideal or perfect, and sometimes “dry”,
because they do not hang on to containing surfaces. An ideal fluid is able to slip
along container walls with finite velocity, whereas a real fluid has to adjust its
velocity field so that it matches the speed of the container walls and the surfaces
of moving objects.

Although ideal fluids do not really exist, except for a component of superfluid
helium close to zero kelvin, viscous fluids may nevertheless flow with such high
Reynolds number that they behave as nearly ideal. Although never perfectly so.
Around solid obstacles and near the walls of fluid conduits there will always be
boundary layers in which viscosity becomes dominant. In this chapter we focus
on nearly ideal flow, and postpone the discussion of viscosity to chapter 18.
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260 16. NEARLY IDEAL FLOW

16.1 The Euler equation
Leonhard Euler (1707–83).
Swiss mathematician who
made fundamental contri-
butions to calculus, geom-
etry, number theory, and
to practical ways of solving
mathematical problems. His
books on differential calcu-
lus (1755) and integral cal-
culus (1768–70) have been
especially useful for physics.

In 1755 Euler was the first to write down Newton’s second law of motion for
fluids without viscosity. In such an ideal or perfect fluid the only forces at play
are pressure and gravity, but in distinction to hydrostatics, these two forces are
no more in balance, but give rise to an effective density of force f∗ = ρg −∇p.
Inserting this into the dynamic equation (15-35) and dividing by the density ρ,
we obtain Euler’s equation for ideal fluids,

∂v

∂t
+ (v ·∇)v = −1

ρ
∇p + g . (16-1)

Together with the equation of continuity which we repeat here in the form (15-
27),

∂ρ

∂t
+ (v ·∇)ρ = −ρ∇ · v , (16-2)

and a barotropic equation of state p = p(ρ), we have obtained a closed set of
five equations for the five fields, p, ρ, and v (assuming that g is known). If the
equation of state also depends on temperature, p = p(ρ, T ), an equation for the
temperature field must be added to the set (see chapter 28).
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In an ideal fluid the tan-
gential component of
the velocity field is non-
vanishing all the way to the
boundary.

Partial differential equations require boundary conditions. As in hydrostatics,
Newton’s third law demands that the pressure must be continuous across any
material interface (in the absence of surface tension). Furthermore, since moving
fluids are normally contained in tubes, pipes, or other kinds of conduits that are
impenetrable to the fluid, it follows that the velocity component normal to a
containing surface must vanish, i.e. n · v = 0. There are, however, no conditions
on the tangential velocity in ideal flow.
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In a real fluid the tangential
component of the veloc-
ity field rises linearly at a
boundary and joins smoothly
with the general flow.

It is precisely here that the greatest difference between ideal and real viscous fluids
come in. Ideal fluids are able to slip along container surfaces with finite tangential
velocity, whereas the omnipresent viscosity of real fluids demands that also the
tangential velocity must vanish on containing surfaces at rest. Viscosity thereby
causes boundary layers to arise even in almost ideal fluids. Such boundary layers
will in general soften any sharp transitions in tangential velocity (see chapter 25).

Exploring the extremes

Although we are now in possession of the fundamental equations for ideal fluids,
solving them is another matter. The bad news about nonlinear partial differen-
tial equations is that they are very hard to solve and that makes it imperative to
explore their usually simpler extreme limits. One such limit is the linear approx-
imation in which the nonlinearities are dropped, another is incompressible flow
in which the density is taken to be a constant, and still another is steady flow
where all fields become time independent. In the following sections the various
limits will be discussed in detail.
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16.2. SMALL-AMPLITUDE SOUND WAVES 261

16.2 Small-amplitude sound waves

When you clap your hands together, you create momentarily a small disturbance
in the air which propagates to your ear and tells you that something happened.
The diaphragm of the loudspeaker in your radio vibrates in tune with the music
carried by the radio waves and transfers its vibrations to the air where they
continue as sound. No significant bulk movement of air takes place over longer
distances, but locally the air oscillates rapidly back and forth with small spatial
amplitude, and the velocity, density and pressure fields oscillate along with it.

Wave equation

Before the sound starts, the fluid is assumed to be in hydrostatic equilibrium
with constant density ρ0 and constant pressure p0. For simplicity we assume that
there is no gravity (see however problem 16.13). We now disturb the equilibrium
by setting fluid into motion with a tiny velocity field, v(x, t). The disturbance
generates a small change in the density, ρ = ρ0 + ∆ρ, and in the pressure p =
p0 + ∆p. Inserting this into the Euler equations we obtain to first order in the
small quantities, v, ∆p, and ∆ρ,

∂v

∂t
= − 1

ρ0
∇∆p ,

∂∆ρ

∂t
= −ρ0∇ · v . (16-3)

Differentiating the second equation and inserting the first, we obtain

∂2∆ρ

∂t2
= ∇2∆p . (16-4)

Assuming that the fluid obeys a barotropic equation of state p = p(ρ) we get a
relation between the pressure and density corrections. From the definition of the
bulk modulus (D-16) on page 665 we get to first order,

∆p =
dp

dρ
∆ρ =

K

ρ
∆ρ ≈ K0

ρ0
∆ρ , (16-5)

where K0 is the bulk modulus in hydrostatic equilibrium. Inserting this into
(16-4) we get a linear second order wave equation for the density correction,

∂2∆ρ

∂t2
= c2

0∇2∆ρ , (16-6)

where we for convenience (and with foresight) have introduced the constant,

c0 =

√
K0

ρ0
. (16-7)

It has the dimension of a velocity, and may as we shall see below be identified
with the speed of sound. For water with K0 ≈ 2.3 GPa and ρ0 ≈ 103 kg/m3 the
sound speed comes to about c0 ≈ 1500 m/s ≈ 5500 km/h.
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262 16. NEARLY IDEAL FLOW

Isentropic sound speed in an ideal gas

Sound vibrations in air are normally so rapid that temperature equilibrium is
never established, allowing us to assume that the oscillations take place with-
out heat conduction, i.e. adiabatically. From the bulk modulus (D-16) for an
isentropic ideal gas is K0 = γp0 where γ is the adiabatic index, we obtain

c0 =
√

γp0

ρ0
=

√
γ

RT0

Mmol
. (16-8)

In the last step we have used the ideal gas equation p0 = ρ0RT0/Mmol.

Example 16.2.1: For air at 20◦C with γ = 7/5 and Mmol = 29 g/mol, this
comes to c0 ≈ 343 m/s ≈ 1235 km/h. Since the temperature of the homentropic
atmosphere falls linearly with height according to (4-42), the speed of sound varies
with height z above the ground as

c = c0

r
1− z

h2
, (16-9)

where c0 is the sound speed at sea level and h2 ≈ 30 km is the homentropic scale
height (4-43). At the flying altitude of modern jet aircraft, z ≈ 10 km, the sound
speed has dropped to c ≈ 280 m/s ≈ 1000 km/h. At greater heights this expression
begins to fail because the the homentropic model of the atmosphere fails. Above
z = h2 it is of course meaningless.

Plane wave solution

An elementary plane density wave moving along the x-axis with wavelength λ,
period τ , and amplitude ρ1 > 0 is described by a density correction of the form,

∆ρ = ρ1 cos(kx− ωt) , (16-10)

where k = 2π/λ is the wave number and ω = 2π/τ the circular frequency. In-

-

λ λ λ λ λ

x

Plane density wave propa-
gating along the x-axis with
wave length λ. There is con-
stant density and pressure
in all planes orthogonal to
the direction of propagation.

serting the plane wave into the wave equation (16-6), we obtain ω2 = c2
0k

2 or
c0 = ω/k = λ/τ . The surfaces of constant density (and pressure) are planes
orthogonal to the direction of propagation, satisfying kx− ωt = const. Differen-
tiating this equation after time, we see that the planes of constant density move
with velocity dx/dt = ω/k = c0, also called the phase velocity of the wave. This
shows that c0 given by (16-7) may indeed be identified with the speed of sound
in the material.

Inserting the plane density wave into (16-5) we obtain,

∆p = p1 cos(kx− ωt) , p1 = c2
0ρ1 . (16-11)

Inserting this result into the x-component of the Euler equation (16-3), and
solving for the velocity field, we find

vx = v1 cos(kx− ωt) , v1 =
p1

ρ0c0
=

ρ1

ρ0
c0 . (16-12)
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16.3. STEADY INCOMPRESSIBLE FLOW 263

Since vy = vz = 0, the velocity field of a sound wave is always longitudinal,
i.e. parallel to the direction of wave propagation. The corresponding spatial
displacement ux satisfying vx = ∂ux/∂t becomes,

ux = −a1 sin(kx− ωt) , a1 =
v1

ω
. (16-13)

The displacement is 90◦ out of phase with the density, pressure and velocity.

Validity of the approximation

It only remains to check whether the approximation of disregarding the inertial
term is valid. The actual ratio between the magnitudes of the inertial term
(v ·∇)v and the pressure term ∇p/ρ0 is,

|(v ·∇)v|
|∇p/ρ0| ≈

kv2
1

kp1/ρ0
=

v1

c0
=

ρ1

ρ0
=

p1

K0
=

2πa1

λ
. (16-14)

The condition for the approximation is thus that the amplitude of the velocity
oscillations should be much smaller than the speed of sound, v1 ¿ c0, or equiva-
lently that ρ1 ¿ ρ0, or p1 ¿ K0, or a1 ¿ λ/2π.

Example 16.2.2 (Loudspeaker): A certain loudspeaker transmits sound
to air at a frequency ω/2π = 1000 Hz with diaphragm displacement amplitude of
about a1 = 1 mm. The velocity amplitude becomes v1 = a1ω ≈ 6 m/s, and since
v1/c0 ≈ 1/57 the approximation of leaving out the non-linear terms is well justified.

16.3 Steady incompressible flow

In many practical uses of fluids, the flow does not change with time, and is said to
be steady or stationary. In this section we shall for simplicity also assume that the
fluid is incompressible with constant density. Steady flow in compressible fluids
will be analyzed in section 16.4 where we shall learn that a fluid in steady flow is
effectively incompressible when the flow velocity is everywhere much smaller than
the speed of sound.

Taking ∂v/∂t = 0 and ρ = ρ0 in Eulers equations we now find,

(v ·∇)v = − 1
ρ0

∇p + g , ∇ · v = 0 . (16-15)

Truly steady flow is like true incompressibility an idealization, only valid to a
certain approximation. A river may flow steadily for days and weeks, while over
several months seasonal changes in rainfall makes its water level rise and subside
again. If one empties a cistern filled with water through a narrow pipe, the flow is
almost steady in the pipe for a time, except that the level of water in the cistern
slowly goes down and thereby reduces the flow speed in the pipe. In such cases,
the flow should rather be called nearly steady or quasistationary.
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264 16. NEARLY IDEAL FLOW

This explanation begs the question of how a steady flow is established, even when
boundary conditions are kept strictly constant. Since all flows start out being time
dependent, there must be friction forces capable of removing the surplus energy
from a lively flow to calm it down. Such forces are not included in the Euler
equation, but even if viscosity is included (as it will in chapter 18), there is no
guarantee that the flow will become steady after sufficiently long time. You just
have to open the water faucet wide and watch the persistent turbulence in the
kitchen sink to realize that steady flow will not always arise.

Bernoulli’s theorem for incompressible fluid

The negative sign of the pressure gradient in Euler’s steady-flow equation shows
that in the absence of gravity a flow accelerating in a certain direction must be
accompanied by a drop in pressure in the same direction, so that regions of high
fluid velocity must generally have a lower pressure than regions of low velocity.

For an incompressible fluid with constant density ρ = ρ0, Bernoulli’s theorem
states that the field1,

H =
1
2
v2 + Φ +

p

ρ0
, (16-16)

is constant along streamlines. In the absence of gravity, the constancy of H(x)
implies as we foresaw that an increase in velocity squared |v| along a streamline
must be compensated by a decrease in pressure p, and conversely. Notice that
the first two terms in the Bernoulli function H make up the total mechanical
(i.e. kinetic plus potential) energy of a unit mass particle, also called the specific
mechanical energy. We shall discuss how the Bernoulli function is related to
energy in section 17.11.

The proof of the theorem is straightforward. The comoving rate of change of
H along a particle orbit is given by the material derivative (15-30), and since all
fields are time independent in steady flow so that D/Dt = v ·∇, we get

DH

Dt
= v · Dv

Dt
+

DΦ
Dt

+
1
ρ0

Dp

Dt

= v · (v ·∇)v +
1
ρ0

v ·∇p + v ·∇Φ

= v ·
(

(v ·∇)v +
1
ρ0

∇p− g

)

= 0 ,

where we in the last step used the steady flow Euler equation (16-15). This shows
that H is constant along any particle orbit, and thus along any streamline since

1Bernoulli pointed out the relation between pressure and velocity in the world’s first book
on hydrodynamics, Hydrodynamica, which he published in 1738. It was actually not Bernoulli
who formulated the quantitative theorem which now bears his name, but rather Lagrange in
his famous book on analytic mechanics from 1788 [7].
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16.3. STEADY INCOMPRESSIBLE FLOW 265

streamlines coincide with particle orbits in steady flow. The modifications of
Bernoulli’s theorem necessary for compressible fluids will be discussed in section
16.4.
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H is constant along a
streamline in steady flow,
i.e. H(x) = H(x0).

Terminology

The importance of Bernoulli’s theorem for many practical hydrodynamical ap-
plications has led to several different terminologies. Since ρ0H has the dimension
of pressure, the term 1

2ρ0v
2 is often called the dynamic pressure as opposed to

the static pressure p. The combination p+ρ0Φ is called the effective pressure. A
point where the fluid has zero velocity, v = 0, is called a stagnation point for the
flow. In the absence of gravity, the pressure at a stagnation point is p0 = ρ0H,
also called the stagnation pressure.

An often encountered engineering terminology is used in constant gravity,
g = (0, 0,−g0), where the Bernoulli field becomes (in flat-earth coordinates),

H =
1
2
v2 + g0z +

p

ρ0
. (16-17)

The vertical height z of a point on the streamline above some fixed reference
level z = 0 is called the static head. Similarly p/ρ0g0 is called the pressure head,
and v2/2g0 is called the velocity head. The total head, H/g0, is by Bernoulli’s
theorem the same everywhere along a streamline.

Applications of Bernoulli’s theorem

Bernoulli’s theorem is highly useful because most of the flows that we deal with
in our daily lives are nearly ideal and nearly incompressible. Bernoulli’s theorem
often provides us with a first idea about the behavior of a flow in a given geometry.
The drop in pressure accompanying an increase in flow velocity lies, for example,
at the root of lift generation for both animals and machines, whether they swim
or fly. -2 -1 0 1 2 3
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The flow has to quicken
around an obstacle (here a
half sphere) on the bottom of
a stream and by Bernoulli’s
theorem, there will be a
lower pressure above the
obstacle, i.e. a lift.

Example 16.3.1: Lift is usually thought of as beneficial, but that may not always
be the case. Some fish hide by burrowing superficially into the sandy bottom of a
stream. The fish’s curved upper surface forces the passing water to speed up, leading
to a pressure drop above the fish that grows with the square of the flow velocity.
If the stream velocity increases, the fish may be lifted out of the sand, whether it
wants to or not. That is probably why flatfish are indeed — flat.

A warning is in place at this point. Viscosity is never completely absent, but
mostly it is negligible well away from the boundaries of the ducts and containers
that we use to handle fluids. Exploiting the constancy of H along a streamline
is always an approximation, and in any realistic problem there will be what
the engineers call “head loss” due to viscosity, to secondary flow or turbulence
generated by irregularities and sharp corners in bounding surfaces.
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266 16. NEARLY IDEAL FLOW

Bernoulli’s theorem only furnishes a partial solution of Euler’s equation (16-
15). Although it relates the pressure and the magnitude of the velocity along a
streamline, nothing is said about the direction of the velocity or how different
streamlines relate to each other. To determine that one needs to solve the Euler
equation with the boundary conditions imposed by the problem at hand.

Torricelli’s Law

A barrel of wine with a little spout close to the bottom is a prototypical example
of a fluid container. If the plug in the spout is suddenly removed, gravity makes
wine emerge with considerable speed. Provided the spout is narrow compared to
size of the barrel, a nearly steady flow will soon establish itself. This is a case
where Bernoulli’s theorem readily gives us the answer.

Consider a streamline starting near the top of the barrel and running with
the flow down through the middle of the spout. Near the top at a height z = h
over the position of the spout, the fluid is almost at rest, i.e. v ≈ 0. The pressure
is atmospheric, p = p0, and the gravitational potential may be taken to be g0h
so that

Htop = g0h +
p0

ρ0
. (16-18)

Just outside the spout the fluid has some horizontal velocity v, and the pressure is
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Wine running out of a bar-
rel. The wine emerges with
the same speed as it would
have obtained by falling
freely through the height h
of the fluid in the barrel.

also atmospheric, p = p0, with no contribution from gravity, because the potential
has been chosen to vanish here. Hence

Hbottom =
1
2
v2 +

p0

ρ0
. (16-19)

Equating the values of H at the top and the bottom we find

1
2
v2 +

p0

ρ0
=

p0

ρ0
+ g0h ,

which has the solution

v =
√

2g0h . (16-20)

Surprisingly, this is exactly the same velocity as a drop of wine would have
obtained by falling freely from the top of the barrel to the spout.Evangelista Torricelli (1608

– 1647). Italian physicist.
Constructed the first mer-
cury barometer and noticed
that the barometric pres-
sure varied from day to day.
Served as companion and
secretary for Galileo in the
last months of Galileo’s life.

In a sense the barrel acts as a device for diverting the vertical momentum of
the falling liquid into the horizontal direction (see chapter 17). The same result
holds if the spout is replaced by a pipe that may not even be horizontal, but may
turn and twist. As long as friction can be ignored in the pipe, the exit velocity
will be equal to the free-fall velocity from the fluid surface at the top of the barrel
to the exit from the pipe. This result is called Torricelli’s Law, and was in its
time a major step forward in the understanding of fluid mechanics.
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Example 16.3.2: A large cylindrical wine barrel has diameter 1 m and height
2 m. According to Torricelli’s law the wine will emerge from the spout with the
free-fall speed of about 6.3 m/s. If the spout opening has diameter 5 cm, about 12.3
liters of wine will be spilled on the floor per second. At this rate it would take 2
minutes to empty the barrel, but we shall see below that it actually takes the double
because the level sinks.

We have not specified precisely which streamline to take. Other streamlines
will start out in different places at the top of the barrel, but all will begin with
essentially zero velocity, be subject to the same gravitational potential, and end
up in roughly the same place. The calculation of the velocity must therefore lead
to the same result, except for streamlines running very near to the walls of the
barrel and spout, where the unavoidable viscosity slows down the flow of wine.
The wine emerges from the spout with the same velocity all over the opening, a
flow pattern that is sometimes called plug flow.

Time to empty a wine barrel

If the barrel has constant cross section A0, Leonardo’s law (15-12) tells us that
the average vertical flow velocity in the barrel is v0 = vA/A0 where A is the
cross section of the spout and v =

√
2g0z the average horizontal flow velocity

through it when the water level is z. Since dz/dt = −v0, we obtain the following
differential equation for quasistationary emptying of the barrel,

dz

dt
= − A

A0

√
2g0z . (16-21)

Integrating this equation we obtain the time it takes to empty the barrel from
the original height z = h

T =
∫ 0

h

dt

dz
dz = −

∫ 0

h

A0

A

dz√
2g0z

=
A0

A

√
2h

g0
. (16-22)

This time equals the free-fall time from height h multiplied with the usually huge
ratio of the barrel and spout cross sections. For the cylindrical wine barrel of
example 16.3.2 the free fall time is 0.64 seconds and it takes about 400 times
longer, about 4 minutes, to empty the barrel.

Pitot’s tube
Henri Pitot (1695–1771).
French mathematician, as-
tronomer, and hydraulic en-
gineer. Invented the Pitot
tube around 1732.

Fast aircraft often have a sharply pointed nose which on closer inspection is seen
to end in a little open tube. On other aircraft the tube mostly sticks orthogonally
out from the side and is then bent forward into the air stream. This device is
called a Pitot tube, and in today’s technology it is used in many variant forms to
measure flow speeds in gases and liquids. In its simplest and original form, the
Pitot tube is just an open glass tube bent through a right angle. The tube is
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lowered into a steadily streaming river with velocity U , one end turned horizon-
tally towards the current and the other vertically in the air above. The flow will
stem water up into the vertical part of the tube, until the hydrostatic pressure
of the water column balances the dynamic pressure from the flow. After the flow
has steadied, the water in the tube rises to a height z above the river surface.

.....................................
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p p0

The principle of the Pitot
tube. The pressure increase
along the stagnating stream-
line must equal the weight of
the raised water column.

Since the water speed must be zero at the entrance to the horizontal part of
the tube, a horizontal streamline arriving here from afar must come to an end
in a stagnation point where the velocity vanishes. The gravitational potential is
constant everywhere along the horizontal streamline, and can be disregarded, so
that Bernoulli’s theorem yields,

p0

ρ0
=

1
2
U2 +

p

ρ0
, (16-23)

where p is the pressure at infinity, and p0 is the stagnation pressure. The excess
stagnation pressure ∆p = p0 − p = 1

2ρ0U
2 must also equal the extra hydrostatic

pressure from the raised water column, ∆p = ρ0g0h, and we get

U =
√

2g0h . (16-24)

Again we find the simple and surprising result that the speed of the water is
exactly the same as it would be after a free fall from the height h. At a typical
flow speed of 1 m/s the water in the tube is raised 5 cm above the river level.

Example 16.3.3: Farmers know better than to leave the barn door open towards
the wind in a storm, even if they are not familiar with Bernoulli’s theorem. A gust
of wind will not only decrease the pressure above the barn roof because the wind
has to move faster above the roof than at the ground, but the Pitot effect will also
increase the pressure inside, giving the roof a double reason to blow off.

Example 16.3.4 (Water scoop): Forest fires are sometimes combated by
aircraft dropping large amounts of sea or lake water. To avoid excessive landing
and take-off, the aircraft collects water by lowering a scoop into the water while
flying slowly at very low altitude. If the scoop turns directly forward and the
aircraft velocity is U , it can like the Pitot tube raise the water to a maximal height,
h = U2/2g0. Even for a speed as low as U = 120 km/h ≈ 33 m/s, this comes to
h = 55 m. In practice, the height of the water tank over the lake surface is much
smaller, so that the water ideally could arrive in the tank with nearly maximal speed
U . A scoop with an opening area of just A ≈ 300 cm2 can deliver water at a rate
of Q = UA ≈ 1 m3/s. Turbulence and friction lowers this somewhat, but typically
such an aircraft can collect 6 m3 in just 12 s.

The Venturi effect
.................................................................. ..........................................................

........

Sketch of a Venturi tube
experiment. Water streams
from the left through a con-
striction in the horizontal
tube where the pressure is
lower than in the tube out-
side the constriction because
of the Venturi effect, as
shown by the lower water
level in the vertical tube.

A simple duct with slowly varying cross section carries a constant volume flux Q of
incompressible fluid. For simplicity we assume the duct is horizontal, such that
gravity can be disregarded. Taking a streamline running horizontally through
the duct, we obtain from Bernoulli’s theorem that H = 1

2v2 + p/ρ0 takes the
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same value everywhere in the duct. Approximating the velocity with its average
U = Q/A over the cross section A, the pressure becomes, Giovanni Batista Venturi

(1746-1822). Italian physi-
cist and engineer. Studied
how fluids behave in a duct
with a constriction.

p = ρ0

(
H − Q2

2A2

)
. (16-25)

This demonstrates the Venturi effect : The pressure decreases when the duct cross
section decreases (and conversely).

16.4 Steady compressible flow

In steady compressible flow, the velocity, pressure, and density are independent
of time, and Euler’s equation and the continuity equation take the form,

(v ·∇)v = −1
ρ
∇p + g , ∇ · (ρv) = 0 . (16-26)

We shall for simplicity assume that the equation of state is barotropic, p = p(ρ)
or ρ = ρ(p), such that we have a closed set of five field equations for the five
fields, v, ρ, and p. In this section we shall mostly ignore gravity.

Effective incompressibility

We shall now demonstrate the claim made in the preceding section that all fluids
in steady flow are effectively incompressible when the flow speed is everywhere
much smaller than the local speed of sound.

Writing the divergence condition in the form ∇ · (ρv) = ρ∇ ·v +(v ·∇)ρ = 0,
and using the relation ∇p = (dp/dρ)∇ρ = c2∇ρ together with Euler’s equation
without gravity, we find the exact result,

∇ · v = −1
ρ
(v ·∇)ρ = − 1

ρc2
(v ·∇)p =

v · (v ·∇)v
c2

. (16-27)

Applying the Schwarz inequality to the numerator (see problem 16.6) we get

|∇ · v| ≤ |v|2
c2

|∇v| , (16-28)

where |∇v| =
√∑

ij(∇jvi)2 is the norm of the velocity gradient matrix. This

clearly demonstrates that for |v| ¿ c the divergence is much smaller than the
general velocity gradients, making the divergence condition, ∇ · v = 0, a good
approximation.
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The Mach number
Ernst Mach (1838-1916).
Austrian positivist philoso-
pher and physicist. Made
early advances in psycho-
physics, the physics of
sensations. His rejection
of Newton’s absolute space
and time prepared the way
for Einstein’s theory of
relativity. Proposed the
principle that inertia results
from the interaction between
a body and all other matter
in the universe.

The local speed of sound, c =
√

K/ρ =
√

dp/dρ, plays an important role for
compressible fluids. The ratio of the local flow speed v (relative to the a static
solid object or boundary wall) and the local sound speed c is denoted by,

Ma =
|v|
c

, (16-29)

called the Mach number. Whereas a fluid in steady flow is effectively incompress-
ible when the local Mach number is everywhere small, Ma ¿ 1, a fluid is truly
compressible if the Mach number anywhere is comparable to unity or larger.

Example 16.4.1: Waving your hands in the air, you generate flow velocities at
most of the order of meters per second, corresponding to Ma ≈ 0.01. Driving a
car at 120 km/h ≈ 33 m/s corresponds to Ma ≈ 0.12. A passenger jet flying at a
height of 10 km with velocity about 900 km/h ≈ 250 m/s has Ma ≈ 0.9. Even if
this speed is subsonic, considerable compression of the air must occur especially at
the front of the wings and body of the aircraft. The Concorde and modern fighter
aircraft operate at supersonic speeds at Mach 2-3, whereas the Space Shuttle enters
the atmosphere at the hypersonic speed of Mach 25. The strong compression of the
air at the frontal parts of such aircraft create shock waves that appear to us as sonic
booms.

Bernoulli’s theorem for barotropic fluids

For compressible fluids, Bernoulli’s theorem is still valid in a slightly modified
form. If the fluid obeys a barotropic equation of state, ρ = ρ(p), the Bernoulli
function becomes,

H =
1
2
v2 + Φ + w(p) , (16-30)

where

w(p) =
∫

dp

ρ(p)
(16-31)

is the pressure potential, previously defined in (4-35). The proof of the modified
Bernoulli theorem is elementary and follows the same lines as before, using that
Dw/Dt = (dw/dp)Dp/Dt = (1/ρ)Dp/Dt.

The most interesting barotropic fluid is an ideal gas with adiabatic index γ.
Writing the isentropic condition (D-15) as ρ = Cp−1/γ , and carrying out the
integral, we find after a little rearrangement,

w =
γ

γ − 1
p

ρ
= cp T cp =

γ

γ − 1
R

Mmol
. (16-32)
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In the last step we have used the ideal gas law (4-27), and the definition (D-
18) of the specific heat at constant pressure. Thus, in the absence of gravity, a
drop in velocity along a streamline in isentropic flow is accompanied by a rise in
temperature (as well as a rise in pressure and density).

There is a conceptual subtlety in understanding isentropic steady flow because
of the unavoidable heat conduction that takes place in all real fluids. Since truly
steady flow lasts “forever”, one might think that there would be ample time for
a local temperature change to spread to all of the fluid, independently of how
badly it conducts heat. But remember that steady flow is not static, and any
heat added to a stream will be whisked away by the steady flow. So provided
the flow is sufficiently fast, heat conduction will have little effect. The physics of
heat and flow is discussed in chapter 28.

Stagnation point temperature rise

An object moving through a fluid has at least one stagnation point in the front
where the fluid is at rest relative to the object. There is also at least one stagna-
tion point at the rear of a body, but turbulence will generally disturb the flow in
this region and tangle the streamlines, so that we cannot use Bernoulli’s theorem
to calculate the physical properties near the rearwards stagnation point.

................................................................................................................................
......................................................................................................................................................................................................................................................................................................................................................................................................................

................

A static airfoil in an
airstream coming in hor-
izontally from the left.
The shown streamline
(dashed) ends in the forward
stagnation point.

At the forward stagnation point the gas is compressed and the temperature
will always be higher than in the fluid at large. In the frame of reference where
the object is at rest and the fluid asymptotically moves with constant speed U
and temperature T the flow is steady, and we find from (16-30) and (16-32) in
the absence of gravity,

1
2
U2 + cpT = cpT0 ,

where T0 is the stagnation point temperature. Accordingly the temperature rise
due to adiabatic compression becomes,

∆T = T0 − T =
U2

2cp
=

1
2
U2 γ − 1

γ

Mmol

R
. (16-33)

Notice that the stagnation temperature rise depends only on the velocity differ-
ence between the body and the fluid far from the body, and not on the pressure
or density of the gas.

Example 16.4.2: Taking γ = 7/5 we obtain for a car moving at 100 km/h a
stagnation point temperature rise of merely 0.4 K. At the front of a passenger
jet travelling at 900 km/h the stagnation point rises a moderate 31 K, whereas a
supersonic aircraft travelling at 2300 km/h suffers a stagnation point temperature
rise of about 200 K. When a reentry vehicle hits the dense atmosphere with a speed
of 3 km/s the stagnation point temperature rise becomes nearly 4500 K. At the full
free fall speed from outer space, 11.2 km/s, the stagnation point temperature would
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be 63, 000 K, but the density of the air in the outer reaches of the atmosphere would
probably be so small that the continuum assumption is no more fulfilled.

Whether the tip of a moving object actually attains the stagnation point temper-
ature depends on primarily on how efficiently heat is conducted away from this
region by the material of the object. The moving object is usually solid with a
vastly greater heat capacity than the air near the stagnation point. In addition
to adiabatic compression viscous friction also produces heat, and for extreme
aircraft such as the Space Shuttle it has been necessary to use special ceramic
materials to withstand temperatures that are otherwise capable of melting and
burning metals. Freely falling meteorites appear as shooting stars in the sky
because of viscous friction.

Stagnation point properties

It is often convenient to express the ratio of the stagnation point temperature
and the local temperature in terms of the local Mach number Ma = |v| /c where
c =

√
γRT/Mmol is the local sound velocity. From (16-33) we obtain

T0

T
= 1 +

1
2
(γ − 1)Ma2 . (16-34)

Even if the streamline does not actually end in a stagnation point, T0 will be
a constant for the streamline because it represents the value of the Bernoulli
function, H = cpT0, which constant along the streamline. The stagnation tem-
perature may be thought of as the temperature that would be obtained if a tiny
object was inserted into the flow far downstream from the observation point.

The stagnation density ρ0 and pressure ρ0 are obtained from the isentropic
conditions,

Tρ1−γ = T0ρ
1−γ
0 , T γp1−γ = T γ

0 p1−γ
0 ,

which may be written,

ρ0

ρ
=

(
T0

T

) 1
γ−1

,
p0

p
=

(
T0

T

) γ
γ−1

. (16-35)

Again it follows that ρ0 and p0 are constants for any given streamline.

Sonic point properties

A point where the velocity of a steady flow passes through the local velocity of
sound is called a sonic point. The collection of sonic points typically form a sonic
surface, for example in the duct flow to be discussed below. The sonic point
temperature may be calculated from the stagnation point temperature (16-34)
by setting Ma = 1,

T1

T0
=

2
γ + 1

. (16-36)
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Figure 16.1: Flow in a slowly varying duct. Plot of the ratio of local to sonic values as
a function of the Mach number. The ratio A/A1 is fully drawn, T/T1 has large dashes,
ρ/ρ1 medium dashes , p/p1 small dashes, and U/U1 dotted.

For γ = 7/5, the ratio is T1/T0 = 5/6. Multiplying (16-34) by T1/T0 and
rearranging the expression, we obtain the sonic temperature in terms of the local
temperature and Mach number,

T1

T
= 1 +

γ − 1
γ + 1

(
Ma2 − 1

)
. (16-37)

The sonic temperature T1 is, like the stagnation temperature T0, a constant for
any streamline, independently of whether the flow actually becomes sonic on this
streamline. The sonic density ρ1 and pressure p1 may similarly be obtained from
stagnation values and related to the local Mach number by relations like (16-35).

Ideal gas flow in duct with slowly varying cross section

Consider now an ideal gas flowing through a duct with so slowly varying cross
section that the temperature T , density ρ, pressure p, and normal velocity U may
be assumed to be constant over any given (but otherwise arbitrary) planar duct
cross section of area A. We are interested in determining the conditions under
which the flow may become sonic in the duct.

.......................................................................................................................................................................................................................................................................................................

..................................................................................................................................
........................................................

..........................................
....................................

...............................

-U

A

ρ

p

Flow in a slowly converging
duct. All parameters are
assumed constant on every
planar cross section A.

The constancy of the mass flux along the duct,

Q = ρAU , (16-38)

provides us with a relation between the duct area and the local Mach number.
At the sonic point we have ρAU = ρ1A1U1, and using that U = Ma c and U1 = c1
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Figure 16.2: Simple model of a constricted duct, A(x) = Athroat + kx2, with Athroat = 1
and k = 0.1 (and γ = 7/5). (a) Plot of the Mach number Ma(x) as a function of the
duct coordinate x. The different curves are labelled by the ratio Athroat/A1. (b) The
pressure ratio p(x)/p1 under the same conditions. Notice that the pressure is lowest in
the throat (the Venturi effect) for all A1 < Athroat, but drops to much lower values for
A1 = Athroat.

where c and c1 are the local and sonic sound velocities, we find

A

A1
=

ρ1U1

ρU
=

1
Ma

ρ1

ρ

c1

c
=

1
Ma

ρ1

ρ

√
T1

T
=

1
Ma

(
T1

T

) 1
2

γ+1
γ−1

.

In the last step we also used that ρ1/ρ = (T1/T )1/(γ−1). Inserting T1/T from
(16-37), we arrive at the sought for relation,

A

A1
=

1
Ma

(
1 +

γ − 1
γ + 1

(
Ma2 − 1

)) 1
2

γ+1
γ−1

. (16-39)

This function is shown (for γ = 7/5) as the fully drawn curve in fig. 16.1 together
with the corresponding temperature, density, pressure, and velocity ratios.

The main observation to make from fig. 16.1 is that the local area A has a
minimum at Ma = 1. This shows that it is only possible to make a smooth tran-
sition from subsonic to supersonic flow by sending the gas through a constriction
in which the duct first converges and then diverges, forming a throat at the point
where its area is minimal. If the flow parameters are set up such that the sonic
area A1 precisely equals the physical area Athroat of the throat, the subsonic flow
entering the converging part of the duct will travel down the left hand branch of
the fully drawn curve in fig. 16.1, increasing its velocity until the Mach number
reaches unity exactly at the throat. Having passed the throat, the flow is now
supersonic and travels up the right hand branch of the fully drawn curve while
increasing its velocity further in the diverging part of the constriction.

..........................................................................
................................

........................
....................

.................

...............................................................................................
.......................................

...............................
..........................

......................

.......................................................................................................................................................................

.....................................................................................................................................................................................................................

- -

throat

subsonic supersonic

- x

A subsonic flow may become
supersonic in a duct with
a constriction where it
changes from converging to
diverging. The transition
happens at the narrowest
point, the throat, where
the cross section A(x) is
minimal.

The sonic point is not always reached. After all, flutes and other musical
instruments, including our voices, have constrictions in the airflow that do not
give rise to supersonic flow (which would surely destroy the music). If the physical
throat area is larger than the sonic area, Athroat > A1, the Mach number does not
reach unity at the throat. The maximal Mach number at the throat, Mathroat, is
determined from (16-39) by setting A = Athroat. Graphically, it may be read off
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from the left hand branch of fully drawn curve in fig. 16.1 at the point it crosses
through Athroat/A1. In fig. 16.2 this is illustrated in a simple model.

Suppose now that the duct is carrying a subsonic flow through the throat
with Athroat > A1, and that we begin to throttle the throat by diminishing its
area Athroat without changing the flow parameters at the entry. Since the sonic
area A1 is determined by the entry values, it will not change, so the throttling
may continue until Athroat = A1. At this point the flow becomes sonic at the
throat. If we now continue throttling, the entry parameters are at least forced
to change in such a way that the the sonic area follows the diminishing throat
area, A1 = Athroat, and the flow stays sonic at the throat. A duct with a throat
operating at the sonic point is said to be choked because there is no way you can
increase the mass flow through the throat by varying the entry parameters (for
further details see [16, 37]).

16.5 Vorticity

The value of the Bernoulli field H(x) in a point x is only a function of the
streamline going through this point. Different streamlines will in general have
different values of H. This can be illustrated by considering the case of Newton’s
rotating bucket which was discussed before on page 111.

Bernoulli field in Newton’s bucket

In the corotating (bucket) coordinate system, the fluid is at rest and subject to
both the force of gravity and the centrifugal force. Since the velocity vanishes,
the Bernoulli function becomes

H0 =
p

ρ0
+ g0z − 1

2
Ω2r2 , (16-40)

where the last term is the centrifugal potential and r =
√

x2 + y2 the distance
from the axis of rotation. Hydrostatic balance ensures that ∇H0 = 0 so that H0

is a true constant, independent of both r and z. Solving for the pressure we get,

...................................................................................................................................................................................................................................
...........................

.....................
.................
................
..............
.......6

Ω

The water surface is
parabolic in a bucket rotat-
ing with angular velocity
Ω.

p = ρ0H0 − g0z +
1
2
Ω2r2 . (16-41)

The constancy of the pressure on the open surface, determines its parabolic shape
z = Ω2r2/2g0 + const.

In the non-rotating (laboratory) system, there is no centrifugal force, but the
fluid moves steadily with velocity v = rΩ, and the streamlines are concentric
circles. The Bernoulli function becomes in this system,

H(r) =
1
2
Ω2r2 + g0z +

p

ρ0
= Ω2r2 + H0 . (16-42)

where in the last step we have made use of (16-40). The Bernoulli function de-
pends in this case on the radial distance from the axis, but is of course constant on
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the streamlines as Bernoulli’s theorem ensures us. H is furthermore independent
of z, and we shall see below that this also follows from general rules.

r ..........
..........
..........
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..................

...........................................................................................................................................................................................................................................................................................................
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?
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r ..........
..........
..........
...........
............

..............
..................

...........................................................................................................................................................................................................................................................................................................
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.............
...........
...........
..........
..........
.........

6 6 6
U

Unsteady Steady

A body moving at constant
speed through a fluid is
physically equivalent to the
same body being at rest
in a steady flow which is
asymptotically uniform.

Asymptotically uniform flow

It is often possible to relate the values of H for different streamlines. A gen-
eral and frequently occurring example is a body moving with constant velocity
through a fluid otherwise at rest, were it not for the disturbance created by the
body. The relativity of motion in Newtonian mechanics tells us that this un-
steady flow is physically equivalent to a steady flow around a stationary body in
a fluid which far away from the body moves with constant velocity under con-
stant pressure. We tacitly used this equivalence in the discussion of the water
scoop above.

At great distances from the body the flow will have the same velocity U and
in the absence of gravity the same pressure P for all streamlines. Consequently,
the Bernoulli field must take the same value

H0 =
1
2
U2 +

P

ρ0
(16-43)

for all streamlines coming in from afar. If one can be sure that all streamlines
around the body originate infinitely far away, then H must take the same value
all over space, i.e. H(x) = H0.

Vorticity field

The simple result that H is spatially constant for asymptotically uniform flow,
is spoiled by the possibility that there may be streamlines forming closed curves
unconnected with the flow at infinity. This was the case for Newton’s bucket in
the non-rotating coordinate system where the streamlines were concentric circles,
but common experience indicates that such circulating flow may occur in the wake
of the disturbance created by the shape of a container or a moving body. We are
thus naturally led to the study of local circulation in a fluid, and we shall see
that H is in fact globally constant for flow completely without local circulation
anywhere.

...................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................

R

j

.....................................................................................................................................................................................
................
............
...........
..........
...........
..............
....................
.................................................................j

Closed streamlines may ap-
pear when a fluid flows past
an edge.

The general conditions for H being constant may be calculated from its gra-
dient, using Euler’s equation for steady incompressible flow (16-15). Employing
index notation, we find

∇iH =
1
2
∇iv

2 +
1
ρ0
∇ip +∇iΦ

= v · ∇iv − v ·∇vi

= (v × (∇× v))i .

This result, which is also valid for barotropic compressible fluids, allows us to
write

∇H = v × ω , (16-44)
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where we have defined a new field, the vorticity field

ω = ∇× v . (16-45)

The vorticity field also goes back to Cauchy (1841) and is a quantitative measure
of the local circulation in the fluid.

Example 16.5.1: The curl of the field v = (x2, 2xy, 0) is ! = (0, 0, 2y), whereas
the curl of v = (y2, 2xy, 0) vanishes.

In any region where the vorticity field vanishes, we have ∇H = 0, so that the
Bernoulli field must take one value only in that region, i.e. H(x) = H0. Flow
completely free of vorticity everywhere is called irrotational flow and leads to a
particularly simple formalism that we shall investigate in the following section.

Vorticity and local rotation

The prime example of a flow with vorticity is a steadily rotating rigid body, for
example Newton’s bucket in the laboratory system. If the rotation vector of the
body is Ω, the velocity field becomes v = Ω× x, and the vorticity

ω = ∇× (Ω× x)
= Ω(∇ · x)− (Ω ·∇)x
= 3Ω−Ω = 2Ω .

The vorticity is in this case constant and equal to twice the rotation vector. The
factor of 2 seems a bit strange but is a general result which may be verified by
calculating the gradient of H for Newton’s bucket. We find using (16-44)

∇H = (Ω× x)× 2Ω = 2Ω2(x, y, 0) ,

which agrees with the gradient of the Bernoulli field calculated from (16-42).

Vortex lines

The field lines of the vorticity field are called vortex lines, and are defined as
curves that are everywhere tangent to the vorticity field. They are solutions to
the ordinary differential equation ...........
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-
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R

Around a vortex line there
is local circulation of fluid.dx

ds
= ω(x, t0) . (16-46)

In a steady flow these lines are fixed curves in space, just like the streamlines.
Bernoulli’s theorem, (v ·∇)H = 0, follows immediately from (16-44) by mul-

tiplying with v. Similarly, by multiplying with ω we obtain

(ω ·∇)H = 0 . (16-47)
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The Bernoulli field is therefore also constant along vortex lines.
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The Bernoulli field is con-
stant on surfaces made from
vortex lines and streamlines.

Together these results imply that the Bernoulli field is constant on the two-
dimensional surfaces formed by combining vortex lines and streamlines. Since
streamlines for circulating fluid tend to form closed curves, these surfaces will
be long tubes, called vortex tubes. For Newton’s bucket the vortex tubes are
cylinders concentric with the axis of rotation, and this explains that the Bernoulli
field cannot depend on z, as we noticed earlier.

Equation of motion for vorticity

The vorticity field is derived from the velocity field, so the equation of motion
for the vorticity field must follow from the equation of motion for the velocity
field, (16-1). Eliminating the pressure by means of the Bernoulli field (16-16)
and retracing the steps leading to (16-44), Euler’s equation for an incompressible
fluid may be written,

∂v

∂t
= −(∇ · v)v − 1

ρ0
∇p + g = v × ω −∇H . (16-48)

The end result is also valid for compressible barotropic fluids. For steady flow
where ∂v/∂t = 0, we recover of course (16-44). The equation of motion for
vorticity is obtained by calculating the curl of both sides of this equation, using
that the curl of a gradient vanishes, ∇× (∇×H) = 0, arriving at

∂ω

∂t
= ∇× (v × ω) . (16-49)

There is a major lesson to draw from this equation. If the vorticity vanishes
identically, ω(x, t) = 0, everywhere inside a region V of space at one instant of
time t, then we have ∂ω/∂t = 0 in V at t, and the vorticity field will not change
in the next instant. Continuing this argument, we conclude that if the vorticity
field vanishes in V at t, it will vanish forever after.

In other words: in the absence of viscosity, vorticity cannot be generated by
the flow of the fluid but must be present from the outset. Thus if you accelerate a
body from rest in a truly ideal fluid, the flow will forever remain without vorticity,
because ω = 0 in the beginning. The whirling air that trails a speeding car or an
airplane must for this reason somehow be caused by viscous forces, independently
of how tiny the viscosity is.

16.6 Steady, incompressible potential flow

Flow with a vanishing vorticity field ω = 0 is called irrotational and obeys a
much simpler formalism than flow with vorticity, in particular when it is also
incompressible. The results to be derived below for incompressible flow can be
generalized to compressible as well as unsteady flow (see problem 16.8), although
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much of the simplicity is lost. But even if the equations for steady, incompressible,
irrotational flow can be solved analytically in many geometries, the solutions are
unfortunately not as useful as might be thought at first, because vorticity is
always generated in the unavoidable viscous boundary layers of the bodies and
containers that define the geometry, and may from there spread to large parts of
the fluid.

The velocity potential

The vanishing of the vorticity, ω = ∇ × v = 0, everywhere in the fluid implies
(see problem 16.7) that the velocity has to be the gradient of a scalar field Ψ,
called the flow potential or the velocity potential2,

v = ∇Ψ . (16-50)

For an incompressible fluid, the vanishing of the divergence of the velocity field
implies that the flow potential must satisfy Laplace’s equation

∇2Ψ = 0 . (16-51)

Typically, the boundary conditions consist in requiring the normal velocity n·v =
n ·∇Ψ to vanish at all impermeable container walls, and that the flow potential
asymptotically must approach the potential, Ψ = U · x, of a uniform flow with
velocity U .

From the gradient of the Bernoulli field (16-44), it immediately follows that
it is spatially constant, H(x) = H0, when ω = 0. Solving for the pressure we
obtain from (16-16)

p = p0 − ρ0

(
1
2
v2 + Φ

)
, (16-52)

where p0 = ρ0H0 is a constant. Thus, in steady, incompressible potential flow
where v = ∇Ψ, the pressure is simply derived from the velocity potential found
by solving the linear Laplace equation (16-51) with suitable boundary conditions.
All the original nonlinearity of the Euler equation is thus being relegated to the
expression for the pressure.

Potential flow around a cylinder in cross-wind

A circular cylinder of radius a is an infinitely extended three-dimensional object
which is invariant under translations along as well as rotations around its axis.
We choose as usual a coordinate system with the z-axis coinciding with the
cylinder (see page 655. An asymptotically uniform “cross-wind” U along the

2The preferred symbol for the velocity potential seems to be φ, but we shall in this book
use Ψ which does not clash with other uses.
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x-axis does not break the longitudinal symmetry, which makes it natural to look
for a velocity potential, Ψ = Ψ(x, y), that is independent of z. Alternatively, the
potential may be expressed in plane polar coordinates Ψ = Ψ(r, φ).
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Asymptotically, for r →∞, the potential must approach the field Ψ → Ux =
Ur cos φ of the uniform cross-wind. The linearity of the Laplace equation (16-51)
demands that the potential everywhere is linear in the asymptotic field,

Ψ = U cosφf(r) , (16-53)

where f(r) is a so far unknown function of r only which behaves as f(r) → r for
r →∞. Using the Laplacian in cylindrical coordinates (C-9), we obtain

d2f

dr2
+

1
r

df

dr
− f

r2
= 0 . (16-54)

Since all three terms are of order 1/r2, we should look for power law solutions
of the form, f ∼ rα. Inserting this into the equation we find α = ±1 so that the
most general solution is of the form f = Ar + B/r, where A and B are arbitrary
constants. The asymptotic condition implies A = 1, and B is determined by
requiring the radial field vr = ∇rΨ to vanish at the surface of the cylinder,
r = a. This leads to B = a2, so that the solution is

Ψ = Ur cos φ

(
1 +

a2

r2

)
. (16-55)

Calculating the gradient by means of (C-5) we finally obtain the velocity field

vr = ∇rΨ = U cos φ

(
1− a2

r2

)
, (16-56a)

vφ = ∇φΨ = −U sin φ

(
1 +

a2

r2

)
. (16-56b)

The flow is plotted in fig. 16.3. The radial flow vr|r=a = 0 vanishes at the surface
of the cylinder as it should, whereas the tangential flow, vφ|r=a = −2U sinφ, only
vanishes at the stagnation points φ = 0, π.

The pressure is calculated from (16-52). In the absence of gravity and nor-
malized to vanish at infinity, it becomes

p =
1
2
ρ0

(
U2 − v2

)
=

1
2
ρ0U

2 a2

r2

(
4 cos2 φ− 2− a2

r2

)
, (16-57)

which on the surface of the cylinder simplifies to,

p|r=a =
1
2
ρ0U

2
(
4 cos2 φ− 3

)
. (16-58)

It is negative for 30◦ < φ < 150◦. It is clear from the symmetry of the problem
............
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The projection of the pres-
sure force on the x-axis is
equal and opposite for φ and
π − φ.
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Figure 16.3: Potential flow around cylinder with a = 1 and U = 1. Only the upper half
shown here (the lower half is the mirror image). The pressure vanishes on the dashed
lines. The streamlines have been obtained by numeric integration of the differential
equation for streamlines (15-15) with the velocity field given by the solution (16-56)
converted to Cartesian coordinates. The streamlines are equidistantly spaced by ∆y =
0.1 for x = −20.

that there can be no total force or lift in the y-direction; there is simply nothing in
the flow geometry to fix its sign. This is also confirmed explicitly by the up/down
invariance of the pressure under φ → 2π − φ. What is more surprising is that
due to the forwards/backwards invariance of the pressure (under φ → π−φ) the
total force or drag along the x-direction must also vanish, even for the upper half
of the cylinder, although in this case the incoming flow would fix its sign (to be
positive).

The lift acting on the half cylinder over a length L in the z-direction is ob-
tained by projecting the surface element dS = Ladφ on the y-direction,

L = −
∫

y≥0

p dSy = −
∫ π

0

p|r=a sinφ Ladφ =
5
3
ρ0U

2La . (16-59)

There is of course an equal and opposite “lift” acting on the lower half.

Example 16.6.1: A cylindrical pipe of radius a = 10 cm and average density
of ρ1 = 1.6ρ0 lies half buried in the sand at the bottom of a stream flowing with
U = 1 m/s. Its mass compensated for buoyancy is M = πa2L(ρ1 − ρ0), so that the
ratio of lift (on the upper half) to weight becomes

L
Mg0

=
5

3π

U2

ag0

ρ0

ρ1 − ρ0
≈ 0.9 . (16-60)

The pipe is nearly weightless in this flow.
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Figure 16.4: Potential flow around the sphere with a = 1 and U = 1. Only the
upper half shown here (the lower half is the mirror image). The streamlines have been
obtained by numeric integration of the differential equation for streamlines (15-15) with
the velocity field given by the solution (16-62) converted to Cartesian coordinates (z, s =p

x2 + y2). The streamlines are equidistantly spaced by ∆s = 0.1 for z = −20. The
field appears qualitatively different from the flow around a cylinder in fig. 16.3 and hugs
much closer to the surface of the sphere. The pressure vanishes on the dashed lines.

Potential flow around a sphere
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The natural coordinates for a sphere of radius a inserted into an asymptotically
uniform flow are of course spherical (section C.2 on page 658) with the z-axis
along the asymptotic velocity U . The solution follows along exactly the same
lines as for the cylinder above. Asymptotically, for r →∞, the velocity potential
has to approach the uniform flow Ψ → Ur cos θ. The symmetry of the problem
implies that Ψ cannot depend on the azimuthal angle φ, and the linearity of
the Laplace equation (16-51) requires the velocity potential to be linear in the
asymptotic flow, or Ψ = U cos θf(r) where f(r) is a function of the radial dis-
tance r only. Inserting this into the spherical Laplacian (C-16) one obtains an
ordinary differential equation leading to f = Ar +B/r2. The asymptotic bound-
ary condition implies that A = 1, and the vanishing of the radial field vr = ∇rΨ
at the surface of the sphere requires f ′(a) = 0, leading to B = a3/2.

The velocity potential around a sphere is thus

Ψ = Ur cos θ

(
1 +

a3

2r3

)
, (16-61)

and the velocity field is calculated from the spherical representation of the gra-
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dient (C-13),

vr = ∇rΨ = U cos θ

(
1− a3

r3

)
, (16-62a)

vθ = ∇θΨ = −U sin θ

(
1 +

a3

2r3

)
, (16-62b)

vφ = ∇φΨ = 0 . (16-62c)

The streamlines are shown in fig. 16.4.
The pressure is obtained from (16-52),

p =
1
2
ρ0U

2 a3

r3

(
3 cos2 θ − 1− 1

4
(1 + 3 cos2 θ)

a3

r3

)
. (16-63)

On the surface of the sphere the pressure is

p|r=a =
1
2
ρ0U

2 9 cos2 θ − 5
4

. (16-64)

It is negative for 42◦ . θ . 138◦. Again the symmetry θ → π − θ shows that
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and opposite for θ and π−θ.

there is no drag on a sphere.

d’Alembert’s paradox: No drag in steady potential flow

The absence of drag in steady potential flow which we have explicitly verified for
the cylinder and sphere may be formally shown to be true for any body shape (see
page 560). But since everyday experience tells us that a moving object is subject
to drag from the fluid that surrounds it, even if the viscosity is vanishingly small,
we have exposed a problem called d’Alembert’s paradox.

The resolution of the paradox elucidates the danger in assuming potential
flow. Although a tiny viscosity may not give rise to an appreciable friction force
between body and fluid, it will generate vorticity close to the surface of the body.
The vorticity will then spread into the fluid and produce a trailing wake behind
the moving body, carrying a non-vanishing kinetic energy. The constant loss of
kinetic energy produces a drag on the body. In potential flow around a cylinder
or sphere, the fluid does not create a wake but returns to its original state with
no kinetic energy, implying that there is no resultant drag. Potential flow may be
a mathematically correct solution, but it misses in this case important aspects of
the physics of real flow. We shall see in chapter 27 that d’Alembert’s paradox may
in fact be viewed as a theorem about the smallness of drag compared to lift for
streamlined bodies in nearly ideal fluids; a theorem with important consequences
for the emergence of powered flight.

The paradox elucidates that the solutions to Euler’s equation are not unique.
Besides the potential flow solution which is unique, there may be other solutions
containing vorticity that also satisfy the correct boundary conditions. Appar-
ently, we can conclude that the Euler equation does not in itself constitute a
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complete theory of steady ideal flow. The problem is, however, more general.
Even in the presence of viscosity, the equations of fluid mechanics have the inher-
ent weakness that there may be more than one solution to a given flow problem.
This is most clearly exposed by turbulent flow, where the precise flow pattern
at any given moment depends on so minute details in the past that it becomes
virtually unpredictable.

∗ Effective mass in unsteady potential flow

Even if no kinetic energy is lost from the fluid in steady potential flow around a
sphere, there will be kinetic energy in the flow around the body. In the reference
frame where the fluid is asymptotically at rest and the sphere moves with velocity
−U , the total kinetic energy of the sphere and fluid becomes (problem 16.10)

T =
1
2
MU2 +

∫

r≥a

1
2
ρ0(v −U)2 dV =

1
2

(
M +

2π

3
a3ρ0

)
U2 , (16-65)

where M is the mass of the sphere. This shows that the effective mass of the
sphere plus fluid is M +m/2 where m = 4π

3 a3ρ0 is the mass of the fluid displaced
by the sphere. Apart from the factor of 1/2, Archimedes would have liked this
result!

∗ 16.7 Circulation

The vorticity field is a measure of local circulation in the fluid, and we shall
now see that there also is a global measure of circulation, related to the flux of
vorticity.

Streamlines may form closed curves like the circles of Newton’s bucket but
often they are much more complicated. To avoid the problem of streamlines
we shall instead consider an arbitrary closed curve C. If it encircles a region of
whirling fluid, the projection of the velocity field onto the curve will tend to be of
the same sign all the way around. Formally, the circulation of the velocity field
around a closed curve C is defined to be the integrated projection of the velocity
field on the line elements of the curve,
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A closed curve C encircling
a whirl.

Γ(C, t) =
∮

C

v(x, t) · d` . (16-66)

Whether it is positive or negative depends on whether the curve runs with the
whirling flow or against it. We emphasize that the circulation may be calculated
for any curve, not just a streamline encircling a whirl, although that may be the
natural thing to do.
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Stokes’ theorem
George Gabriel Stokes
(1819–1903). British math-
ematician and physicist.

The most important theorem about circulation is due to Stokes. It is completely
general and states that the circulation of the velocity field around a closed curve
is equal to the flux of the vorticity through any surface bounded by the curve,

∮

C

v · d` =
∫

S

∇× v · dS . (16-67)

It does not matter which surface S the flux is calculated for, as long as it has
C as boundary, lies entirely within the fluid, and is oriented consistently with
the orientation of C. Stokes’ theorem is like Gauss’ theorem (6-4) valid for any
vector field.
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Example 16.7.1: A fluid rotates like a solid body with velocity v = Ωr. The
circulation around a circle (also a streamline) with radius r is (in the non-rotating
laboratory system) obtained by multiplying the constant velocity with the circum-
ference of the circle,

Γ(r) = 2πr Ωr = 2πΩr2 = 2Ω πr2 . (16-68)

The last expression shows that the circulation is also the product of the constant
vorticity 2Ω with the area of the circle, thus confirming Stokes’ theorem.

Proof of Stokes’ theorem: As before the relation between global and local
quantities is established by calculating the global quantity for an infinitesimal
geometric figure, in this case a tiny rectangle in the xy-plane with sides a and b.
To first order in the sides we find the circulation (suppressing z and t)

-
6

¾

?

a

b

-

6

x

y

Circulation around a small
rectangle of dimensions
a× b.

∮

a×b

v · d` =
∫ x+a

x

vx(x′, y) dx′ +
∫ y+b

y

vy(x + a, y′) dy′

−
∫ x+a

x

vx(x′, y + b) dx′ −
∫ y+b

y

vy(x, y′) dy′

≈ −
∫ x+a

x

b∇yvx(x′, y) dx′ +
∫ y+b

y

a∇xvy(x, y′) dy′

≈ ab
(∇xvy(x, y)−∇yvx(x, y)

)

= ab (∇× v)z

The last expression is the projection (∇×v)·dS of the vorticity field on the small
vector surface element of the rectangle, dS = (0, 0, ab). A similar result would of
course have been obtained for any other orientation of the little rectangle.

Consider now a surface built up from little rectangles of this kind. Adding
together the circulation for each rectangle, the contributions from the inner com-
mon edges cancel and one is left only with the circulation around the outer
perimeter of the surface. Since an arbitrary surface may be built up from in-
finitesimal rectangles, we conclude that the circulation around the perimeter is
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equal to the flux of the vorticity field through the surface, which is Stokes the-
orem. Since the normal to each little rectangle is oriented consistently with the
way the perimeter is followed, this must also be required for the surface S.
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Adding rectangles together,
the circulation cancels along
the edges where two rect-
angles meet. This is also
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Stokes theorem is like Gauss’ theorem a multi-dimensional version of the trivial
result

R b

a
f ′(x) dx = f(b)− f(a). Where Gauss theorem was a relation between a

three-dimensional volume and its surface, Stokes theorem is a relation between a
two-dimensional surface and its boundary curve. Along this line one might even
view the gradient integral

R b
a rp(x) · d` = p(b) − p(a) as a relation between a

one-dimensional line segment and its endpoints.

The proof implies that the shape of the surface S does not matter. This may be
explicitly verified by calculating the difference between two surfaces S1 and S2,
both having the curve C as perimeter and oriented consistently,

∫

S1

∇× v · dS −
∫

S2

∇× v · dS =
∮

S

∇× v · dS =
∫

V

∇ · (∇× v) dV = 0 .

Here S = S1 − S2 is the closed surface formed by the two open surfaces with..........
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an extra minus sign because of the requirement that the closed surface should
have an outwardly oriented normal. Gauss’ theorem has been used to convert
the integral over S to an integral over the volume V contained in S.

Kelvin’s circulation theorem

Kelvin’s famous circulation theorem from 1868 states that in an ideal flow the
circulation around a comoving closed curve (also called a closed material curve)
is independent of time. In other words, if C(t) is a comoving closed curve, then

William Thomson , alias
lord Kelvin (1824–1907).
British physicist.

DΓ
Dt

=
dΓ(C(t), t)

dt
= 0 . (16-69)

A comoving closed curve is washed along with the fluid and may thus change
shape dramatically without change in circulation. In steady flow the circulation
around any fixed closed curve is like all other quantities independent of time,
but the theorem concerns a curve following the material of the fluid whether the
motion is steady or not.
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lation around the comoving
curve C(t) is the same at t1
as at t2.

Kelvins theorem applies only to ideal or nearly ideal flow. For a viscous
fluid, the circulation will change at a rate proportional to the viscosity. Viscosity
will act both as dissipator and generator of vorticity. It is as mentioned before
virtually impossible to generate vorticity — or get rid of it — without the aid of
viscosity.

Proof of Kelvin’s theorem: The proof of the theorem is straightforward. We
shall carry it through for an incompressible fluid in the absence of gravity, but
it is equally valid for compressible fluids and including gravity. Let C(t) be the
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comoving closed curve. In a small time interval dt the circulation along this curve
changes by

δΓ(C(t), t) = Γ(C(t + δt), t + δt)− Γ(C(t), t)

=
∮

C(t+δt)

v(x, t + δt) · d`−
∮

C(t)

v(x, t) · d`

=
∮

C(t)

[v(x + v(x, t)δt, t + δt)− v(x, t)] · d`

= δt

∮

C(t)

[
∂v(x, t)

∂t
+ (v(x, t) ·∇)v(x, t)

]
· d`

= −δt

∮

C(t)

∇
(

p(x, t)
ρ0

+ Φ(x, t)
)
· d`

= 0 .

In going to the third line we have used that the point x at time t of a comoving
curve is found at x + v(x, t)dt at time t + dt, and this generates the comoving
derivative in the fourth line. Euler’s equation (16-1) with constant density is then
used in going to the fifth line (for compressible fluids the theorem may be proven
by means of the pressure potential (4-35)). Finally, in the last line we have used
that the pressure and the gravitational potential are single-valued functions of
space so that the integral of the gradient around a closed curve must vanish.
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Problems

16.1 There is a small correction to the flow from the wine barrel (page 266) because
the velocity of the flow does not vanish exactly on the top of the barrel. Estimate this
correction from the ratio of the barrel cross section A0 and the spout cross section A.

16.2 A wine barrel has two spouts with different cross sections A1 and A2 at the
same horizontal level. Show that under steady flow conditions the wine emerges with
the same speed from the two spouts.

16.3 Consider the quasistationary emptying of the wine barrel. Determine how the
actual height z varies as a function of time.

16.4 Assume that air is an ideal gas with constant temperature T0. a) Calculate the
relation between pressure and air velocity for a Pitot tube which is closed in one end.
b) Estimate the pressure increase relative to outside pressure in the Pitot tube of a
passenger jet flying at a height of 10 km with speed 250 m/s.

16.5 Incompressible fluid flows along x in an open channel with a weir without any
dependence on y. Show that if the horizontal flow vx(x) is independent of z, the vertical
flow will be

vz = vx
(h− z)b′ + (z − b)h′

h− b
(16-70)

where b(x) and h(x) are the bottom the surface heights.

16.6 Use the Schwarz inequality�����X
n

AnBn

�����2 ≤X
n

A2
n

X
m

B2
m (16-71)

to derive (16-28).

∗ 16.7 Show that whenr×v = 0 everywhere then there exists a potential Ψ such that
v =rΨ.

∗ 16.8 Show that for unsteady, compressible potential flow the Bernoulli field is only a
function of time,

∂Ψ

∂t
+

1

2
v2 + Φ + w(p) = H(t) (16-72)

where w(p) is the pressure function (16-31).

16.9 Calculate the lift on a sphere half buried at the bottom of a stream with asymp-
totic velocity U .

16.10 Show that the kinetic energy of the fluid surrounding a sphere moving with
velocity U in steady potential flow is π

3
ρ0a

3U2.
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16.11 Show that the vector area of a surface bounded by a closed curve C only
depends on the boundary.

16.12 Show that Kelvin’s theorem is valid for a compressible ideal fluid.

16.13 Consider a fluid with “large” bulk modulus in a constant gravitational field
g = (0, 0,−g0). a) Show that in the hydrostatic limit ρ ≈ ρ0 and p ≈ p0 − ρ0g0z where
ρ0 and p0 are constants. b) Show that the first Euler equation for small-amplitude
oscillations (16-3) becomes,

∂v
∂t

= − 1

ρ0
r∆p +

∆ρ

ρ0
g . (16-73)

c) Show that the wave equation becomes

∂2∆p

∂t2
=

K0

ρ0
r2∆p + g0

∂∆p

∂z
(16-74)

d) Estimate under which conditions the last term can be disregarded.
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