
24
Lubrication

A cylindrical shaft rotating in a bush lies behind the most important technological
invention, the wheel and its bearing. From the earliest times it was realized that
friction in the bearing was considerably lowered by lubricating it with viscous
fluid. Wooden bearings might even catch fire if not lubricated. Fat from pigs,
olive oil and mineral oil turned out to work much better than water.

When you deal a pack of cards on a table with a smooth surface, it is easy to
overestimate the speed the cards must be thrown with. Suddenly, several cards
in a row slide easily over the surface and land on the floor. The reason is that
a lubricating layer of air has formed between the card and the surface of the
table, and has caused the friction you expected when throwing the card, to drop
away. Air also lubricates the tiny gap between the magnetic pickup heads and the
rapidly spinning harddisk in your computer and prevents the heads from crashing
into the surface. Water is used to lubricate children’s slides in amusement parks,
and sports like ice skating or curling depend crucially on a thin lubricating film
of water.

In this chapter we shall analyze incompressible flow in narrow gaps along the
lines laid out by Reynolds already in 1886. As the fluid-filled gap between a
moving object and a nearby solid surface narrows, viscosity plays an increasingly
dominant role, because the velocity gradients normal to the surface grow large
compared to the gradients parallel to the surface. Sufficiently close to the surface
the effective Reynolds number for the flow in the gap may become so small that
the approximation of creeping flow is appropriate. If the gap widens towards the
front of the moving object, as is mostly the case, fluid will be forced into the gap,
creating a pressure that can become surprisingly high. As the gap narrows, the
lift from this pressure will in the end become sufficient to keep the object afloat
in the lubricant, thereby securing a smooth ride.
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468 24. LUBRICATION

24.1 Lift and drag near a boundary

Far from any boundaries, the flow around an object of size L moving with ve-
locity U through an otherwise stationary fluid of density ρ and viscosity η is
characterized by the Reynolds number

Re ≈ ρUL

η
(24-1)

In many everyday situations — running, swimming, driving, washing dishes or
babies — the Reynolds number is very large, Re À 1, and the flow may be
considered nearly ideal (see chapter 16).

A body moving with velocity U near a stationary solid boundary will gener-
ate large fluid stresses, because the no-slip condition forces the fluid velocity to
change from 0 to U across the narrow gap between the body and the boundary.
The typical width d of the gap is assumed to be much smaller than the extent
L of the body, d ¿ L, and the body is assumed to have a reasonably smooth
surface without sharp protrusions, such that the width only varies slowly along
the gap.
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nearly planar boundary.
The gap is assumed to be so
narrow that creeping flow
conditions prevail.

Condition for creeping flow

The effective Reynolds number in the gap may as usual be estimated from the
actual ratio between the advective and viscous forces

|ρ(v ·∇)v|
|η∇2v| ≈ ρU2/L

ηU/d2
=

(
d

L

)2

Re . (24-2)

Whereas the numerator is characterized by the velocity derivative along the gap,
the Laplacian in the denominator is completely dominated by the double deriva-
tives across the gap. The estimate shows that even if the free-flow Reynolds
number (24-1) is large, viscous forces will dominate the flow in the gap when the
distance d becomes sufficiently small. This happens for d . δ where

δ =
L√
Re

. (24-3)

In chapter 25 we shall see that δ is a measure of the thickness of the boundary
layer that surrounds a moving body. The above inequality thus shows that the
conditions for creeping flow are fulfilled when the gap lies well inside the boundary
layer.

Example 24.1.1: A playing card roughly 10 cm in size skimming through the air
over a table at roughly 1 m s−1, has Re ≈ 104 and thus δ ≈ 1 mm. The condition
for creeping flow is fulfilled when the distance to the table is somewhat less than δ,
for example 0.3 mm.
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24.1. LIFT AND DRAG NEAR A BOUNDARY 469

Lift

If the boundary is assumed to be planar and moving with velocity U , whereas
the body is stationary, we may as before use the equations for steady creeping
flow (20-1). The flow in the gap will generate a pressure force, or lift L, that
may drive the body away from (or towards) the boundary. The magnitude of
the lift can be estimated from the field equation for creeping flow, ∇p = η∇2v.
Since the double derivatives orthogonal to the flow dominate the Laplacian, we
estimate |∇p| ≈ ηU/d2. Multiplying with the length of the gap, L, we obtain
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velocity U , the object is
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the magnitude of the pressure variations along the gap, |∆p| ≈ ηUL/d2. Finally
multiplying with the gap area A, we get for the lift

L ≈ f
ηULA

d2
, (24-4)

where f is a dimensionless prefactor, depending on the orientation of the body
and expected to be at most of order unity. The flow around around the upper
part of the body will also cause lift, but the lift from the fluid in the gap will
always dominate in the limit of d → 0, because of the denominator.

For simplicity we shall assume that the underside of the body is reasonably
flat, forming an angle of attack α with the boundary. The sign of this angle is
chosen to be positive when the gap widens towards the front of the body, and
intuitively one expects in this case a positive lift that drives the body away from
the boundary. For vanishing angle of attack, the flow will essentially become
planar velocity-driven Couette flow (see page 331), and no lift is generated. For
negative angle of attack the lift is expected to be negative, causing the body be
sucked towards the boundary rather than pushed away from it.

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqα

-
U

d
1
2
L

Body with relatively flat un-
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L ≈ d where d is the

average width.

These arguments indicate that the prefactor in the leading approximation
should be proportional to the angle of attack, f ∼ α. Taking into account that
the magnitude of this angle is limited by the requirement that the body should
not touch the ground, i.e. |α| . 2d/L, we estimate that

f ≈ α
L

2d
. (24-5)

The calculations in section 24.3 will confirm that this estimate is essentially
correct.

Example 24.1.2: A playing card with mass M ≈ 1 gram and length L ≈ 10 cm
is thrown with velocity U = 1 m s−1 over the surface of a table. Provided the table
surface is smooth, the card will sink into the boundary layer and get sufficient lift to
fly without ever touching the table. Taking the shape factor f ≈ 0.1, the lift equals
the weight for d ≈ 0.3 mm. The corresponding angle of attack becomes α ≈ 0.3◦.
The card probably has to bend slightly upwards for steady lift to be generated.
Professional card players avoid bending their cards and also cover the table with
rough green felt cloth. You never see a card skimming the table surface and land
on the floor in their company.
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470 24. LUBRICATION

Skin drag

In the gap the orthogonal velocity gradient is U/d, so that the shear stress be-
comes σ ≈ ηU/d. Multiplying with the effective area A of the gap, we obtain an
estimate for the skin drag on the body from fluid friction in the gap,

Dskin ≈ σA ≈ ηUA

d
. (24-6)

The linear variation with velocity is as discussed before (section 20.1) character-
istic of creeping flow. As for lift, there will also be drag from the flow around the
body outside the gap, but the drag from the fluid in the gap will always dominate
over other drag in the limit of d → 0, because of the denominator.

Both lift and skin drag grow with decreasing gap size, but the lift grows faster
than the drag and eventually comes to dominate it. The ratio of lift to skin drag
is estimated by

L
Dskin

≈ f
L

d
≈ 1

2
α

(
L

d

)2

. (24-7)

This shows that if the angle of attack is sufficiently small, α . 2(d/L)2, the drag
may actually dominate the lift, but that requires careful tuning of the angle of
attack, which is usually not possible.

Example 24.1.3: For the playing card of example 24.1.2, the actual ratio of lift
to skin drag is L/Dskin ≈ 30 . They would become equal for f ≈ d/L, and from
the balance of lift (24-4) and weight Mg0, we get the flying height d ≈ 20 µm. The
corresponding angle of attack becomes minuscule, α ≈ 5× 10−6 degrees.

Form drag

Besides frictional skin drag there will also be a form drag from the pressure
variations in the gap. The form drag may be estimated from the angle of attack
and the lift,
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Dform = αLα

The pressure acts orthog-
onally to the surface and
gives rise to vertical lift
as well as horizontal form
drag.

Dform ≈ αL . (24-8)

Since the lift itself is proportional to α, the form drag will always be positive,
independently of the sign of α. Drag forces should, of course, never be able to
accelerate a body.

Contrary to the skin drag, which (to leading order) is independent of the
angle of attack, the form drag is quadratic in α and vanishes for α = 0. Using
the estimates above we obtain the ratio of form to skin drag

Dform

Dskin
≈ αf

L

h
≈ 2f2 . (24-9)

Since this is at most of order unity, we conclude that although the form drag
for fixed α varies like 1/h3, it can never really win over skin drag because of the
geometrical constraints.
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24.2. FLOW IN A NARROW GAP 471

Example 24.1.4: Magnetic read/write head design. The continued so-
phistication in the design of read/write heads and platter surfaces has been a ma-
jor cause for the enormous improvement in harddisk performance over the last
30 years. A typical modern (2002) harddisk has a diameter of about 9 cm and
runs at a speed of about 7, 000 rpm, leading to average platter surface speeds of
U ≈ 16 m s−1 ≈ 60 km h−1. The read/write heads sit on the tip of an actuator
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Sketch of the head-to-disk
interface in a harddisk. The
platter rotates towards the
left and drags air into the
gap between the slider and
the surface, and thereby
prevents the slider from
touching the platter. The
elastic actuator arm coun-
teracts the lift force from
the air in the gap. The head
itself is here positioned at
the rear end of the slider.

arm that can roam over the rotating platters and exchange data with the magnetic
surfaces. A typical read/write head is formed as a flat wing or “slider” with size
L ≈ 1 mm, for which the Reynolds number comes to about Re ≈ 1, 000, and the
maximal gap size for creeping flow comes to δ ≈ 30 µm. The need for increased
data density demands smaller and smaller flying height for the heads. Today the
typical flying height is d ≈ 0.15 µm (and even smaller), implying that the head
flies deeply inside the boundary layer. At this height the maximal angle of attack
becomes αmax = 2d/L ≈ 0.017 degrees, and assuming f = 0.3, the actual angle of
attack is α ≈ 0.005 degrees. The lift force on the head becomes L ≈ 4 N, corre-
sponding to a weight of 400 g, which must be provided by the elastic actuator arm.
The ratio of form to skin drag is Dform/Dskin ≈ 0.2 and the ratio of lift to skin drag
L/Dskin ≈ 2000. The average excess pressure in the gap becomes surprisingly high,
∆p ≈ L/A ≈ 4× 106 Pa = 40 bar, and this actually invalidates the tacit assumption
of incompressible flow that we have made in the estimates.

24.2 Flow in a narrow gap
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Local geometry of creep-
ing ‘flight’. The ‘ground’
and the ‘air’ move with
velocity U relative to the
‘wing’ which flies at height
y = h(x). The local angle of
attack is α(x) = −h′(x).

Creeping ‘flight’ near a solid boundary is much more amenable to analytic cal-
culations than real aerodynamics (see chapter 27). For simplicity we shall dis-
regard the third dimension and consider an essentially infinitely long stationary
two-dimensional ‘wing’ and choose a coordinate system with the z-axis along the
wing. The ground is chosen to be perfectly flat, given by y = 0 for all x (and
z), moving with constant velocity U along x. The height of the wing above the
ground is y = h(x) (for all z). It should be small enough for the creeping ap-
proximation to be valid everywhere in the gap, and it should vary slowly along
the gap, i.e. |α(x)| ¿ 1. The local angle of attack α(x) = −h′(x) must in other
words be small.

The gap equations

Keeping only the dominant derivatives after y in the Laplacian of (20-1), we
obtain the simplified equations for the flow in the gap,

∂p

∂x
= η

∂2vx

∂y2
, (24-10a)

∂p

∂y
= η

∂2vy

∂y2
, (24-10b)

∂vy

∂y
= −∂vx

∂x
. (24-10c)

where the last is the continuity equation.
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472 24. LUBRICATION

The second equation (24-10b) may be solved immediately with the result

p(x, y) = P (x) + η
∂vy(x, y)

∂y
= P (x)− η

∂vx(x, y)
∂x

, (24-11)

where P (x) is an arbitrary function that depends only on x. Inserting this in
(24-10a) and dropping again the second order derivative of vx after x, we obtain

η
∂2vx(x, y)

∂y2
= P ′(x) . (24-12)

With boundary conditions vx = U at y = 0 and vx = 0 at y = h(x), the solution
is

vx(x, y) =
U

h(x)
(h(x)− y)− P ′(x)

2η
y(h(x)− y) . (24-13)

For any x, the solution is basically velocity-driven planar flow (18-6) superposed
with pressure-driven planar flow (19-8). The only difference is that now the plate
distance h(x) and the pressure gradient P ′(x) may both vary with x.

Solution

The moving “ground” at y = 0 drags fluid in the direction of positive x. The
total discharge rate Q (per unit of length in the z-direction) becomes,

Q =
∫ h(x)

0

vx(x, y) dy =
1
2
Uh(x)− P ′(x)h(x)3

12η
. (24-14)

But Q must be independent of x because of the incompressibility of the fluid, so
that we may solve for the pressure gradient

P ′(x) = 6η

(
U

h(x)2
− 2Q

h(x)3

)
. (24-15)

For a given gap shape h(x) this may be integrated to get the pressure. Eliminating
the pressure gradient in the velocity, we find

vx = U
(h− y)(h− 3y)

h2
+ Q

6y(h− y)
h3

. (24-16)

Here we have for clarity suppressed the explicit dependence on x which is now
entirely due to the slowly varying gap height h(x). Finally, we insert vx into the
continuity equation (24-10c) and integrate over y with the boundary condition
vy = 0 for y = 0, to obtain

vy = 2α

(
U

h3
− 3Q

h4

)
y2(h− y) , (24-17)

where α(x) = −h′(x) is the local angle of attack.
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24.2. FLOW IN A NARROW GAP 473

Flow reversal

The discharge rate Q must be proportional to the ground velocity U because of
the linearity of the equations of creeping flow (20-1). The actual relation between
Q and U depends on the shape of the gap. For a flat plate with constant gap
height, h(x) = d, the planar flow solution (18-6) yields Q = Ud/2. In the general
case it is convenient to define the parameter

h0 =
2Q

U
, (24-18)

which has dimension of length. It represents the equivalent height of a planar
gap that would carry the same discharge rate as the actual gap, and is related
but not equal to the average gap height d.

The pressure gradient may now be written

P ′ =
6ηU

h2

(
1− h0

h

)
, (24-19)

and we conclude that in regions where the gap height h(x) is greater than h0, the
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pressure will rise, whereas it will fall in regions where h(x) is smaller. Intuitively,
we expect h0 to be larger than the smallest gap height, implying that there will
always be a region with negative pressure gradient.

Then the ‘horizontal’ velocity field may similarly be written

vx = U
(
1− y

h

) (
1− 3y

h

(
1− h0

h

))
. (24-20)

Evidently the last factor is positive for small y, but may vanish and become
negative at y = y0, where

y0 =
1
3

h

1− h0

h

. (24-21)

When this point happens to lie in the gap, i.e. for 0 < y0 < h(x), the fluid close to
the stationary plate will flow against the direction of ground motion . Evidently
this is only possible for 1− h0/h > 1/3, or

Pattern of flow reversal un-
der a periodic wing given
by h(x) = 1 − 0.6 cos x.
A roller forms under each
bump, here shown in the in-
terval 0 ≤ x ≤ 2π.

h(x) >
3
2
h0 (24-22)

In regions where flow reversal occurs, “rollers” of counter-rotating fluid will ap-
pear. Typically, this happens when the gap widens locally. Since the discharge
rate is mostly determined by the narrow parts of the gap, the equivalent height
h0 will be considerably lower than the maximal height of the bump, permitting
the above inequality to be fulfilled. In the two following sections we shall find
the explicit conditions for the appearance of flow reversal.
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24.3 Flat wing

Up to this point, everything has been valid for an arbitrary wing shape. We shall
now specialize to the case of a flat wing with constant angle of attack α and
average height d,

h(x) = d− α x , (24-23)

with −L/2 ≤ x ≤ L/2. Instead of the parameters α and d, it may be more
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constant angle of attack
α and average height d.
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convenient to specify the extreme heights, d1 and d2, at the front and back of
the wing. The average height is then d = (d1 + d2)/2 and the angle of attack
α = (d1 − d2)/L. It is also convenient to define the dimensionless parameter

γ =
αL

2d
=

d1 − d2

d1 + d2
, (24-24)

which ranges over the interval, −1 < γ < 1.

Pressure and lift

The pressure gradient (24-15) may now immediately be integrated to

P (x) = P0 +
6η

α

(
U

h(x)
− Q

h(x)2

)
, (24-25)

where P0 is a constant. The flat wing is assumed to fly in a fluid which would
have constant pressure, were it not for the disturbance created by the wing itself.
The pressure must for this reason be (nearly) the same in both ends of the wing,
or P (−L/2) = P (L/2), and this condition fixes the discharge rate to
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the flat wing has to be the
same in front and in back,
so that it has to rise and
then fall back again.

Q = U
d1d2

d1 + d2
=

1
2
Ud(1− γ2) . (24-26)

As expected, the discharge rate vanishes, if either end of the wing touches the
ground, |γ| = 1. The constant P0 is chosen such that the pressure vanishes at
either end of the wing

P0 = − 6ηU

α(d1 + d2)
. (24-27)

The total lift from the gap pressure becomes for a wing of ‘span’ S and area
A = LS,

L =
∫ L/2

−L/2

P (x)Sdx =
ηULA

d2

3
2γ2

(
log

1 + γ

1− γ
− 2γ

)
. (24-28)

The γ-dependent factor on the right, called f in eq. (24-4), represents the influ-
ence of the shape and orientation of the wing. The lift changes sign under γ → −γ
as expected, and converges for γ → 0 on the estimate (24-5), f = γ = αL/2d.
The linear region where f ≈ γ extends over the interval −0.7 < γ < 0.7 and is a
very good approximation in most cases of interest (see fig. 24.1).
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Figure 24.1: Orientation-dependent shape factors for lift , drag and moment for a flat
wing as a function of γ = αL/2d. All quantities diverge logarithmically for |γ| → 1.
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The drag on the wing is
composed of skin and form
drag, whereas the drag on
the ground is only skin
drag. Newton’s third law
guarantees that the total
drag on the wing is equal
and opposite the drag on the
ground.

As discussed in section 24.1 the drag on the wing has two components, called
skin drag arising from viscous friction and form drag arising from pressure forces
projected on the direction of motion. The ‘ground’ also experiences a skin drag,
but in this case the form drag vanishes because the ground is aligned with the
direction of motion. Newton’s third law tells us that the drag forces on the wing
and on the ground must be equal and opposite, and this allows us to calculate
the total drag on the wing, D = Dskin + Dform, alone from the skin drag on the
ground.

The shear stress on the flat ground is

σxy|y=0 = η

[
∂vx

∂y
+

∂vy

∂x

]

y=0

= −2η

(
2U

h
− 3Q

h2

)
. (24-29)

Integrating the shear stress over the ground surface, and changing sign in accor-
dance with Newton’s third law, we obtain the total drag on the wing,

D = −
∫ L/2

−L/2

σxy|y=0 Sdx =
ηUA

d

1
γ

(
2 log

1 + γ

1− γ
− 3γ

)
. (24-30)

The leading part of this expression agrees with the estimate (24-6). The drag
estimate is modified by a γ-dependent factor which converges to unity for γ → 0
and like the lift diverges logarithmically for |γ| → 1 (see fig. 24.1). Since the
form drag on a flat wing is Dform = αL, the skin drag can be found by subtracting
the form drag from the total, Dskin = D −Dform.
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Moment

The pressure forces create a turning moment around the center of the wing,

M =
∫ L/2

−L/2

xP (x)Sdx =
ηUL2A

d2

3
8γ3

(
(3− γ2) log

1 + γ

1− γ
− 6γ

)
. (24-31)

The γ-dependent factor is also plotted in fig. 24.1. It is always positive, but
mostly very small and vanishes like 1

5γ2 for γ → 0. If the angle of attack α is
positive, the positive moment tends to rotate the wing towards the horizontal,
whereas for negative α the moment tends to turn the wing further into the ground.

Example 24.3.1: A completely flat unbent playing card thrown with a positive
angle of attack will slowly sink further and further towards the table surface while
the tiny moment rotates it towards the horizontal and the lift becomes still smaller
(here we ignore again any forces acting on the upper side of the card). Thrown with
a negative angle of attack, the playing card will get sucked towards the table at an
increasing rate because the positive moment makes the angle of attack still more
negative. Eventually, the card may catch on surface irregularities and turn over,
showing its value to the dismay of the players.

Flow reversal

From the discharge rate (24-26) it follows that the equivalent planar flow height
is

h0 =
(
1− γ2

)
d, (24-32)

so that the condition for flow reversal (24-22) becomes

γ
2x

L
<

3γ2 − 1
2

. (24-33)

For positive angle of attack, γ > 0, the condition is easiest to fulfill at the
Flow reversal under flat
wing moving towards the left
with γ = 0.7. The samme
pattern arises, if the wing
moves towards the right with
γ = −0.7.

front of the wing for x = −L/2 where the left hand side is smallest. Solving
the quadratic inequality, −γ < (3γ2 − 1)/2, we find γ > 1/3. For sufficiently
large positive angle of attack, there will always be flow reversal. Likewise, for
sufficiently large negative angle of attack, a similar calculation shows that for
γ < −1/3, there will also be flow reversal.
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24.4 Loaded journal bearing

In section 19.10 we discussed the case of laminar flow between two concentric
rotating cylinders — the prototypical journal bearing. If the inner shaft or the
outer sleeve (bushing) carries a load, the cylinders will no more be concentric but
rather have their axes offset, though still parallel with respect to each other.

In a non-rotating journal bearing the lubricating fluid will be squeezed out and
the shaft will come in direct contact with the sleeve. Whether the resting point
of contact will be at the top or the bottom (with gravity pointing downwards)
depends on whether it is the shaft or the sleeve that carries the load. When
the shaft is brought into rotation, fluid will be dragged along due to the no-slip
condition and forced into the narrow part of the gap, thereby creating a pressure
that tends to lift the shaft away from the sleeve.
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The pressure generated by
the shaft’s rotation is asym-
metric with respect to the
point of closest approach.
The total lift L is always
parallel with the direction
of motion at the point of
closest approach.

Intuitively, the pressure must be higher where the gap narrows than where
it widens. This asymmetry of the pressure with respect to the point of closest
approach makes the direction of the total lift force acting on the shaft parallel
with the surface velocity at the point of closest approach, rather than orthogonal
to it. When the shaft just starts to rotate, the direction of lift will thus be
different from the direction of load, and with no other forces at play, the lift will
tend to shift the shaft towards the side of the bushing, until it reaches a point
where the direction of lift is opposite to the direction of the load. The end result
is that the shaft is moved horizontally from its original position until the pressure
in the gap has become so high that the vertical lift completely balances the load.
This is the steady flow situation which we shall now study.
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Geometry of off-center jour-
nal bearing with a verti-
cal load pointing downwards
along the y-axis. The inner
cylinder has radius a and the
outer b. The outer cylin-
der is shifted to the left by
an amount c. The inner
cylinder rotates with con-
stant angular velocity Ω in
the counter-clockwise direc-
tion.

Narrow gap approximation

Let the inner cylinder have radius a and the outer radius b > a with a difference
d = b − a that is assumed to be tiny, d ¿ a. In a coordinate system with the
z-axis coinciding with the axis of the inner cylinder, the shift of the outer cylinder
may without loss of generality be taken to be in the direction of negative x. The
points of the outer cylinder are determined by the equation (x + c)2 + y2 = b2

where c is the shift. In standard cylindrical (polar) coordinates this becomes
r2 + c2 + 2rc cos φ = b2, which to first order in c has the solution r = b− c cosφ.
The width of the gap h = r − a between the cylinders becomes

h(φ) = d− c cosφ . (24-34)

It is convenient to introduce the relative offset

γ =
c

d
(24-35)

which is a dimensionless parameter that must lie in the interval −1 ≤ γ ≤ 1.
The shaft has length L À a and rotates at constant angular velocity Ω with

surface velocity U = aΩ. Disregarding the possibility that lubricant may be
squeezed out along the z-axis, the problem is essentially two-dimensional, such
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that the longitudinal field vanishes, vz = 0, and the azimuthal and radial fields,
vφ and vr, can only depend on r and φ, but not on z.
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qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
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aφ

s

h

2π

d

-U = aΩ

“Flattened” gap between
the cylinders. The inner
cylinder replaces the flat
boundary along the x-axis
with x → aφ, and the outer
cylinder replaces the curved
surface with y → s = r − a.
The ‘ground’ velocity of the
inner cylinder is U = aΩ

In this approximation, the general theory of flow in a narrow gap (section
24.2) may be brought into play, replacing x by aφ and y by s = r − a. The
velocity components are

vφ = U
(h− s)(h− 3s)

h2
+ Q

6s(h− s)
h3

, (24-36)

vr = 2α

(
U

h3
− 3Q

h4

)
s2(h− s) . (24-37)

The pressure can only depend on φ and from (24-15) we get

P ′(φ) = 6aη

(
U

h(φ)2
− 2Q

h(φ)3

)
. (24-38)

Using that P (2π) = P (0), we find (see problem 24.5) by integrating this expres-
sion over 0 ≤ φ ≤ 2π, the lubricant discharge rate per unit of shaft length

Q = Ud
1− γ2

2 + γ2
. (24-39)

For γ = 0 where the cylinders are concentric, this is the well-known result from
Couette flow. In the other extreme |γ| = 1 where the cylinders touch, it vanishes,
as one would expect.

Lift

Normalizing the pressure to vanish for φ = 0, we may check by differentiation
that the pressure is,

P (φ) = −6ηUa

d2

γ(2− γ cos φ) sin φ

(2 + γ2)(1− γ cos φ)2
. (24-40)

If γ > 0, the pressure is positive for φ < 0 and negative for φ > 0. The total
pressure force on the inner cylinder is a vector

L = (Lx,Ly) =
∮

r=a

(−p) dS = −
∫ 2π

0

P (φ)(cos φ, sin φ)Ladφ . (24-41)

It follows explicitly from the symmetry of the pressure that Lx = 0, whereas (see
problem 24.4)

Ly =
6πηΩa3L

d2

2γ

(2 + γ2)
√

1− γ2
. (24-42)

Since the area of the shaft is A = 2πaL, this expression is of the same general
form as the estimate (24-4), and positive for γ > 0, as expected.

The behavior of the γ-dependent factor in (24-42) is shown in fig. 24.2. It is
nearly linear in the interval −0.9 < γ < 0.9, outside which it diverges rapidly.
This divergence permits the bearing to carry any size load by adjusting γ to be
sufficiently close to unity. But there is a price to pay, as we shall now see.
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Figure 24.2: Orientation-dependent shape factors for lift and dissipation for a journal
bearing as a function of the relative center offset, γ = c/d. Both quantities diverge as
an inverse squareroot for |γ| → 1.

Drag moment and dissipation

The shear stress at the surface of the shaft is

σφr ≈ η
∂vφ

∂s

∣∣∣∣
s=0

= −2η

(
2U

h
− 3Q

h2

)
. (24-43)

The total moment of shear stress around the center of the shaft becomes (problem
24.5)

M =
∫ 2π

0

aσφrLadφ = −2πηULa2

d

2√
1− γ2

1 + 2γ2

2 + γ2
. (24-44)

It is negative as one would expect and the rate of work performed by the external
forces is obtained by multiplying with −Ω,

P =
2πηΩ2a3L

d

2√
1− γ2

1 + 2γ2

2 + γ2
. (24-45)

For γ → 0 the dissipated power approaches the result for the unloaded bear-
ing (19-64), whereas for |γ| → 1 it diverges (like lift) as an inverse squareroot.
The large heat dissipation in heavily loaded journal bearings can be avoided by
employing rollers or balls to keep the shaft centered in the bushing.

The ratio of dissipated power to lift,

P

Ly
=

1 + 2γ2

γ
Ωd , (24-46)
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Figure 24.3: Creeping flow pattern in loaded journal bearing with d/a = 0.4 and γ =
0.6. Notice the reversed flow, in the form of a counter-rotating roller, near φ = π.

is finite for |γ| → 1. Since a heavily loaded bearing has |γ| ≈ 1, the ratio becomes
P/Ly ≈ 2Ωd in this limit, and since the lift must equal the load, this makes it
easy to calculate the dissipated power.

Flow reversal

The narrow gap between the cylinders looks like a flat gap with a widening bump
opposite the point of closest contact. The discussion in section 24.2 leads to the
expectation that there will arise a stationary flow-reversing “roller” at this point
(see fig. 24.4). The equivalent planar flow gap is obtained from (24-39),

h0 = 2d
1− γ2

2 + γ2
, (24-47)

so that the general condition (24-22) becomes

1− γ cos φ > 3
1− γ2

2 + γ2
. (24-48)

The left hand side is (for positive γ) largest for φ = π, as expected. Solving the
inequality 1 + γ > 3(1− γ2)/(2 + γ2), we obtain γ > (

√
13− 3)/2 ≈ 0.303.
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Problems

24.1 Find the critical gap height for creeping flight when the shape factor is f =
αL/2d where α is the constant angle of attack.

24.2 Show explicitly that the fluid discharge rate Q (eq. (24-14) is independent of x.

24.3 Find the conditions on the discharge rate under which the velocity (24-16) has
an extreme in the gap (as a function of y).

24.4 Show that Z 2π

0

P (φ) sin φ dφ =

Z 2π

0

P ′(φ) cos φ dφ (24-49)

and use the integrals of problem 24.5

∗ 24.5 Show that for |γ| < 1Z 2π

0

1

1− γ cos φ

dφ

2π
=

1p
1− γ2Z 2π

0

1

(1− γ cos φ)2
dφ

2π
=

1

(1− γ2)
3
2Z 2π

0

1

(1− γ cos φ)3
dφ

2π
=

2 + γ2

2(1− γ2)
5
2Z 2π

0

cos φ

(1− γ cos φ)2
dφ

2π
=

γ

(1− γ2)
3
2Z 2π

0

cos φ

(1− γ cos φ)3
dφ

2π
=

3γ

2(1− γ2)
5
2
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