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Basic fluid dynamics
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15
Fluids in motion

The running water in a brook, the streaming wind and the rolling sea, are all
examples of fluids in motion. The richness of fluid motion is most clearly exposed
by a picture of a waterfall. It is one of the wonders of nature that all this
richness is a consequence of Newton’s equations of motion for continuous matter.
One must marvel at the fact that the simple partial differential equations we
today can write down with very little effort should contain all the variety of fluid
phenomena.

But this fact also warns us that analytic solutions to these equations can only
be expected in idealized and highly constrained situations. Nevertheless, when
found and then often in severe approximation, such solutions still offer insight
into the underlying mechanisms which experiments and computer calculations
may carry to the domain of reality.

The motion of solids is generally less rich than fluid motion, and it is precisely
for this reason we use solids to build structures like houses, bridges, and machines.
But fluids and solids are extremes, and there are many transition materials with
properties in between. It is therefore important as far as possible to analyze
matter in motion without distinguishing between particular types of matter.

In this chapter the two basic mechanical equations governing the motion of
continuous matter will be formulated. One concerns conservation of mass and
states that the only way the mass of a volume of matter can change is through
flow of material across its surface. The other is nothing but Newton’s second law
for continuous systems. Together with expressions for the forces at play in the
material, these equations form a complete set of mechanical equations of motion
for the mass density and velocity fields. In this chapter, we shall “only” apply
these equations to the whole universe. Later chapters will deal with more earthly
aspects.
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238 15. FLUIDS IN MOTION

15.1 The velocity field

The mechanical state of continuous matter is not only described by a mass den-
sity field ρ(x, t), but also by a velocity field v(x, t), defined such that the total
momentum of the material in a small volume dV in the neighborhood of x is-

-
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-
-

Streamlines for rigid body
translation. dP = v dM = v ρ dV . (15-1)

The density of momentum is consequently ρv. The definition v = dP/dM also
shows that the velocity field in a point x should be understood as the center-of-
mass velocity of the material in a small — though not too small — volume near
x, i.e. of a material particle.
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Streamlines for rigid body
rotation.

Example 15.1.1: The velocity field for the material of a non-rotating rigid body
moving with constant velocity U is v(x, t) = U . If instead the body is rotating
around the origin of the coordinate system with constant angular velocity vector Ω,
the velocity field is v(x, t) = Ω× x.

Flow and displacement

Although the concept of a velocity field is meaningful for all kinds of continuous
matter, it is of greatest importance for fluids, where large scale material motion,
called flow, is the dominant phenomenon. In solids,the dominant feature is dis-
placement of material, and the velocity field plays a less fundamental role (see
chapter 10).

Flow may on the other hand be viewed as a continual sequence of infinitesimal
displacements. In a tiny time interval, δt, the center-of-mass of a material particle
is displaced from the point x to

x′ = x + v(x, t) δt . (15-2)

The actual displacement of the particle is given by the vector
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The displacement of a ma-
terial particle in a small
interval of time. δu = x′ − x = v(x, t) δt . (15-3)

Repeating such infinitesimal displacements while advancing time, it is at least in
principle possible to follow the progress of each and every material particle.

In solids, where the motion of material particles is reasonably orderly, this
makes sense and one may speak meaningfully about the displacement of a definite
volume of material over a finite time. In fluids, the paths of material particles
tend to become so intertwined with each other that it makes very little sense to
speak of the displacement of a particular volume over longer times. Think, for
example, of a bucket of oil thrown into a waterfall. The chaotic motion in the fall
mixes the original volume of oil so thoroughly with the water that it is physical
nonsense to speculate on the whereabouts of the original material particles over
a longer time interval.
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15.1. THE VELOCITY FIELD 239

Rate of change of comoving volume

Over sufficiently small time intervals, it does make sense to speak about the mo-
tion of individual material particles in a fluid. In chapter 1 we discussed how
the molecules in a small volume of gas are rapidly replaced by other molecules,
but concluded that it was still physically meaningful to speak about “material
particles” in a statistical sense. This point of view is sometimes called the con-
tinuum hypothesis, allowing for the possibility that there could be situations in
which it breaks down, for example in highly rarified gases.
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Displacement of a volume
of material in a small time
interval. The change in
volume is given by the thin
surface layer between the
dashed and fully drawn
curves.

In a small time interval δt, all the material particles in a volume V are si-
multaneously displaced according to (15-2) to fill out another volume V ′ in the
vicinity the original volume. The smallness of the displacement permits us to
calculate the change in volume from the small movement of the surface. Since a
surface element dS is displaced through the vector distance vδt, it scoops up a
tiny volume vδt · dS (counted with sign), so that the total change in the volume
V becomes
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r - dS

r
»»»»»:vδt

A surface element dS scoops
up the volume vδt · dS in a
small time interval δt.

δV = V ′ − V =
∮

S

vδt · dS .

We shall introduce a special notation for the rate of change δV/δt of such a
comoving volume,

DV

Dt
=

∮

S

v · dS . (15-4)

The reason for the special notation is that this is not an ordinary time derivative,
and we shall soon meet a number of similar expressions for the rate of change
in other quantities following the flow of matter. The operator D/Dt is for this
reason called the material time derivative1.

............................
..................................

................................................
.........................................................................................................................................................................................

.......................
.....................

...................
..................

.................
................
...............
..............
..............
..............
..............
.............
.............
.............
............
............
............
...........
...........
...........
.......

.......................................
..............................

.........................
......................

...................
......................

........................
......................

......................
....................

....................
..................
..................
.................
.................
................
..

................

..............................................................
.............
..............
...............
.................
...................
....................
.................
................................................

.........
.........
.........
.........
..................
.........
........................... ......... ......... .........-

*
µ

V

V ′

A comoving volume expands
in a diverging velocity
field, and contracts in a
converging field.

Example 15.1.2: Let v = κx be a uniformly expanding velocity field. Then the
comoving rate of change of the volume of a sphere of radius r centered at the origin
becomes

DV

Dt
=

I
|x|=r

κx · dS = 4πκr3 , (15-5)

because the surface area of the sphere is 4πr2 and its normal points along x.

By means of Gauss’ theorem (6-4) the surface integral may be converted to a
volume integral,

DV

Dt
=

∫

V

∇ · v dV . (15-6)

1There is no general agreement in the literature on how to denote the material time deriva-
tive. Some texts use the ordinary differential operator d/dt and others use a notation like
(d/dt)system, but it seems as if the notation D/Dt used in this book is the most common.
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240 15. FLUIDS IN MOTION

We may interpret the integrand as the rate of change of the volume dV of a
comoving material particle,

D(dV )
Dt

= ∇ · v dV . (15-7)

Thus the volume of a material particle swells and shrinks according to the diver-
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A material particle is also
deformed by the flow because
the velocity field varies from
place to place within it.

gence or convergence of the velocity field. In problem 15.1 this relation is proven
directly without recourse to Gauss’ theorem.

Incompressible flow

Most liquids are incompressible under ordinary circumstances and, as we shall
see later, gases may often be taken to be effectively incompressible when flow
speeds are much less than the velocity of sound. One should, however, not forget
that all materials may in principle be compressed. Incompressibility is for this
reason always an approximation, and should rather be viewed as a property of
the flow than of the fluid.

Incompressibility means that material particles can neither expand nor con-
tract, and comparing with (15-7) it follows that the divergence of the velocity
field must vanish,

∇ · v = 0 . (15-8)

Equivalently, we may use the global equation (15-4) and find

∮

S

v · dS = 0 . (15-9)

This equation therefore tells us that the net rate of material flux through the
surface S must vanish. In other words, incompressible fluid cannot accumulate
anywhere, but will flow right through any closed surface.

Example 15.1.3: The flow described by the stationary velocity field

v = (sin x cos y,− cos x sin y, 0) (15-10)

is incompressible, because

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= cos x cos y − cos x cos y = 0 (15-11)

Due to the periodicity in both x and y, the flow forms regular array of stationary
whirls, one of which is shown in fig. 15.1 on page 242. There is probably no practical
way of generating this pattern.
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15.1. THE VELOCITY FIELD 241

Leonardo’s law

Already Leonardo da Vinci knew — and used — that the water speed decreases
when a canal or river becomes wider or deeper and increases when it becomes
narrower or shallower [7]. He discovered the simple law that the product of the
cross-sectional area of a canal and the flow velocity in the canal is everywhere
the same. Leonardo da Vinci (1452–

1519). Italian renaissance
artist, architect, scientist
and engineer. A univer-
sal genius that made fun-
damental contributions to
nearly all fields. Also a
highly practical man who
concerned himself with the
basic mechanical principles
behind everyday machines,
and sometimes also future
machines, such as the heli-
copter.

Consider, for example, an aqueduct or canal and mark two fixed planar cross
sections A1 and A2, both orthogonal to the general direction of flow. Leonardo’s
law then says that the water velocities v1 and v2 through these cross sections
must obey the relation

A1v1 = A2v2 . (15-12)

The law expresses the rather self-evident fact that the same volume of incom-
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Aqueduct with varying cross
section. The volume of wa-
ter passing through the cross
section A1 is the same as
the amount of water passing
through A2, or A1v1 = A2v2

where v1 and v2 are average
flow velocities.

pressible water has to pass any cross section of the canal per unit of time. In
practice we use it unconsciously all the time when dealing with water.

Formally, Leonardo’s law follows from the global condition of incompressibil-
ity (15-9). Together with the sides of the canal, the two cross sections define a
volume, to which the condition can be applied. Since no water can flow through
the sides of the canal, the surface integral only receives contributions from the two
cross sections, and consequently, taking both normals along the general direction
of the canal, we get

∮
v · dS =

∫

A2

v · dS −
∫

A1

v · dS = 0 . (15-13)

The average flow velocity through a cross section A of the canal is

vA =
1
A

∫

A

v · dS . (15-14)

It then follows from (15-13) that the product AvA is the same everywhere along
the canal. This modern formulation of Leonardo’s law is valid independent of
whether the flow is orderly or turbulent.

Example 15.1.4 (Hypodermic syringe): A hypodermic syringe contains a
few cc’s of liquid in a small chamber about 1 cm in diameter and a few centimeters
long (unless it is meant for a horse, where the dimensions are much larger). The
liquid is injected through a hollow needle with an inner diameter of about 1 mm in
the course of a few seconds. Since the ratio of cross sections is 100, Leonardo’s law
tells us that the speed of the liquid in the needle is about 100 times larger than the
speed with which the piston of the syringe is pushed, i.e. of the order of meters per
second. ¡
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The flow velocity in the thin
needle of a syringe is much
higher than in the liquid
chamber.

Leondardo’s law is absolutely not valid for compressible fluids. When you pump
your bicycle by pushing a piston into a cylindric chamber filled with air, the
average flow velocity will decrease towards the end of the chamber where it has

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



242 15. FLUIDS IN MOTION

Figure 15.1: Regular (left) and random (right) plots of little arrows for the incompress-
ible flow v = (sin x cos y,− cos x sin y, 0) in the region 0 ≤ x ≤ π and 0 ≤ y ≤ π (see
also example 15.1.3). The regular plot shows the velocity vector in the 256 points of
a Cartesian 16 × 16 grid, whereas the random plot is created by selecting 1000 points
randomly. The skewness seen in the regular plot is a graphical artifact. The whirl (and
its mirror images) are repeated periodically throughout the xy-plane.

to vanish, because no air can pass through there. But the cross section of the
chamber is constant, so the product of cross section and average velocity is not
constant throughout the chamber.

15.2 Visualization of flow patterns

Wind and water currents are normally invisible unless polluted by foreign matter.
A gentle breeze in the air can be observed from the motion of dust particles
dancing in the sunshine or the undulations of smoke from a cigarette. Even
a tornado first becomes visible when water vapor condenses near its center or
debris is picked up and thrown around. Modern technology does on the other
hand permit us indirectly to “see” velocity fields. Doppler radar is used for
tracking and visualizing damaging winds in violent storms, and likewise, Doppler
acoustics is used to visualize blood flow in the heart.

Little arrows: In computational fluid dynamics, the velocity field is calculated
numerically on a grid of points in space, and the instantaneous velocity field, or
rather the displacement in a small time interval, is often visualized by means of
little arrows attached to the grid points, each of a length and direction propor-
tional to the velocity field in the point (see Fig. 15.1). Sometimes it is more
illustrative to draw the arrows from a random selection of points because the
random plot permits longer arrows and a higher density which makes the picture
more dramatic.
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15.2. VISUALIZATION OF FLOW PATTERNS 243

Streamlines: In section 3.2 we discussed how the gravitational field could be
visualized by means of field lines, defined to be curves that everywhere had the
gravitational field at a fixed time as tangent. Similar field lines, called streamlines,
can be defined for the velocity field as curves that are everywhere tangent to the
velocity field at a fixed time. Such curves are solutions to the ordinary differential
equation
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x, t

v(x0, t0)

v(x, t0)

A streamline is everywhere
tangent to the velocity field
at a given time t0.

dx

dt
= v(x, t0) , (15-15)

where the velocity field is calculated for a fixed value of time t0. Starting in any
point x0 at t = t0 we may use this equation to determine the path x = x(t, x0, t0)
of a streamline. Because the velocity field is evaluated at a fixed moment in time
t0 there will be only one tangent and thus only one streamline through every
point of space. Streamlines depict the velocity field at a single instant in time
and can never intersect.

Particle orbits: Imagine you drop a tiny particle — a speck of dust — into a
fluid, and watch how it is carried along with the fluid in its motion. The speck of
dust should be so small that its inertia and mass plays no role, but on the other
hand so large that it is not buffeted much around by collisions with individual
molecules (i.e. Brownian motion). The path x = x(t) which it follows is called a
particle orbit and is determined by the differential equation
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A particle orbit is every-
where parallel with the
instantaneous velocity field.

dx

dt
= v(x, t) . (15-16)

Given a starting point x0 and a starting time t0, the path x(t, x0, t0) may be
calculated from this equation for all times t. There will be only one particle orbit
going through each point in space at a fixed instant, but different orbits may
cross each other and even themselves as long as it happens at different times.

Streaklines: A standard method for visualizing fluid flow, in for example wind
tunnels, is to inject smoke (or dye) into the fluid at a constant rate, as was done by
every industrial smokestack before factories were required to scrub their exhaust
fumes. This leads to long streaklines of smoke weaving through the fluid. Since
smoke particles are tiny they must follow particle orbits, so that a streakline is
obtained from the particle orbit x(t,x0, t0) by varying the start time t0 while
keeping fixed the observation time t and the point x0 from which the smoke
emerges.

Relating the various flow lines

For a time-dependent velocity field the relationship between the three types of
lines can be hard to imagine. Think for example of the smoke trail from a chimney
or the contrails of a jet when the winds are changing (problem 15.3). For steady
flow, where the velocity field is independent of time, v(x, t) = v(x), the particle
orbits evidently coincide with the streamlines, and since the streamlines in this
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244 15. FLUIDS IN MOTION

case can only depend on the time difference t−t0, the streaklines will also coincide
with them. One should always remember that streamlines are quite misleading
for unsteady flow. Even if the streamlines look nice as for example in an ocean
surface wave, the actual particle orbits may be quite chaotic.

Example 15.2.1: To expose the difference between the three types of field lines
consider a spatially uniform two-dimensional velocity field of the form v(x, t) =
(a, bt, 0) where the y-component everywhere grows linearly with t. The stream lines
are in this case determined by

dx
dt

= (a, bt0, 0) , (15-17)

and are straight lines

x = x0 + a(t− t0) , (15-18)

y = y0 + bt0(t− t0) . (15-19)

The particle orbits are determined by

dx
dt

= (a, bt, 0) , (15-20)

and are parabolas
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stream line

particle orbit

streak line

The three types of flow lines
from example 15.2.1. x = x0 + a(t− t0) (15-21)

y = y0 +
1

2
b(t2 − t20) (15-22)

Varying t0 in the interval −∞ < t0 < t the streak lines are seen also to be parabolas
curving the opposite way of the particle orbits.

Taking x0 = y0 = 0 and a = b = 1, the streamline at t0 = 0 runs along the
x-axis, y = 0, and the particle orbit becomes y = x2/2. At a given moment of time
t, the corresponding streakline, obtained by varying the start time in the interval
0 < t0 < t, is described by y = x(t− x/2) with maximum at x = t.

15.3 Mass conservation
Jean le Rond d’Alembert
(1717-83). French math-
ematician. Introduced the
concept of partial differen-
tial equations and was the
first to solve such an equa-
tion. He is best known in
fluid mechanics for the ap-
parent paradox that there is
no drag on a body of any
shape moving with constant
velocity through a friction-
less fluid (see page 283).

In Newtonian mechanics, mass is conserved. The mass of a collection of point
particles (“molecules”) can only change by addition or removal of particles. Since
all matter is made from molecules, this must mean that the only way the mass
in a given volume of continuous matter can change, is by mass flowing in or out
of the volume through its surface. This almost trivial remark leads to the first
of the two central equations of continuum dynamics, the equation of continuity.
Although known to Leonardo da Vinci, d’Alembert was the first to formulate it
as a differential equation.

It is perhaps in place to remark that mass conservation is only valid in classical,
non-relativistic physics. In relativity, mass is equivalent to energy through Ein-
stein’s famous formula, E = mc2, and only the total energy of a closed system is
conserved.
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15.3. MASS CONSERVATION 245

Global mass conservation

Consider a piece of a fixed open or closed surface, S. The (signed) amount of
mass passing through a tiny surface element dS in the time interval dt will be
ρvdt ·dS. Integrating over the whole surface and dividing by dt, we find the total
amount of mass transported through S per unit of time,

Q =
∫

S

ρ v · dS , (15-23)

also called the flux of mass through the surface S. We have already met the
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Matter moves with velocity
v(x, t) through every surface
element dS near x.

density of momentum, ρv, but now we see that this quantity also specifies how
much mass that flows through a unit area in a unit of time. Thus, ρv may
alternatively be viewed as the current density of mass.

Example 15.3.1 (Water hose): Water is discharged from a fixed hose at
a rate of Q = 1 kg/s. The hose has cross section A = 1 cm2, so that the average
current density at the exit of the tube is 〈ρv〉 = Q/A = 10, 000 kg/m2/s. Since the
water density is constant, ρ = 1000 kg/m2, the average flow speed is 〈v〉 = 10 m/s.
Ignoring air resistance, the water will reach a height of h ≈ 〈v〉2/2g0 = 5 m, if
directed vertically upwards.

Since mass can neither be created nor destroyed, the rate of gain of mass in
a volume, V , must be balanced by the rate of loss through its surface S, i.e.
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V
S

The only way the amount
of mass can diminish in a
fixed volume V is by a net
outflow through its surface
S, and conversely.

d

dt

∫

V

ρ dV +
∮

S

ρ v · dS = 0 . (15-24)

This is the global equation of mass conservation for an arbitrary fixed control
volume. It will be generalized to moving control volumes in chapter 17.

If mass were not conserved, the right hand side would be non-vanishing and
contain sources accounting for the rate of mass creation and destruction (see
problem 15.9). In chapter 17, we shall meet other equations of the same general
form with non-vanishing sources, namely the equations of balance for momentum,
angular momentum, and energy.

The continuity equation

Since the control volume is fixed, we may pass the time derivative in through the
volume integral and use Gauss’ theorem (6-4) on the resulting surface integral,
to get

d

dt

∫

V

ρ dV +
∮

S

ρ v · dS =
∫

V

(
∂ρ

∂t
+ ∇ · (ρv)

)
dV = 0 .

But this has to be true for any volume V , so we conclude that mass conservation
requires

∂ρ

∂t
+ ∇ · (ρv) = 0 , (15-25)
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246 15. FLUIDS IN MOTION

all over space and time. This is the equation of continuity, first obtained by Euler
(1753). Although derived from global mass conservation by specializing to a fixed
volume, it is itself a local relation completely without reference to macroscopic
volumes.

Example 15.3.2 (Bicycle pump): A piston is pushed into an air-filled cylin-
dric chamber such that its distance from the end wall is x = a(t) at time t. If the
piston moves slowly enough, the density should be ρ(t) = M/Aa(t) everywhere in
the chamber where M is the (constant) mass of the air and A the (constant) cross
section of the chamber. Assuming that only the x-component of the velocity field
is non-vanishing, the equation of continuity becomes

0 x

ρ(t)

a(t)

Bicycle pump. The velocity
field varies linearly with x. dρ(t)

dt
+ ρ(t)

∂vx(x, t)

∂x
= 0 .

The solution which vanishes for x = 0 is

vx(x, t) = − x

ρ(t)

dρ(t)

dt
=

x

a(t)

da(t)

dt
. (15-26)

It varies linearly with the distance x along the chamber, as might have been guessed.

Using that ∇ · (ρv) = ρ∇ · v + v · ∇ρ the equation of continuity may be written

∂ρ

∂t
+ (v ·∇)ρ = −ρ ∇ · v . (15-27)

If the density is constant everywhere and at all times, i.e. ρ(x, t) = ρ0, then
the left hand side vanishes, and it follows that the material is incompressible,
∇ · v = 0, as one would expect. But the opposite is not necessarily the case. If
the material is incompressible so that ∇ · v = 0, the expression on left hand side
must also vanish, but that does apparently not mean that the density has to be
constant. We shall now see, what it really means.

Moving along with the flow

r¡
¡

¡µ
vdt

x, t

rx′, t′
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A particle may be swept
along with the flow into a
region of different density
and velocity.

How does the world look from the point of view of a small object riding along with
the motion of the material? A speck of dust being sucked into a vacuum cleaner
will find itself in a region with higher air velocity and lower pressure and density
than outside, even if the flow of air is completely steady with air velocity, pressure
and density being constant in time everywhere (because you have stopped moving
the cleaner). The ambient flow of matter may thus contribute to changes in
physical quantities in the neighborhood of comoving particles.

A particle near the point x at time t riding along with the flow will at time
t′ = t + δt have been displaced to the point x′ = x + v(x, t)δt. Expanding to
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first order in δt we find the change in mass density

δρ = ρ(x + vδt, t + δt)− ρ(x, t)

= vxδt
∂ρ(x, t)

∂x
+ vyδt

∂ρ(x, t)
∂y

+ vzδt
∂ρ(x, t)

∂z
+ δt

∂ρ(x, t)
∂t

=
(

∂ρ

∂t
+ (v ·∇)ρ

)
δt .

As before we shall introduce a special notation for the comoving rate of change
of density δρ/δt,

Dρ

Dt
=

∂ρ

∂t
+ (v ·∇)ρ . (15-28)

This allows us to write the equation of continuity (15-27) as

Dρ

Dt
= −ρ∇ · v (15-29)

Returning to the question of incompressibility, we see that setting ∇·v = 0 forces
the comoving rate of change to vanish. In other words, the density must be con-
stant in the neighborhood of a particle that moves along with the incompressible
flow.

Example 15.3.3 (Rolling boulder): A rigid body, for example a boulder
rolling down a mountainside, is by all counts incompressible. Although its mass
density may vary from place to place according to the mineral composition, it stays
— of course — the same in the neighborhood of any particular mineral grain, inde-
pendently of how the boulder rolls.

A material particle has mass dM = ρ dV . We know from the discussion in
chapter 1 that the molecules of a material particle are rapidly replaced by other
molecules, but the mass of a comoving material particle should nevertheless be
constant to within the chosen precision of the continuum description. The rate
of change of the mass can be calculated from the comoving rate of change (15-28)
of the density and the comoving volume rate of change (15-7), and we find,

D(dM)
Dt

=
D(ρ dV )

Dt
=

Dρ

Dt
dV + ρ

D(dV )
Dt

= −ρ∇ · v dV + ρ∇ · v dV

= 0 .

In the last step we used the equation of continuity in the form (15-29). Conversely,
this calculation shows that we could have arrived at the continuity equation by
postulating the constancy of the mass of every comoving material particle.
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Material time derivative

The comoving rate of change of the density (15-28) is determined by applying
the differential operator,

D

Dt
=

∂

∂t
+ v ·∇ , (15-30)

to the density field. This operator, called the local material time derivative, is a
mixed differential operator in time and space which can be applied to any field.
The first term ∂/∂t represents the local rate of change of the field in a fixed point
x whereas the second part v ·∇, called the advective part, represents the effect of
following along with the motion of the material in the environment of the point2.
We have already seen for the case of the volume in eq. (15-4) that there is also
a global version of the material time derivative, but its precise definition will be
postponed until chapter 17.

For the trivial vector field x we find,

Dx

Dt
= (v ·∇)x = v(x, t) .

The comoving rate of change of position thus equals the velocity field. Similarly,
the material derivative of the velocity field is the comoving acceleration field

w =
Dv

Dt
=

∂v

∂t
+ (v ·∇)v . (15-31)

The first term, the local acceleration, is most important for rapidly varying small-
amplitude velocity fields, for example sound waves in solids or fluids (see section
16.2). The second term, the advective acceleration, is most important for flows
with strong spatial variation in the velocity field. In particular if the flow is
also steady, such that the local acceleration vanishes, ∂v/∂t = 0, the advective
term is the only cause of acceleration. We become acutely aware of the advective
acceleration in a little boat that approaches the rapids of a narrowing river.

15.4 Continuum dynamics

Newton’s Second Law states that “mass times acceleration equals force” for a
point particle of fixed mass. Continuum physics is not concerned with point
particles, but instead with volumes of matter of finite extent. The smallest such
volumes are the material particles, and since a comoving material particle has
constant mass it comes closest to the concept of a fixed-mass point particle.

2There appears to be no universally accepted name for the advective term which in some
other texts is called the convective or inertia term.
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Newton’s Second Law for continuous matter

Applying Newton’s Second Law to an arbitrary comoving material particle with
mass dM = ρ dV , we find

dMw = dF , (15-32)

where w is the comoving acceleration (15-31), and dF is the total force acting
on the particle. It was shown in section 9.4 on page 148, that the total force on
a material particle can be written as

dF = f∗ dV (15-33)

where f∗ is the effective force density. Dividing (15-32) by dV , we get,

ρ
Dv

Dt
= f∗ , (15-34)

and expanding the material derivative it takes the more conventional form,

ρ

(
∂v

∂t
+ (v ·∇)v

)
= f∗ . (15-35)

It is called Cauchy’s equation (1827), although Euler was the first to write it
down in 1755 for frictionless fluids (see chapter 16). Together with the continuity
equation (15-25), this equation governs the dynamics of all continuous matter.

Different types of materials, gases, liquids, solids, and whatever, are charac-
terized by different expressions for the effective force density, in particular what
concerns the part due to contact forces. The last two and a half centuries of
continuum physics have essentially “only” been an exploration of the rich rami-
fications of this dynamical equation.

Field equations of motion

The equation of continuity (15-25) and the above dynamic equation may be
written in the form of equations of motion for the four field components, ρ and
the three components of v,

∂ρ

∂t
= −∇ · (ρv) , (15-36a)

∂v

∂t
= −(v ·∇)v +

1
ρ
f∗ . (15-36b)

Knowing the density and velocity fields at a given time together with the effective
body force density (which usually also depends on these fields), the above equa-
tions allow us to calculate the rate of change of the fields. If the forces depend on
non-mechanical fields, for example the temperature, special equations of motion
are also needed for those fields to make the system complete (see chapter 28).
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In computational continuum mechanics, continuous fields are implemented on
a finite grid of points covering the system of interest, and then the equations
of motion are used to step the fields forward (or backward) in time by small
amounts. In practice, computational continuum mechanics is quite demanding
on computers as well as on human ingenuity (see chapter 21).

15.5 Little bangs and Big Bang

A cloud of non-interacting particles, grains or fragments, is perhaps a poor model
for continuous matter, but it is nevertheless of interest to study the equation
of motion for the velocity field in this most simple case where all volume and
contact forces are absent. It may even be used as a primitive model for the
expanding universe with galaxies playing the role of grains. But the lack of
interaction violates the continuum conditions discussed in chapter 1, and no
dynamic smoothing of the fields will occur. Any grain given a certain initial
velocity will like a ghost continue unhindered with the same velocity through
the cloud for all time, and thus have infinite mean free path. The model should
definitely be taken with a grain of salt, if not a whole cloud.

¡
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In a cloud of free particles
all particles move on straight
lines with constant velocity
for ever and ever.

Explosion field

Suppose that the cloud is created in an explosion where the fragments have
stopped interacting immediately after and now move freely away from each other.
Since there are neither contact forces nor body forces, f∗ = 0, and every material
particle must be unaccelerated. Consequently, the comoving acceleration (15-31)
must vanish everywhere,

∂v

∂t
+ (v ·∇)v = 0 . (15-37)

In spite of this being the simplest possible dynamical equation, it looks compli-
cated enough, and if presented with it without any other explanation, we would
have some difficulty solving it because of its non-linearity.

Underneath, we know, however, that it only implements the law of inertia,
with all particles moving at constant velocity along straight lines. If the explosion
happened in the point x = 0 at time t = 0, the fragments were almost instantly
given random velocities in all directions. After the explosion, the fragments will
be separated according to their velocities with the fastest fragments being farthest
away. At time t, the velocity of any fragment found at x must be
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Explosion fragments get sep-
arated according to initial
velocity, because those frag-
ments that accidentally get
the largest initial velocity
will ever after be farthest
away from the center.

v(x, t) =
x

t
, (15-38)

independently of how the explosion started out. To see that this indeed satisfies
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(15-37), we calculate the x-component

∂vx

∂t
+ (v ·∇)vx =

∂(x/t)
∂t

+
x

t

∂(x/t)
∂x

+
y

t

∂(x/t)
∂y

+
z

t

∂(x/t)
∂z

= − x

t2
+

x

t2

= 0 ,

and similarly for the y and z components.

Hubble’s law

The explosion field (15-38) is of the same form as Hubble’s law, which states that
all galaxies move away from us (and each other) with speeds that are proportional
to their distances, usually written as v = Hx. In general relativity, this is
understood as a consequence of a uniform expansion of space itself since the
initial Big Bang. Comparing with (15-38), the constant of proportionality H,
called Hubble’s constant, is seen to be a measure of the (inverse) age of the
Universe H = 1/t. Although first determined in 1924, it has been very difficult for
astronomy to settle on a reliable experimental value for the Hubble constant. The
best current value [?] seems to be around H ≈ 55 km/s/Mpc = 1.78× 10−18 s−1

where one megaparsec (Mpc) is a little more than three million light years. The
inverse comes to 1/H ≈ 18 billion years.

This is, however, an overestimate for the age of the universe. A more correct
calculation of the expansion of the universe since the Big Bang must take into
account the slowing-down due to gravitation (see section 15.6). The galactic
recession velocities that are observed today are in fact lower than earlier in the
history of the universe, and the actual age of the universe is smaller than 1/H. If
gravitation is barely able to turn the expansion into a contraction again, the age
of the universe becomes 2/3H ≈ 12 billion years. Recent observations indicate
that the age is at least 12.5 billion years [32].

∗ The mass density

The mass density just before the explosion at t = 0 does not matter much for
what happens later. The explosion is a cataclysmic event where large unknown
forces distribute essentially random velocities to all the fragments of the body
that existed before the explosion.

After the explosion these fragments get separated according to velocities, as
described by the explosion field (15-38). Let us assume that the probability that a
fragment gets a velocity v in a small neighborhood d3v = dvxdvydvx is f(v) d3v.
This probability is of course normalized,

∫
f(v) d3v = 1 . (15-39)
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Since the fragments with velocity v will be found at x = v t at time t, we have
dV = d3x = t3d3v, and the mass density becomes

ρ(x, t) =
M0

t3
f

(x

t

)
, (15-40)

where M0 is the mass of the body that originally exploded. It is not hard to show
that this density satisfies the equation of continuity (15-25) (problem 15.5).

15.6 Newtonian cosmology

Continuing our investigation of the expanding universe , we now wish to include
the gravitational field in the dynamical equation (15-35), but still no contact
forces, so that f∗ = ρg. The equation of motion becomes

∂v

∂t
+ (v ·∇)v = g , (15-41)

instead of (15-37). In spite of being non-relativistic, this model captures essential
elements of cosmology, although a proper understanding of course requires general
relativity [14].

Cosmic democracy

In days of old, Earth was thought to be at the center of the universe. Since
Copernicus, this thinking has been increasingly replaced by the more “demo-Nicolaus Copernicus (1473–

1543), Polish astronomer
who (literally) revolution-
ized the understanding of
the planetary system in the
book De revolutionibus or-
bium coelestium.

cratic” view that the Earth, the Sun, the Galaxy are but common members of
the universe of no particular distinction (except that we live here!). The end of
this line of thought is the extreme Copernican view that for cosmological consid-
erations every place in the universe is as good as any other. As we shall see, this
“Cosmological Principle” or “Principle of Cosmic Democracy” is quite useful.

Mass density: It immediately follows from this principle that at a particular
instant of time t, the (average) mass density cannot depend on where you are,
and must thus be the same everywhere,

ρ(x, t) = ρ(t) . (15-42)

Velocity field: The Hubble expansion of the universe,

v(x, t) = H(t)x , (15-43)

with a time-dependent Hubble “constant”, H(t), does not look “democratic”
because it seems to single out the center of the coordinate system. It is in fact
completely democratic, because

v(x, t)− v(y, t) = H(t)(x− y) . (15-44)

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



15.6. NEWTONIAN COSMOLOGY 253

This means that an observer in a galaxy at the point y will also see the other
galaxies recede from him according to the same Hubble law as ours.

Field of gravity: Can gravity be democratic? In Newtonian cosmology it
is not possible to view the universe as a homogeneous whole when it comes to
gravity. What is gravity in an infinite universe? Symmetry would seem to argue
that it should vanish, because there is as much matter pulling from one side as
from the opposite, but is that right?

To overcome this problem, let us for a while think of the universe as a huge
sphere with vacuum outside and centered somewhere, perhaps right here, and let
us put the origin of the coordinate system at the center of this sphere. In that
case, we have seen in section 6.2 that the strength of gravity at a given point
x, depends only on the amount of mass, M(r) = 4

3πr3ρ, inside the sphere with
radius r = |x|, whereas one may forget the mass outside this radius. In other
words, the field of gravity is

g(x, t) = −4
3
πGρ(t)x . (15-45)

Interestingly, by the same argument as for the velocity, an observer in another
galaxy at y will see a similar gravitational acceleration field around himself

g(x, t)− g(y, t) = −4
3
πGρ(t)(x− y) , (15-46)

as if he/she/it were also at the center of the universe. This observer may, however,
not think of his universe as a huge sphere centered on himself, but must concede
that our galaxy is special, at least as long as he subscribes to Newtonian physics.
In general relativity, this problem happily goes away.

Cosmological equations

Using that ∇ · x = 3, we obtain from (15-43) and the equation of continuity
(15-25)

ρ̇ = −3Hρ , (15-47)

where as before a dot denotes differentiation after time. Similarly, inserting (15-
43) into (15-41) and using that (x·∇)x = x, this equation becomes after removal
of a common factor x

Ḣ + H2 = −4π

3
Gρ . (15-48)

Newtonian cosmology thus reduces to just two coupled ordinary differential equa-
tions for the mass density and the Hubble “constant”. Notice that the reference
to the center of the universe has disappeared completely, and we may from now
on again think of a truly infinite universe with equal rights for all observers,
independent of position, occupation, creed, race, and number of tentacles.
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The cosmic scale factor

The simplest way to solve these equations is by introducing a new quantity with
the dimension of length, a(t), called the cosmic scale factor, satisfying

ȧ = Ha . (15-49)

From the equation of continuity (15-47) we get

d

dt
(ρa3) = −3Hρ a3 + ρ 3a2Ha = 0 , (15-50)

and this shows that the mass, M = 4
3πρ(t)a(t)3, in an expanding sphere of radius

a(t) is constant in time. Eliminating H from (15-48), we obtain the following
differential equation for cosmic scale factor,

ä = −G
M

a2
, (15-51)

which is identical to the equation of motion for a particle moving radially in the
gravitational field of a point mass M .

Critical density

The above “equation of motion” implies that the “energy”

E =
1
2
ȧ2 − GM

a
, (15-52)

must be conserved in the time evolution of the scale factor, i.e. Ė = 0. Elim-
inating the mass, and using (15-49) to eliminate ȧ, it may be written in the
form

E =
4
3
πGa2(ρc − ρ) , (15-53)

where the critical density,

ρc =
3H2

8πG
, (15-54)

can be calculated from present-day observation of the Hubble “constant”. Today,
it is ρc ≈ 5.6 × 10−27 kg/m3, corresponding to about three protons per cubic
meter.

- t

6
a(t)

closed (ρ > ρc)

critical
open

(ρ < ρc)

Time evolution of the cos-
mic scale factor depending
on the actual average mass
density compared to the
critical density.

From the particle analogy, we know that the scale factor will “escape” to
infinity for E ≥ 0, but turn around and “fall back” for E < 0. This means that
the expansion will continue forever for ρ ≤ ρc, but eventually turn around and
become a contraction if ρ > ρc. The two types of universes are called open or
closed, respectively. The average density of matter in the present universe is hard
to estimate, but it appears to be considerably smaller than the critical value. So
the prediction is that the universe is open and will expand forever.
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Age of the universe

The energy equation (15-52) may be solved for ȧ with the result,

ȧ =

√
2

(
E +

GM

a

)
.

Demanding that a = 0 for t = 0, the solution is given implicitly by

t =
∫ a

0

dr√
2

(
E +

GM

r

) . (15-55)

which must be the time elapsed since the scale factor was zero, i.e. since Big
Bang. For the critical case, E = 0, the integral is easy to evaluate and we find

t =
2
3

a3/2

√
2GM

(15-56)

from which it follows that H = ȧ/a = 2/3t, or t = 2/3H ≈ 12 billion years.

The cosmological constant

If the universe besides ordinary matter were filled with a ghostly material with
a positive mass density, ρ0, constant in both space and time, then the “energy”
(15-53) should be replaced by

E =
4
3
πGa2(ρc − ρ− ρ0) , (15-57)

where ρ as before is the density of ordinary matter still obeying (15-47).
Whatever the present-day density ρ, it it is evidently possible (by juggling ρ0)

to convert an otherwise open universe (E > 0) into a closed universe (E < 0).
The new dynamic equation is found by differentiating the constant energy E after
time (remembering that ρc is not constant), and becomes

Ḣ + H2 = −4π

3
G(ρ− 2ρ0) . (15-58)

Evidently, for ρ < 2ρ0, the gravitational attraction turns into a gravitational
repulsion. The real understanding of how a positive mass density ρ0 can give
rise to an effective gravitational repulsion can only be obtained from relativistic
theory [14, p. 614], which correctly takes into account the huge negative pressure
accompanying ρ0.

Einstein introduced already in 1917 the so-called cosmological constant (which
is proportional to ρ0) for the explicit purpose of permitting static solutions to the
cosmological equations of general relativity. Clearly, the new equations admit of
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a non-expanding, static solution having ρ = 2ρ0 and H = 0. Since that time we
have learned that our universe is not static, but instead expands with a finite
Hubble constant. In an open universe, the following peculiar scenario is now
possible when 3ρ0 < ρc. For 2ρ0 < ρ < ρc − ρ0, the effective gravity is attractive
and the expansion will decelerate with time (i.e. ä = a(Ḣ + H2) < 0). But
sooner or later, the expansion will make the density fall below the critical value
ρ = 2ρ0, and the effective gravity becomes repulsive. The expansion will begin
(and continue) to accelerate (i.e. ä > 0). Recent observations indicate that the
cosmic expansion is in fact accelerating [?].
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Problems

∗ 15.1 Prove (15-7) directly from the change of the infinitesimal volume of a material
particle (hint: use the Jacobi determinant of the infinitesimal displacement).

15.2 Draw stream lines, particle orbits and streak lines for a rotating velocity field
v = a(cos ωt, sin ωt, 0).

15.3 The wind suddenly turns from south to west. Draw stream lines, particle orbits
and streak lines before and after the event.

15.4 A water pipe with diameter 1 inch branches into two pipes with diameters 3
4

inch
and 1

2
inch. Water is tapped from the largest branch at the double rate as from the

other. What is the ratio of velocities in the three pipes?

15.5 Show that the explosion density (15-40) satisfies the equation of continuity.

15.6 Calculate the time-derivative of ρ(x(t), t) where x(t) is a particle orbit and show
that it is identical to the comoving derivative.

15.7 Consider an incompressible steady flow in a stream with constant depth, z = d,
bounded on one side by a straight line, y = 0, and on the other side by a curve
y = h(x), which is slowly varying |dh/dx| ¿ 1 . a) Calculate the average flow velocity
in the x-direction (for fixed x). b) Estimate the comoving acceleration in the flow. c)
What should be the shape of the curve be in order for the estimate of the comoving
acceleration to be independent of x?

15.8 Consider an incompressible steady flow in a circular tube along the x-axis with
a slowly changing radius r = a(x). a) Calculate the average flow velocity in the x-
direction. b) Estimate the comoving acceleration in the tube, and c) determine what
shape of the tube will lead to constant comoving acceleration?

15.9 Consider a universe in which matter is created everywhere at a constant rate,
J , per unit of volume and time (Bondi and Gold (1948), Hoyle (1949)). Show that this
allows for a steady-state cosmological solution with constant mass density and Hubble
constant, and determine the rate of mass creation.
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