
30
Nonlinear waves
WARNING: unfinished

Wading in the water near a beach and fighting to stay upright in the surf,
you are evidently under the influence of a nonlinear dynamics, simply because the
breaking waves look so different from the smooth swells at the open sea that gave
rise to them. Less apparent but equally nonlinear is the dynamics behind the
sonic boom caused by a high-speed airplane passing overhead, the short-range
shock wave created by an exploding grenade, or the huge atmospheric shock
waves created by thermonuclear explosions. The beauty of fluid mechanics lies
in the knowledge that all these effects stem from the same nonlinear aspects of
the Navier-Stokes equations.

Any linear dynamics has the powerful property that it permits superposi-
tion of solutions to the dynamic equations. A complicated solution to a linear
dynamics may in the end be completely resolved into a linear combination of
elementary solutions. Leaving the domain of linearity this is no more possible,
and solutions take on a more individual character. Typically they are difficult to
find and demand special techniques in each particular case. They may also be
“nasty”, unpredictable and chaotic. Nonlinear phenomena have been at focus in
physics for most of the 20’th century, and there is still long way to go.

In this chapter the global laws of balance are first used to analyze large-
amplitude shallow-water gravity waves, called hydraulic jumps, observed every
day in the kitchen sink or on the beach. A similar analysis of large-amplitude
waves in an isentropic gas reveals the basic physics behind the shock waves created
by explosions and by supersonic aircraft. Remarkably, it turns out that the
nonlinear dynamic equations governing shallow-water surface waves are similar to
the nonlinear equations for large-amplitude waves in an isentropic gas, permitting
us to see the analogy between hydraulic jumps and shock waves. Deep-water
nonlinear surface waves constitute a clean and elegant problem, although they
are much harder to deal with. This chapter owes much to [16, 40, 37, 59].

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



620 30. NONLINEAR WAVES

30.1 Hydraulic jumps

A stationary hydraulic jump or step is easily observed in a kitchen sink. The
column of water coming down from the tap splays out from the impact region in
a roughly circular flow pattern, and at a certain radius the thin sheet of water
abruptly thickens and stays thick beyond. The transition region behind the front
appears to have a narrow width and contain quite complicated flow. Strongly tur-
bulent stationary hydraulic jumps may also arise in spillways channelling surplus
water from a dam into the river downstream.

..................................................................................................................................................................................................................................
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Sketch of the hydraulic jump
in a kitchen sink. The water
coming down from the tap
splays out in a sheet which
suddenly thickens.

Stationary jump in planar horizontal flow

We shall begin with an analysis of a stationary jump along a straight line orthog-
onal to the direction of a uniform flow over a horizontal planar surface. Although
stationary jumps like the one in the kitchen sink often have curved fronts, the
abruptness of the jump allows us to view it as locally straight in the leading
approximation. The flow is assumed to be steady before and after the jump,
whereas in the transition region there may be intermittency and turbulence. The
Reynolds number is assumed to be so large that viscous friction can be ignored
outside the transition region.

.............................

...............................
...................................
........................................
.................................................

.......................................................................
..................................................................................................

-
-

U
U ′h

p

h′

p′

Stationary straight-line hy-
draulic jump (dashed) of
length L (into the paper).
Incompressible fluid enters
from the left at velocity
U and height h and exits
on the right at a lower
velocity U ′ and greater
height h′. The entry and
exit pressures, p and p′, are
hydrostatic. At the front the
flow pattern is complicated,
often turbulent. The control
volume encompasses the
whole drawing between the
dotted lines.

Let the liquid stream towards the jump with constant uniform velocity U
and constant water level h. Downstream from the jump the flow has a different
velocity U ′ and a different water level h′. The dimensionless strength of the jump
is defined to be the relative change in height,

σ =
h′ − h

h
=

h′

h
− 1 (30-1)

Energy balance will later show that the downstream water level must necessarily
be the higher, such that the strength is always positive, σ > 0. A jump is said
to be weak when σ ¿ 1 and strong when σ À 1.

All properties of the jump may, as we shall see, be expressed in terms of the
inflow parameters U , h, and the strength σ. Let us choose a control volume
with vertical sides containing a stretch of length L of the transition region. The
upstream and downstream sides of the control volume are chosen orthogonal
to the direction of flow and placed so far away from the transition region that
both inflow and outflow are steady and uniform with velocities U and U ′. Mass
conservation then guarantees that the total mass flux at the outlet is the same
as at the inlet,

Ṁ = ρ0LhU = ρ0Lh′U ′ . (30-2)

From this we get the ratio of velocities

U ′

U
=

h

h′
=

1
1 + σ

. (30-3)

Evidently, the downstream velocity is always the smaller one.
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Figure 30.1: (a) The Froude numbers Fr = U/c before and Fr′ = U ′/c′ after the jump,
plotted as function of the jump strength σ = (h′ − h)/h. (b) The percentage of the
incoming kinetic energy (30-15) dissipated in the stationary jump as a function of the
Froude number.

Momentum balance (17-14) similarly guarantees that the net outflow of mo-
mentum from the control volume equals the total external force acting on the
control volume in the direction of the flow. For an inviscid fluid the horizontal
force is entirely due to the pressure acting on the two vertical sides of the control
volume where the liquid enters or leaves. The pressure in the uniform planar
flow that reigns in these regions is hydrostatic, given by p = p0 + ρ0g0(h− z) at
the inlet and p′ = p0 + ρ0g0(h′ − z) at the outlet, where p0 is the constant (at-
mospheric) pressure on the open liquid surface. Carrying out the force integrals
over the inlet and outlet in the usual way, momentum balance becomes,

ṀU ′ − ṀU =
1
2
ρ0g0Lh2 − 1

2
ρ0g0Lh′2 . (30-4)

On the left hand side one finds the difference between the momentum fluxes
through the outlet and inlet of the control volume, and on the right the difference
between the total pressure forces acting on the inlet and the outlet. Eliminating
U ′ and h′ using (30-1) and (30-3) the resulting equation may be solved for the
entry velocity, to get

U =
√

g0h
√

(1 + σ)(1 + 1
2σ) . (30-5)

Using again (30-3) we obtain the outlet velocity

U ′ =
√

g0h

√
1 + 1

2σ

1 + σ
. (30-6)

The velocity scale in both of these expressions is set by c =
√

g0h, which we
recognize as the small-amplitude shallow-water wave speed (22-34) in the inflow
region. Similarly, the shallow-water wave speed in the outflow region is c′ =√

g0h′ = c
√

1 + σ. Since σ > 0, it follows immediately that the various velocities
obey the inequalities U > c′ > c > U ′. Notice that the smallest outflow velocity
is obtained in the strong jump limit, U ′ → c/

√
2 for σ →∞.
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622 30. NONLINEAR WAVES

The dimensionless ratio between the inflow velocity U and the shallow-water
wave speed at the inlet is called the Froude number (plotted in fig. 30.1a),

Fr =
U√
g0h

=
√

(1 + σ)(1 + 1
2σ) . (30-7)

Solving this equation for σ we obtain the strength as a function of the FroudeWilliam Froude (1810-79).
English engineer and naval
architect. Discovered what
is now called scaling laws,
allowing predictions of ship
performance to be made
from studies of much smaller
model ships.

number, i.e. of the input values h and U ,

σ =

√
1 + 8Fr2 − 3

2
≈
√

2 Fr − 3
2 . (30-8)

The linear approximation is better than 3.3% for Fr > 2 (problem 30.1). The
Froude number at the outlet is similarly defined as

Fr′ =
U ′

√
g0h′

=
Fr

(1 + σ)
3
2

=

√
1 + 1

2σ

1 + σ
, (30-9)

which is also plotted in fig. 30.1a. Since σ > 0, we have Fr > 1 > Fr′, such that
the flow is always supercritical before the jump, and subcritical after.

The jump in the kitchen sink

The nearly circular stationary hydraulic jump in the kitchen sink may be viewed
as being locally straight. The position of the jump is difficult to predict because
it depends on the shape of the particular kitchen sink (see section 30.1). Here
we shall simply place the jump at a certain radius r = R from the center and
calculate the shape of the flow before and after.

In accordance with what we did for the planar jump, we shall also here assume
that the steady, radial, inviscid flow over the kitchen sink bottom is independent
of z, i.e. of the form vr = u(r). Apart from the jump region, the dynamics is
governed by the constancy of the mass flux Q and of the Bernoulli function H
for a streamline running along the surface,

Q = 2πrh(r)u(r) , (30-10a)

H = 1
2u(r)2 + g0h(r) (30-10b)

In the general case this becomes a third degree equation for u (or h) with a rather
messy solution.

In a typical kitchen sink experiment, as for example the one described below,
the jump is usually quite strong with σ À 1. This implies that the local Froude
number Fr(r) = u(r)/

√
g0h(r) will be large in front of the jump and from the

constancy of H it follows that u(r) will be nearly constant. Behind the jump
the local Froude number will instead be small, which due to the constancy of H
implies that the height h(r) will be nearly constant. In terms of the jump values
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Figure 30.2: Outline of the hydraulic jump in the kitchen sink discussed in the text and
in example 30.1.1. Notice that the height is enlarged by a factor 4 relative to the radius.
The fully drawn line is the water level given by the model (30-11) whereas the dashed
line is the estimated thickness of the boundary layer. The actual jump is not nearly as
sharp as shown here (see section 30.1).

U and h′ we have approximatively,

u(r) = U , h(r) =
Q

2πrU
, for r < R .

u(r) =
Q

2πrh′
, h(r) = h′ , for r > R .

(30-11)

Notice that because of mass conservation across the jump, Uh = U ′h′, the
Reynolds number Re = Uh/ν = Q/2πrν is continuous and decreases every-
where inversely with the radius. To test whether the assumption of inviscid flow
is justified, one may compare the water level h(r) with a thickness estimate of
the boundary layer, for example δ(r) = 3

√
νr/u(r) in front of the jump and

δ(r) = 3
√

νR/U + 3
√

ν(r −R)/u(r) behind.
In a kitchen sink experiment it is fairly easy to determine the volume discharge

rate Q by collecting water in a standard household measure for a short time.
From the radius a of the water jet just before it splays out at the bottom one
may determine the average velocity U = Q/πa2 which by Bernoulli’s theorem
should be nearly the same as the radial velocity along the bottom of the sink.
From Q, U and R all the jump parameters may then be calculated.

Example 30.1.1 (A kitchen sink experiment): In a home-made kitchen
sink experiment (see fig. 30.2) the discharge rate was casually observed to be Q =
100 cm3/s, the radius of the water jet a = 0.5 cm, and the radius of the jump
R = 7 cm. The velocity before the jump is U = Q/πa2 = 127 cm/s, and using (30-
11) we calculate the height just before the jump to be merely h = h(R) = Q/2πRU =
0.018 cm. The corresponding Froude number is fairly large, Fr = U/

√
g0h = 30, and

using (30-8) we determine the jump strength to be σ = 42. The height after the jump
h′ = (1+σ)h = 0.76 cm which is a bit larger than the observed height. The velocity
after the jump is U ′ = U/(1 + σ) = 3 cm/s, corresponding to a Froude number of
Fr′ = 0.11. The Reynolds number at the jump is moderate, Re = Uh/ν = 264, and
the estimated boundary layer thickness at the jump, δ(R) = 0.065 cm, is almost
four times the water level. Viscosity may thus be assumed to play some role for this
experiment, in particular in the region just before the jump, casting the calculation
into some doubt.
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624 30. NONLINEAR WAVES

Energy loss in the stationary jump

It would be tempting to make use of Bernoulli’s theorem along a streamline
going across the stationary hydraulic jump, but that is impossible because of the
unruly fluid in the transition region which messes up streamlines and generates
a dissipative (viscous) loss of mechanical energy.

We may nevertheless use mechanical energy balance (17-91) to calculate the
rate of loss of energy from the system by keeping track of what mechanical energy
goes into the control volume and what comes out. Mechanical energy balance
takes the form,

Ṁ

(
1
2
U ′2 +

1
2
g0h

′
)
− Ṁ

(
1
2
U2 +

1
2
g0h

)
=

1
2
ρ0g0Lh2U − 1

2
ρ0g0Lh′2U ′ − P .

(30-12)

On the left hand side we have the difference between the rates of outflow and
inflow of mechanical energy from the control volume, calculated from the specific
mechanical energy density, 1

2v2+g0z, integrated over the outlet and inlet. On the
right there is first the difference in rates of work of the pressure forces integrated
over the inlet and outlet, and finally P , the rate of loss of energy due to the work
of internal friction.

Solving for P we may write,

P = Ṁ

(
1
2
U2 + g0h

)
− Ṁ

(
1
2
U ′2 + g0h

′
)

= Ṁ(H −H ′) (30-13)

where H and H ′ are the values of the Bernoulli function (16-16) at the surface of
the water before and after the jump. This clearly demonstrates that Bernoulli’s
theorem cannot be fulfilled when P is nonzero. Substituting the downstream
quantities using (30-3) we find

P = Ṁg0h
σ3

4(1 + σ)
. (30-14)

Since the rate of viscous energy loss necessarily must be positive (page 337), we
conclude as promised that a stationary hydraulic jump will always have positive
strength, σ > 0. Relative to the rate of kinetic energy inflow, Ṫ = 1

2ṀU2, the
fractional dissipative loss of kinetic energy becomes (see fig. 30.1b),

P

Ṫ =
σ3

(1 + σ)2(2 + σ)
. (30-15)

It converges as expected to unity for σ → ∞. For σ = 1, corresponding to Fr =
1.73, only 8.3% of the kinetic energy is lost, whereas for σ = 10 corresponding
to Fr = 8.1, the fractional loss is 69%. Strong hydraulic jumps are efficient
dissipators of kinetic energy, and this is in fact their function in dam spillways
where high speed surplus water must be slowed down before it is released into
the river downstream of the dam.
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Moving hydraulic jumps
............................
...............................
...................................
........................................
.................................................

......................................................................
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¾

¾
¾
¾
¾U

U − U ′

A river bore moving in from
the right in water initially at
rest. The water behind the
front moves slower than the
front itself. The velocities
are obtained by subtracting
U from all the velocities of
the stationary jump.

Moving hydraulic jumps are seen on the beach when waves roll in, sometimes in
several layers on top of each other. More dramatic river bores may be formed by
the rising tide near the mouth of a river. When the circumstances are right such
waves can roll far up the river with a nearly vertical foaming turbulent front.
In the laboratory an ideal river bore can be created in a long canal with water
initially at rest. When the wall in one end of the canal is set into motion with
constant velocity, a bore will form and move down the canal with constant speed
and constant water level.

The only difference between a river bore and a stationary hydraulic jump lies
in the frame of reference. The ideal river bore is obtained in the frame where
the fluid in front of the jump is at rest. Subtracting U from all velocities (and
reversing their directions), the front itself will move with velocity U , and the fluid
behind the jump will move in the same direction with velocity U − U ′, which is
smaller than the shallow-water velocity c′ =

√
g0h′ behind the jump for σ < 2.21.

........................
..........................
.............................
.................................

.........................................
...........................................................

...................................................................................

-U − U ′

¾U ′

A reflection bore in a closed
canal is obtained by subtract-
ing U ′ from all velocities of
the stationary jump.

There is also the possibility of choosing a reference frame in which the fluid
behind the jump is at rest. Subtracting U ′ from the velocities of the stationary
jump, this describes a stationary flow being reflected in a closed canal. Such a
reflection bore moves with velocity U ′ out of the canal while the flow into the
canal has velocity U − U ′.

The reflection bore has in fact some bearing on the stationary jump in the kitchen
sink. The layer of fluid spreads initially over the bottom of the sink with a high
Froude number, and thus a roughly constant velocity and decreasing thickness.
The spreading layer of fluid encounters resistance against the free flow from the
sides of the sink, or from the slight slope and curvature of its bottom (or even
from the increasing viscous friction in the thinning layer of water). This creates a
reflection bore with small Froude number, which moves inwards with roughly con-
stant height and increasing velocity, until it stops when it encounters an outflow
with velocity and thickness that fits a stationary jump. One may also observe
that when the faucet is closed the stationary jump in the kitchen sink immediately
turns into a river bore moving towards the center.

Thickness of a hydraulic jump
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A river bore is “pumped up”
by small-amplitude surface
waves of sufficiently long
wavelength. Short waves
move too slowly to catch up
with the jump.

A river bore is created by the rising tide at the river mouth, and as long as
the tide keeps rising, it will continue to pour more water in. The additional
water supplied by the rising tide in a small time interval may be thought of as a
small-amplitude surface wave moving upriver on top of the already existing bore.
Although this mechanism is most obvious for the river bore, both the reflection
bore and the stationary hydraulic jump must also be built up “from behind” by
small-amplitude waves.

Any small-amplitude surface wave may be resolved into a superposition of
harmonic waves with a spectrum wavelengths. Consider now a harmonic wave
with wavelength λ on its way upstream towards a stationary hydraulic jump. In
the rest frame of the outflow, the energy in a harmonic wave with wave number
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Figure 30.3: (a) The solution ψ(σ) to eq. (30-17). For σ → 0 the ratio behaves as
√

σ,
while for σ →∞ it increases as σ/2. (b) The ratio λ0/h of the minimal wavelength in
units of the height h before the jump as a function of Froude number Fr. For Fr → ∞
the ratio becomes constant, λ0/h → 4π (dashed line).

k = 2π/λ moves with the group velocity of a gravity wave (22-31). For liquid of
depth h′ the group velocity becomes,

c′g =
1
2

√
g0

k
tanh kh′

(
1 +

2kh′

sinh 2kh′

)
. (30-16)

In the rest frame of the jump, the wave propagates towards the jump with velocity
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.............................
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............................................................

............................................................................................
..............
....................................................................................

-
-

U
U ′

¾c′g − U ′

A small-amplitude wavelet
moving towards the sta-
tionary jump with velocity
c′ − U ′ > 0.

c′g − U ′ which must be positive if the wave shall ever reach the jump. Since
c′g → √

g0h′ for k → 0 and U ′ <
√

g0h′, the condition c′g > U ′ may always
be fulfilled provided the wave number k is sufficiently small, i.e. the wavelength
exceeds a certain minimum value, λ > λ0. The minimal wavelength λ0 is found
by solving the equation c′g = U ′, which after division by

√
g0h′ takes the form,

1
2

√
tanh ψ

ψ

(
1 +

2ψ

sinh 2ψ

)
= Fr′ =

√
1 + 1

2σ

1 + σ
, (30-17)

where ψ = kh′ = 2πh′/λ0. This transcendental equation may be solved for ψ
and the result is shown in fig. 30.3a as a function of the jump strength σ. In fig.
30.3b this is converted to a plot of the ratio λ0/h of the minimal wavelength to
the upstream height h as a function of the Froude number Fr............

............
..............
................
.....................

.......................................
..............

λ0

A small-amplitude gravity
wave moving upstream
towards the jump must have
wavelength greater than λ0.
Its front cannot be sharper
than that.

The hydraulic jump acts effectively as a high-pass filter on wavelengths, only
letting waves with sufficiently large wavelength, λ > λ0, through to “feed” it. The
smooth part of a hydraulic jump cannot contain details much smaller than the
waves that maintain it, so the minimal wavelength λ0 may be used as a measure
of the thickness of the transition region behind the front. At the front itself,
shorter wavelengths may be generated by the chaotic motion and turbulence,
thereby creating undulations in the otherwise smooth transition region.

Example 30.1.2: A river bore with front height h′ − h = 1 m moves up a river
of depth h = 0.5 m. The jump strength is σ = (h′ − h)/h = 2, corresponding to
Fr = 2.45, and the front velocity becomes U = 5.4 m/s while the velocity of the flow
behind the front is U − U ′ = 3.6 m/s. From fig. 30.3b we find λ0/h = 11.6, so that
the minimal wavelength and thus the thickness becomes λ0 = 6.7 m.
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30.2 Normal shocks in ideal gases

An explosion in a fluid at rest creates an expanding fireball of hot gases and debris
which pushes the fluid in front of it. If the velocity imparted to the fluid by the
explosion is smaller than the velocity of sound in the fluid, a sound wave will
run ahead of the debris and with a loud bang inform you that the explosion took
place. If on the other hand the initial expansion velocity of the fireball is larger
than the sound velocity in the fluid, the first sign of the explosion will be the
arrival of a supersonic front (here we disregard the flash of light which may arrive
much earlier). The sudden jump in the properties of a fluid at the passage of a
supersonic front is called a shock. Stationary shocks may arise downstream from a
constriction in a duct where the flow under suitable conditions discussed in section
16.4 will be supersonic. The understanding of shocks is of great importance for
the design of supersonic aircraft, and of jet and rocket engines.

.............................................................................................................................................................................................................................................................................................................................

.........................................................................................................................
....................................................

.........................................
.................................

.............................
...........................

..............

- -

A stationary shock (dashed)
in an expanding nozzle. The
inflow is supersonic and the
outflow subsonic.

Stationary planar normal shocks

We shall begin by analyzing stationary planar shocks, which like plane waves
are normal to the direction of the flow. We shall later see that shocks are in
fact not much thicker than the molecular length scale, allowing us to view all
shocks as singular and locally planar. In the rest system of the shock we choose
a narrow control volume just containing an area A of the shock front. Upstream
from the shock the gas has velocity U , temperature T , pressure p, and density ρ;
downstream it has velocity U ′, temperature T ′, pressure p′, and density ρ′.

ρ
p
TU

-
-
-
-
-
-
-
-
-

ρ′
p′
T ′ U ′

-
-
-
-
-
-
-
-
-

A piece of a stationary nor-
mal shock front. Fluid
comes in from the left
with supersonic velocity U ,
temperature T , pressure p
and density ρ. The fluid
emerges on the right with
subsonic velocity U ′.

There is a strong analogy between a hydraulic jump and a shock. The strength
of the shock is however defined as the relative pressure increase,

σ =
p′ − p

p
=

p′

p
− 1 . (30-18)

We shall see below that the Second Law of Thermodynamics requires that σ > 0.
A shock is said to be weak when σ ¿ 1 and strong when σ À 1.

Since the shock is so narrow there will be essentially no room for dissipation
of energy, allowing us to apply Bernoulli’s theorem. Using the pressure function
(16-32) for an ideal gas with adiabatic index γ, we obtain three basic equations,
called the Rankine-Hugoniot relations,

Pierre Henri Hugoniot
(1851-1887). French engi-
neer.

ρU = ρ′U ′ , (30-19a)

ρU2 + p = ρ′U ′2 + p′ , (30-19b)
1
2
U2 +

γ

γ − 1
p

ρ
=

1
2
U ′2 +

γ

γ − 1
p′

ρ′
. (30-19c)

These relations are simple rearrangements of mass, momentum, and energy bal-
ance across the shock. They may be solved explicitly for the downstream pa-
rameters in terms of the upstream ones (see problem 30.3), but it is much more
convenient to express the solution in terms of the strength of the shock.
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Figure 30.4: The dimensionless Rankine-Hugoniot parameters as function of the inflow
Mach number for γ = 7/5. The fully drawn curves are the ratios of pressure, density,
and temperature. The dashed curves is the outflow Mach number Ma′, and the dotted
curve is the specific entropy jump at the shock, ∆s/cV given in (30-24).

Using (30-19a) to eliminate U ′ in (30-19b), we obtain,

U2 =
ρ′

ρ
· p′ − p

ρ′ − ρ
, U ′2 =

ρ

ρ′
· p′ − p

ρ′ − ρ
, (30-20)

where the second equation is obtained fromt the first by swapping primed and
unprimed variables. Inserting this into (30-19c) we find the ratio of densities,

ρ′

ρ
=

γ(p + p′) + p′ − p

γ(p + p′)− p′ + p
. (30-21)

Expressing the right hand side in terms of the strength we find

ρ′

ρ
=

U

U ′ =
2γ + (γ + 1)σ
2γ + (γ − 1)σ

. (30-22)

The temperature ratio may now be obtained from the ideal gas law, T ′/T =
(p′/ρ′)/(p/ρ).

Since we are interested in supersonic flow, it is most convenient to express
the velocities in terms of the dimensionless Mach numbers, Ma = U/c and Ma′ =
U ′/c′, where c =

√
γp/ρ and c′ =

√
γp′/ρ′ are the sound velocities before and

after the shock. Using (30-20) we find,

Ma =
√

1 +
γ + 1
2γ

σ , Ma′ =
√

1− γ + 1
2γ

σ

1 + σ
. (30-23)

Here the second equation is obtained from the first by swapping primed and un-
primed variables, which according to the definition (30-18) amounts to replacing
σ by −σ/(1 + σ).
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Up to this point, the strength may in principle range over both negative and
positive values in the interval −1 < σ < ∞. The physical asymmetry between
positive and negative strength becomes apparent when we calculate the change
in specific entropy ∆s = s′ − s across the shock. Using (D-21c) we find,

∆s

cV
= log

[
p′

p

(
ρ′

ρ

)−γ
]

= log(1 + σ)− γ log
2γ + (γ + 1)σ
2γ + (γ − 1)σ

, (30-24)

where cV is the specific heat constant of the gas (D-18). The right hand side is
a monotonically increasing function of σ which vanishes for σ = 0 (see problem
30.4 and fig. 30.4). But by the Second Law the specific entropy is not permitted
to decrease across the shock, and consequently we must require that σ be posi-
tive. We have thus reached the promised conclusion that in a stationary shock
the velocity must go from supersonic (Ma > 1) to subsonic (Ma′ < 1) in the
downstream direction. The various dimensionless quantities are plotted in fig.
30.4 as functions of the inflow Mach number Ma.

Oblique shock
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Geometry of an oblique sta-
tionary shock in a reference
frame moving tangentially
with velocity V . The flow
velocities in the moving

frame are eU and eU ′ with
angles of incidence φ and
φ′.

An oblique planar shock front may be obtained in a reference frame moving
tangentially to the stationary normal shock with constant velocity V . In the
moving frame the flow velocities are denoted Ũ and Ũ ′ with angles of incidence φ
and φ′. Using that the tangential velocity is the same on both sides of the shock,
V = U cot φ = U ′ cot φ′, we obtain a relation between incidence and strength,

tan φ′

tanφ
=

U ′

U
=

2γ + (γ − 1)σ
2γ + (γ + 1)σ

. (30-25)

Expanding this relation for σ ¿ 1 allows us to calculate the deflection angle
φ− φ′ for a weak shock,

φ− φ′ ≈ sin 2φ

2γ
σ . (30-26)

The deflection angle is small and positive in this limit. A
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eUt

φ0

The Mach construction of
the shock cone for a super-
sonic object. In a time t,
the object moves forward

a distance eUt while the
sound emitted at t = 0
forms a sphere of radius
ct. The opening angle of
the envelope of all spheres

is sin φ0 = ct/eUt = c/eU =

1/fMa.

The angle of incidence is always given by sin φ = U/Ũ , and since U → c for
σ → 0, the incidence angle for a weak oblique shock equals the Mach angle,

φ0 = arcsin
1

M̃a
, (30-27)

where M̃a = Ũ/c is the Mach number of the inflow. What we perceive as a
sonic boom is a weak shock cone with half opening angle φ0 trailing a supersonic
aircraft. A simple geometric construction due to Mach permits us to view the
cone as the envelope of all the spherical sound waves emitted earlier from the
nose of the aircraft.
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Example 30.2.1: For an aircraft at fMa = 2, the Mach angle is 30◦, so when you
hear the sonic boom of the aircraft flying at 20 km altitude, it is already 20

√
3 ≈

35 km beyond your position.

Moving normal shock

A stationary planar normal shock may be converted to a normal shock moving
through a gas at rest by choosing a reference frame moving with velocity U . In
this frame, the previously incoming gas will now be at rest, whereas the shock
front itself moves in the opposite direction with velocity U , and the gas behind
the front moves in the same direction with velocity U − U ′ which may or may
not be supersonic. Locally, this describes a blast wave arising from a violent
explosion, to be discussed in the following section.

ρ
p
T

U

U

ρ′
p′
T ′ U − U ′

¾
¾
¾
¾
¾
¾
¾
¾
¾

¾

¾

A planar shock moving
towards the left with super-
sonic velocity U into a gas
at rest. The fluid behind the
front moves to the left with
velocity U − U ′ which may
or may not be supersonic.

Front thickness

Since the gas is completely at rest before the passage of the moving front, it is
clear that a moving shock must be “fed from behind”, like a hydraulic jump, but
because air is non-dispersive all small-amplitude waves move upstream at the
same speed, c′ =

√
γp′/ρ′. Thus there will be no lower limit to the wavelength

of disturbances running upstream towards the front, and from a macroscopic
point of view the shock front has vanishing thickness, as long as viscosity can be
disregarded.

The only quantity with the dimension of length that may naturally be con-
structed from the front velocity U and the kinematic viscosity ν is,

δ ∼ ν

U
. (30-28)

For a weak shock in the atmosphere under normal conditions we have ν ≈ 1.6×
10−5 m2/s and U ≈ c ≈ 340 m/s, leading to δ ∼ 44 nm, so that the viscous
thickness of the front is comparable to the mean free path in the gas. This
conclusion actually invalidates the calculation, but for all practical purposes a
shock front may be assumed to have zero thickness.

Strong shock limit

In the limit of large shock strength σ À 1, the density ratio ρ′/ρ, the velocity
ratio U ′/U , the ratio p′/ρU2, and Ma′ all approach constant values,

ρ′

ρ
=

U

U ′ →
γ + 1
γ − 1

,
p′

ρU2
→ 2

γ + 1
, Ma′ →

√
γ − 1
2γ

. (30-29)

For a diatomic gas with γ = 7/5 we find ρ′/ρ → 6 and Ma′ → 1/
√

7 ≈ 0.38.
The actual Mach number of the flow behind a moving shock in a stationary gas
is (U − U ′)/c′ → 1/

√
2γ(γ − 1) which becomes 5/2

√
7 ≈ 0.94 for γ = 7/5. The

flow behind the front is only marginally subsonic in a diatomic gas, whereas in a
multi-atomic gas with γ = 4/3 the flow is marginally supersonic.
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30.3 Atmospheric blast wave

A large explosion in the atmosphere generates a blast wave bounded by a spherical
supersonic shock front. Mostly such blast waves are invisible, but films of nuclear
or thermonuclear bomb explosions show that the physical conditions can become
so extreme that the blast wave can be seen as a rapidly expanding spherical
fireball, appearing right after the initial flash but before the mushroom cloud
erupts. In this section we shall investigate the time evolution of such blast waves
in the atmosphere, following the road laid out by G. I. Taylor in the 1940’s1.

Radius of the strong shock front

Let the atmosphere initially be at rest with density ρ0 and pressure p0. The
blast deposits almost instantly a huge amount of energy E0 within a tiny region
of radius a, which initially contains the possibly ionized gases produced in the
blast, as well as the solid remains of the bomb if any. The huge pressure in the
initial fireball creates a shock front expanding at supersonic speed. After some
time t, the shock front has become nearly spherical with a radius R(t) that is
very large compared to the initial size a. The volume inside the front contains
essentially all of the initial energy E0 in the form of “shocked” air with only
little contamination from the bomb itself. At this stage the shock has become a
purely atmospheric phenomenon and all details about its origin in any particular
explosion have been “forgotten”.

x ............
............
.............
.............
..............
...............

.................
....................

...........................
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................
........................

..................
................
..............
..............
.............
.............
............
........

R(t)

ρ0 p0

¡
¡µ

@
@R

@
@I

¡
¡ª

A spherical shock front in
the atmosphere some time
t after the detonation of
a bomb (black circle). Its
current radius is R(t),
which is much larger than
the initial blast region. The
atmosphere is at rest with
density ρ0 and pressure p0.
The volume of the sphere
consists almost entirely of
air.

Under these conditions the radius of the shock front R(t) will be determined
by the equations of gas dynamics, and can only depend on time t, the total energy
E0, and the atmospheric parameters ρ0 and p0. In a strong shock the ambient
pressure p0 is negligible compared to the pressures inside, implying that R(t)
should be finite in the limit of p0 → 0, and thus only depend on t, E0, and ρ0.
Since E0/ρ0 is measured in units of of J/(kg/m3) = m5/s2, the only possible form
of the relationship is

R(t) = A

(
E0t

2

ρ0

)1/5

, (30-30)

where A is a numerical constant which as we shall see below is very close to unity.
It is remarkable that a phenomenon as violent as an atomic explosion can be

contained in such a simple relationship. Taylor used it in 1947 to estimate the
yield of the first nuclear bomb to be about 1014 J from a time-lapse sequence of
photographs in Life Magazine, a feat which is said to have created some embar-
rassment with the security authorities.

1G. I. Taylor, The formation of a blast wave by a very intense explosion (I. Theoretical
discussion, II. The atomic explosion of 1945), Proc. Roy. Soc. A201, 159-186 (1950). Taylor
actually formulated the theory in 1941, but first published it in 1950. Photographs of the first
atomic test were declassified by the US Atomic Energy Commission in 1947, although its yield
remained classified.
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Physical parameters in the strong shock limit

In the strong shock limit we may use the strong shock results (30-29) to determine
the physical quantities just inside the front,

ρ1

ρ0
=

γ + 1
γ − 1

,
v1

U
=

2
γ + 1

,
p1

ρ0U2
=

2
γ + 1

, (30-31)

where U = dR/dt = 2
5R/t is the shock front velocity and v1 = U − U ′ =

(1 − U ′/U)U is the radial flow velocity just behind the front. The temperature
is obtained from the ideal gas law,

T1 =
p1

ρ1

Mmol

Rmol
=

2(γ − 1)
(γ + 1)2

MmolU
2

Rmol
. (30-32)

where Rmol is the molar gas constant and Mmol is the molar weight of the gas.
Notice that none of these quantities depend on the ambient pressure p0. In the
following we shall use the value γ = 7/5 for diatomic gas, although the violent
initial shock may dissociate a fraction the molecules.

Example 30.3.1 (Trinity): The first atomic bomb test, codenamed Trinity, was
carried out at Alamogordo, New Mexico on July 16 1945. Its yield was E0 ≈ 1014 J
which is roughly equivalent to 20,000 tons of the high explosive TNT. Taking A = 1
and γ = 7/5 we find that after t = 10 ms the fireball has obtained a radius of
R = 100 m with the front moving at a speed of U = 3900 m/s. The pressure just
inside the front is p1 = 147 atm, the density ρ1 = 7.2 kg/m3, and the temperature
T1 = 7200 K, which is comparable to the temperature at the surface of the Sun.

Isentropic radial gas dynamics

A spherically invariant isentropic flow in an ideal gas is described by a purely
radial velocity field v = v(r, t)er, a density field ρ(r, t), a pressure field p(r, t)
and the field of specific entropy s = cV log(pρ−γ). In the absence of gravity and
viscosity, the fields obey the dynamic equations,

∂v

∂t
+ v

∂v

∂r
= −1

ρ

∂p

∂r
, (30-33a)

∂ρ

∂t
+

1
r2

∂
(
r2ρv

)

∂r
= 0 , (30-33b)

∂s

∂t
+ v

∂s

∂r
= 0 . (30-33c)

The first is the Euler equation, the second the continuity equation on radial form,
and the last expresses that the flow is isentropic, meaning that the specific entropy
is constant along a comoving (particle) orbit. The last equation also shows that if
the initial state is homentropic with spatially constant specific entropy ∂s/∂r = 0,
it will remain so forever. In a strong blast entropy is only produced right at the
front, and that does not, as we shall see, lead to a homentropic state.
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Strong self-similar shock

In the strong shock limit limit, p0 → 0, the only parameter with dimension of
length is the radius of the shock front R(t), which we for a moment pretend not
to know explicitly. The proper non-dimensional radial variable for all the fields
is therefore,

ξ =
r

R(t)
. (30-34)

Including suitable dimensional coefficients depending only on R(t) and ρ0, the
fields are assumed to be of the form,

v = Ṙ(t)u(ξ) , (30-35a)
ρ = ρ0 f(ξ) , (30-35b)

p = ρ0Ṙ(t)2q(ξ) , (30-35c)

where a dot indicates differentiation after time. With this assumption, the spatial
variation of the fields is self-similar at all times.

Inserting these fields into the equations of motion (30-33) we obtain three
coupled ordinary first order differential equations, and using a prime to denote
differentiation after ξ, we find

αu + (u− ξ)u′ = −q′

f
, (30-36a)

(u− ξ)f ′ = −fu′ − 2uf

ξ
, (30-36b)

2α + (u− ξ)
(

q′

q
− γ

f ′

f

)
= 0 . (30-36c)

where

α =
RR̈

Ṙ2
. (30-37)

The α-terms on the left-hand side of (30-36) stem from the explicitly time-
dependent prefactors of the fields. Since α only depends on t and the other
functions only on ξ, it follows from these equations that α must be a constant,
independent of time. The solution to (30-37) is then a power law

R(t) ∼ t1/(1−α) . (30-38)

The value of α cannot be determined from the dynamic equations alone but
depends on the boundary conditions imposed on the solution, in particular the
condition that the radial velocity u must vanish at ξ = 0. We shall determine it
below by requiring the excess energy E0 to be constant.
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Figure 30.5: (a) The numeric solution to the dynamic equations (30-36) for γ = 7/5.
All quantities are normalized to their maximal values at ξ = 1. (b) The dimensionless
coefficients A in the blast radius (30-30).

Numerical solution

The three ordinary first-order differential equations (30-36) need three boundary
conditions which may be determined at ξ = 1 from the strong shock properties
(30-31),

f1 =
γ + 1
γ − 1

, u1 =
2

γ + 1
, q1 =

2
γ + 1

. (30-39)

Although it is possible to find an analytic solution [68], it turns out to be quite
complicated, and it is much easier to integrate the differential equations numer-
ically. The numeric solution is plotted in 30.5a for γ = 7/5 with the functions
normalized by their values at ξ = 1. Evidently there are two distinct regions
in a strong shock, a core for ξ < 0.7 where the pressure is nearly constant with
q0/q1 ≈ 0.37 and the velocity increases linearly, and a shell for ξ > 0.7 where the
velocity and pressure rise rapidly to meet the required values at the front.

Excess energy

The total energy of the gas in the volume inside the shock front consists of the
kinetic energy of the moving gas plus its internal energy. Subtracting the internal
energy of the gas before the explosion we find from (17-97) on page 323 the excess
of energy inside the shock front,

E0 =
∫ R(t)

0

(
1
2
ρ(r, t)v(r, t)2 +

p(r, t)− p0

γ − 1

)
4πr2 dr . (30-40)

Barring radiative losses, this energy must be constant and equal to the extra
energy added to the atmosphere in the point-like explosion. It takes quite a bit
of algebraic work to demonstrate explicitly from the dynamics (30-33) and the
strong shock properties (30-31) that the time derivative of this expression indeed
vanishes.
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Inserting the self-similar fields (30-35), the excess energy (30-40) becomes in
the limit of p0 → 0,

E0 = ρ0R
3Ṙ2K(γ) , (30-41)

where K(γ) is the integral,

K(γ) = 4π

∫ 1

0

(
1
2
f(ξ)u(ξ)2 +

q(ξ)
γ − 1

)
ξ2 dξ . (30-42)

It is immediately clear that for the power law (30-38) to lead to a constant
energy, it must have exponent α = −3/2, and thus R ∼ t2/5. This confirms the
dimensional analysis (30-30), and inserting Ṙ = 2

5R/t in (30-40) we also obtain
an expression for the dimensionless constant,

A =
(

4
25

K(γ)
)−1/5

. (30-43)

In fig. 30.5b the numeric solution is plotted for a range of γ values. For γ = 7/5
we have A = 1.03, which justifies taking A ≈ 1 in our earlier estimates.

The weakening shock

As the shock front expands, it decreases in strength until it no more satisfies the
conditions for the strong shock approximation used above. The characteristic
strength for the breakdown of the strong shock approximation may be chosen to
be σs = 2γ/(γ − 1) where the two terms in the denominator of the density ratio
(30-22) become equal. For γ = 7/5 we have σs = 7 and thus p1 = (1 + σs)p0 =
8 atm. Using the strong shock formalism in the Trinity example 30.3.1 this is
estimated to happen at time t = 119 ms when the front radius is R = 268 m.

Continuing the expansion beyond this point, the core pressure will decrease
until it reaches the ambient pressure p0. At this point the core can no more
perform work on the surrounding atmosphere and will stop expanding. The core
is very hot due to its large entropy with a correspondingly low density, and the
buoyancy of the low-density core will make it rise like a thermal bubble, creating
thereby the well-known mushroom cloud. We may estimate the time when the
core expansion ceases by equating the core pressure p = ρ0U

2q0 with atmospheric
pressure p0. This is probably a rather bad approximation, but in lieu of a better
we find in the Trinity example 30.3.1 that it happens at time t = 276 ms when
the front radius is R = 364 m.

After this point the shock wave continues as spherical wave in the form of a
thin shell. When such a front passes a given point, mass conservation makes the
pressure first rise above and afterwards drop back below atmospheric pressure.

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



636 30. NONLINEAR WAVES

30.4 Nonlinear surface waves

Linearity is a powerful property because it permits superposition of waves. Any
linear wave may in the end be completely resolved into a suitably weighted sum
(or integral) over elementary harmonic waves. Leaving the domain of linearity,
solutions of this kind are no more possible. Assuming again that the Reynolds
number is large, the fields must now satisfy the full nonlinear Euler equation

∂v

∂t
+ (v ·∇)v = − 1

ρ0
∇p + g , ∇ · v = 0 , (30-44)

with g = (0, 0,−g0). Since there are no general solutions to this equation, non-
linear waves are much more unique and individual than linear waves.

Boundary conditions

The dynamic boundary condition is as before that the pressure must be contin-
uous at the open surface in the absence of surface tension,

p = p0 for z = h , (30-45)

The kinematic boundary condition is more complicated, but expresses as before
that a fluid particle sitting right at the surface should follow the motion of the
surface. In a small interval of time δt, a particle at the surface is shifted by
δx = vδt where v is the velocity field at or rather just below the surface. Since
the particle has to remain on the surface, the new height must equal the old plus
the vertical shift δz, or
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z

δx
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t + δt

A fluid particle at the sur-
face must follow the motion
of the surface from time t to
time t + δt.

h(x + δx, y + δy, t + δt) = h(x, y, t) + δz .

Expanding to first order in the horizontal displacements δx = vxδt and δy = vyδt,
and setting δz = vzδt, we obtain the general kinematic condition,

∂h

∂t
+ vx∇xh + vy∇yh = vz , for z = h . (30-46)

which may be viewed as a dynamic equation for the wave height. Besides the open
surface conditions, there will as for small-amplitude waves be further boundary
conditions that depend on the shape of the container.

In the bottomless ocean the only condition is that the influence of surface
waves should not penetrate to infinite depth, and as we have seen for small-
amplitude waves the influence penetrates in fact only to a depth of about one
wavelength. In section 30.6 we shall investigate periodic nonlinear deep-water
waves, also called Stokes waves.

At finite depth we may describe the shape of the solid container bottom by
its height, z = b(x, y, t), which in the most general case may depend on both
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the spatial coordinates and time. The local depth of the fluid is now d = h− b.
The kinematic bottom condition is obtained in the same way as the open surface
condition, and expresses that the fluid must follow the bottom everywhere and
at all time,

∂b

∂t
+ vx∇xb + vy∇yb = vz , for z = b . (30-47)

One should notice that this should not be viewed as a dynamic equation for the
bottom height, but rather as a constraint on the flow which is thought to be
specified in advance, even if it depends on time. Thus, if the bottom is perfectly
flat and horizontal so that b is a constant, this condition degenerates to the usual
flat-bottom condition, vz = 0.

∗ 30.5 The shallow-water approximation

Shallow-water waves are always characterized by being much wider than the
depth, λ À d, but in the nonlinear regime the amplitude may be as large as the
depth, a . d, although for geometrical reasons it cannot be much larger. Our
previous estimate (22-9) shows that the local acceleration in that case will be
comparable to the advective acceleration |∂v/∂t| ∼ |(v ·∇)v|. Compared to the
gravitational acceleration, the magnitude of the vertical acceleration is estimated
to be,

1
g0

∣∣∣∣
∂vz

∂t

∣∣∣∣ ∼
1
g0

a

τ2
∼ ad

λ2
∼ d2

λ2
, (30-48)

where we have made use of the dispersion law estimate (22-6). In shallow water
λ À d the fluid acceleration is tiny compared to the gravitational acceleration.

Shallow-water equations

Discarding the left hand side of the z-component of the Euler equation (30-44).
What is left on the right hand side is the hydrostatic equation ∇zp + ρ0g0 = 0,
and using the dynamic boundary condition (30-45), the pressure becomes,

p = p0 + ρ0g0(h− z) . (30-49)

The pressure in a shallow-water wave is always purely hydrostatic. This gener-
alizes the result (22-35d) obtained for small-amplitude shallow-water waves.

In the following we shall for simplicity limit the analysis to line waves in
which vy = 0 and all the fields are independent of the y-coordinate, although
the formalism for general waves follows along the same lines. Inserting the above
pressure solution into the x-component of the Euler equation (30-44) we find

∂vx

∂t
+ (vx∇x + vz∇z)vx = −g0∇xh .
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As the right hand side is independent of z, it follows that vx will be independent
of z for all times, if it is so to begin with. We shall from now on assume this to
be the case, and putting vx = u(x, t), the above equation simplifies to

∂u

∂t
+∇x

(
g0h +

1
2
u2

)
= 0 . (30-50)

That the horizontal flow is independent of depth also generalizes the small-
amplitude result (22-35b).

The divergence condition becomes ∇zvz = −∇xu and since the right hand
side is independent of z, it follows that vz must be linear in z of the form vz =
f(x, t) − z∇xu. This function is determined by imposing the bottom boundary
condition (30-47), and we obtain,

vz =
∂b

∂t
+ u∇xb + b∇xu− z∇xu . (30-51)

Inserting this into the kinematic boundary condition (30-46) we arrive at the
surprisingly simple dynamic equation for the local depth d = h− b,

∂d

∂t
+∇x(ud) = 0 . (30-52)

Although the coupled partial differential equations (30-50) and (30-52) look
formidable enough, they are eminently well suited for numeric integration, given
the bottom shape b and initial values for the fields h and u.

Method of characteristics

The shallow-water equations may be partially solved by the so-called method of
characteristics. As we noted in section 22.1, the phase velocity of long waves is,

c =
√

g0d , (30-53)

which is also the velocity obtained in a free fall from rest through the height d.
In a non-linear wave, where d = d(x, t) is a function of both space and time, the
local phase velocity also depends on these variables. Eliminating the depth by
inserting d = c2/g0 in the dynamic equations (30-50) and (30-52) and simplifying,
we get

∂u

∂t
+ u∇xu + 2c∇xc = −g0∇xb ,

2
∂c

∂t
+ 2u∇xc + c∇xu = 0 .
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Adding and subtracting these equations, they may be written
(

∂

∂t
+ (u + c)

∂

∂x

)
(u + 2c) = −g0∇xb , (30-54a)

(
∂

∂t
+ (u− c)

∂

∂x

)
(u− 2c) = −g0∇xb . (30-54b)

30.6 Nonlinear deep-water gravity waves

Basic formalism

In the nonlinear regime we shall continue to describe surface waves by a height
function z = h(x, y, t), although common experience tells us that it may become
multivalued when a wave breaks. Assuming again that the Reynolds number is
large, so that we may disregard viscosity, the basic dynamic equations are the
complete Euler equations (16-1) for incompressible fluid,

∂v

∂t
+ (v ·∇)v = − 1

ρ0
∇p + g , ∇ · v = 0 , (30-55)

with g = (0, 0,−g0). Whereas linear waves always can be written as a super-
position of an irrotational wave and a constant rotational component, nonlinear
waves are not born to be free of vorticity. But, as we saw in section 16.5, a wave
that actually is irrotational at any one time, will remain so at all times.

Irrotational nonlinear waves constitute a large — and interesting class —
of nonlinear waves for which the velocity field may be derived from a velocity
potential

v = ∇Ψ , ∇2Ψ = 0 . (30-56)

In that case the Euler equation may again be solved for the pressure,

p = p0 − ρ0

(
g0z +

1
2
v2 +

∂Ψ
∂t

)
, (30-57)

which now contains the square of the velocity field (see problem 16.8).
The kinematic boundary condition on the open surface expresses that a fluid

particle at the surface should follow the motion of the surface, but as the surface
is no more flat it becomes more complicated than (22-16). Consider a fluid
particle sitting at the surface which in a small interval of time δt, moves through
δx = vδt. Since it has to stay on the surface the vertical change in position δz
must equal the change in surface height as we follow the motion, or
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¡¡µ

b
6
z

δx

t

t + δt

A fluid particle at the sur-
face must follow the motion
of the surface from time t to
time t + δt.

δz = h(x + δx, y + δy, t + δt)− h(x, y, t) .

Expanding to first order in the displacements and substituting δx = v δt, we
obtain the general kinematic condition

∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
= vz , for z = h . (30-58)
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The dynamic condition is as before that the pressure is continuous at the surface
in the absence of surface tension,

p = p0 for z = h , (30-59)

As we have seen, surface tension only affects waves with very short wavelengths
and can generally be disregarded in the non-linear regime.

Line waves

Nonlinear gravity waves that are independent of the y-coordinate also form pat-
terns of straight lines along the y-axis and may be called line waves. For such
waves, the

Stokes waves

Consider and infinitely deep ocean of infinite horizontal extent interfacing to vac-
uum (or to a very light fluid) in the absence of surface tension. We shall further-
more limit the discussion to regular parallel trains of (generally non-harmonic)
line waves progressing steadily over the surface without changing their shape, a
case first analyzed by Stokes in 1847.

Given g0, such waves are entirely characterized by the wavelength λ and the
amplitude a, suitably defined. The only dimensionless quantity which can be
constructed from these parameters is the ratio a/λ, or equivalently the steepness
ka = 2πa/λ. Given the steepness,

√
g0k is the only quantity with dimension of

frequency, so that the dispersion law must be of the form,

ω = f(ka)
√

g0k , (30-60)

where f(ka) is a dimensionless function of the steepness. For ka = 0 we must
arrive at the linear deep-water expression (22-24), so that f(0) = 1.
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?

Two periods of a periodic
non-linear wave which is
not sinusoidal, but never-
theless has a well-defined
wavelength, period and
amplitude.

The height of a line wave running along the x-axis with constant phase velocity
c = ω/k is a function h = h(ξ) of the variable ξ = x−ct, so that ∂h/∂t = −c∂h/∂ξ
and ∂h/∂x = ∂h/∂ξ. This simplifies the kinematic boundary condition to

∂h

∂ξ
= − vz

c− vx
, (30-61)

Similarly, the velocity potential may be taken to be of the form Ψ = Ψ(ξ, z). It
must be a solution to the Laplace equation, ∇2

zΨ = −∇2
ξΨ, which vanishes for

z → −∞ and is periodic in ξ with period λ. The dynamic boundary condition
then becomes,

g0h = cvx − 1
2

(
v2

x + v2
z

)
+ const . (30-62)

On the right hand sides of these equations the velocities vx = ∇ξΨ and vz = ∇zΨ
must be evaluated for z = h. The constant stems from the arbitrariness of Ψ and
is chosen such that the average of h vanishes. The solution to these equations
determines in principle Ψ, h, and the phase velocity c.
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Steepness expansion

Unfortunately, there is no analytic solution, except for ka → 0 where it must
approach the linear deep-water solution (22-26). The fact that the linear velocity
scale, aω = c ka, is of first order in the steepness ε = ka, makes it natural to
expand the general solution into powers of this parameter. The phase velocity in
powers of ε

c =
√

g0

k
(1 + εC + ε2C ′ + · · · ) . (30-63)

A further simplification derives from the height being symmetric h(−ξ) = h(ξ)
and the velocity potential antisymmetric, Ψ(−ξ, z) = −Ψ(ξ, z), in the small-
amplitude limit. Since the nonlinear boundary conditions do not break these
symmetries, we may assume that the general solution also has this property.

A symmetric height function with period λ = 2π/k may always be expanded
into a Fourier series of symmetric harmonics cos nkx. Scaling out a dimensional
factor a, we may write

h = a(A cos kξ + εA′ cos 2kξ + ε2A3 cos 3kξ + · · · ) . (30-64)

The expansion coefficients An are all dimensionless and can thus only depend on
the steepness ε = ka. We have also factored out εn−1 to make each coefficient of
order unity (to be confirmed by the explicit solution), and to make contact with
the linear case we take A = 1.

An antisymmetric velocity potential may similarly be resolved into a Fourier
series of antisymmetric harmonics of the form enkz sin nkξ, with an exponential
term needed to satisfy the Laplace equation. Scaling out a dimensional factor ac
we may write,

Ψ = ac
(
B1e

kz sin kξ + εB′e2kz sin 2kξ + ε2B3e
3kz sin 3kξ + · · · ) , (30-65)

where the expansion coefficients Bn are all dimensionless and of order unity.
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Problems

30.1 Show that the linear approximation in (30-8) is better than 3.3% for Fr > 2.

30.2 Investigate mass conservation for the river bore and the reflection bore.

30.3 Verify that the solution of the Rankine-Hugoniot relations (30-19) is

U ′ =
γ − 1

γ + 1
U +

2γ

γ + 1

p

ρU
, (30-66a)

1

ρ′
=

γ − 1

γ + 1

1

ρ
+

2γ

γ + 1

p

ρ2U2
, (30-66b)

p′ = −γ − 1

γ + 1
p +

2

γ + 1
ρU2 . (30-66c)

30.4 Show that the entropy change (30-24) is a growing function of σ for σ > −1.
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