
6
Planets and stars

Planets and stars are objects held together by their own gravity, but prevented
from collapsing by internal pressure, originating from repulsive atomic or nuclear
forces. The more massive a body is, the higher is the pressure necessary to pre-
vent collapse. For sufficiently massive bodies the ultimate gravitational collapse
cannot be prevented by any known forces, and will eventually occur, and a black
hole is born.

So far we have only been able to scratch the surface of our own planet Earth.
A little has also been done on the Moon and soon we shall know more about the
surface of Mars. Seismic waves created by controlled explosions do allow us to
peer deeper into the planet, but mostly we are left with the “experiments” carried
out by nature without any regard to us. Earthquakes generate strong seismic
waves, revealing the inner structure of the planet. Continental drift informs us
about the mixture of heat and gravity deep inside. Electromagnetic radiation
from the surface of a star is almost the only source of information about what
goes on below, although neutrino observations have begun to provide a direct
window into the deepest core of our Sun, and into the supernovas that explode
in our cosmic neighborhood.

Most of our understanding of the interiors of planets and stars comes from
using the laws of physics determined on Earth as an “analytic drill” allowing us
to get insight into processes which cannot be directly observed from the outside.
In this chapter, the first turns of this drill consist in applying the equations of
hydrostatic equilibrium to these massive self-gravitating bodies. The strongest
simplifying assumption we can make about planets and stars, is that they are
spherically symmetric, but before we specialize to that case we need to derive a
fundamental differential equation connecting a mass distribution and its gravita-
tional field. At the end of the chapter, we apply the formalism to a homentropic
star without internal energy production.
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94 6. PLANETS AND STARS

6.1 Gravitational flux

Let S be a closed surface surrounding a volume V . We shall as before use the
convention that the normal n in a point x of the surface is always a unit vector
oriented outwards from the surface, and a small surface element of magnitude ds
is represented by the vector dS = ndS. Seen from the origin of the coordinate
system, the solid angle subtended by this surface element is

.....................................................................................................................................................................................................................................................................................................
..................................

..........................
......................
...................
.................
.................
...............
...............
................
................
................
.................
.................
.................
..................
..................
..................
...................
..................
..................
......................

..................................
...............................................................................................................................................................................................................................................................................................................................................................................................

................
...............
...............
..............
.............
.............
.............
.............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
.................
...................
.........................
...................

.........
.........

.........
.........

.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
.........
........

........
........

........
........

S

V
t¨

§
¥
¦
dS

@
@I
n

A surface S surrounding a
volume V . The direction n
of a surface element dS is
always oriented outwards
from the volume.

dΩ =
x · dS

|x|3 . (6-1)

Projecting the gravitational field (3-12) from a point mass on the surface element,
one obtains

g · dS = −GMdΩ .

This quantity is called the flux of gravity through the surface element.
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by a surface element

Consider now the total flux through a closed convex surface containing the
point mass at the origin. All the little solid angles add up to 4π because the
line-of-sight from the particle in any direction crosses the convex surface exactly
once. If on the other hand the surface does not contain the point mass, the
line of sight from the particle will always cross the surface twice, and the two
contributions to the solid angle will have the same magnitude but opposite sign
and thus cancel. In other words,
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The lines of sight from a
point inside a convex volume
crosses the surface once,
whereas they cross twice if
the mass is outside.

∮

S

g · dS =

{
−4πGM for 0 ∈ V

0 otherwise
. (6-2)

This result is in fact valid for all surfaces, convex or not. For a convoluted
surface, the line-of-sight from the inside will instead cross the surface an odd
number of times, and since the solid angles are evaluated with sign, all the con-
tributions along the line-of-sight cancel each other except for one. If the particle
is outside the volume the line-of-sight will cross an even number of times and
all contributions cancel. The conclusion is that the above equation holds in full
generality.

Furthermore, this result cannot depend on the particle being at the origin,
but must be generally valid for any point particle inside or outside the volume.
Adding together the contributions from all the material particles in the volume
V , we finally get

∮

S

g · dS = −4πG

∫

V

ρ dV . (6-3)

The integral at the right is simply the total mass (3-2) in the volume, so we may
conclude that the gravitational flux through any closed surface is proportional to
the total mass contained within the surface, whereas the mass outside the surface
does not contribute to the flux.
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6.1. GRAVITATIONAL FLUX 95

Gauss’ theorem and divergence

We have previously derived a vector relation (4-22) between a surface integral of
a scalar field and a volume integral over its gradient. Applying it componentwise
to the left hand side of (6-3) we obtain

∮

S

g · dS =
∮

S

(gxdSx + gydSy + gzdSz) =
∫

V

(∇xgx +∇ygy +∇zgz) dV .

This is the usual form of Gauss’ theorem

∮

S

g · dS =
∫

V

∇ · g dV , (6-4)

where the field on the right hand side

∇ · g = ∇xgx +∇ygy +∇zgz =
∂gx

∂x
+

∂gy

∂y
+

∂gz

∂z
, (6-5)

is the divergence (2-56) of the gravitational field. Its value in a point is a measure
of how much field lines diverge away from each other, or converge if it is negative.

Gauss’ theorem is in this form a general relation between any vector field g,
not necessarily the gravitation field, and its divergence ∇ · g. The two forms,
(4-22) and (6-4), are completely equivalent (see problem 6.1).
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The minus sign in the source
equation (6-6) expresses that
gravitational field lines al-
ways converge upon masses.

Poisson’s equation

The global equation (6-3) relating the gravitational field to its sources may now,
like the global hydrostatic equation (4-15), be converted to a local differential
equation. Using Gauss’ theorem (6-4) we find from (6-3)

∫

V

∇ · g dV = −4πG

∫

V

ρ dV ,

which must be valid for all volumes V . That is, however, only possible, if inte-
grands are equal, or

∇ · g = −4πGρ . (6-6)

This is one of the fundamental field equations of gravity, expressing that the mass
density is the local source of the gravitational field. Pierre Simon marquis

de Laplace (1749–1827).
French mathematician,
astronomer, and physicist.
Developed gravitational
theory and applied it to per-
turbations in the planetary
orbits and the conditions for
stability of the solar system.

It is convenient to define the Laplace operator

∇2 = ∇ ·∇ = ∇2
x +∇2

y +∇2
z =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (6-7)

This operator plays a major role in all field theories.
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96 6. PLANETS AND STARS

Using that g = −∇Φ (see section 3.4), the source equation (6-6) may be
rewritten in terms of the gravitational potential, and we obtain Poisson’s equa-
tion,

∇2Φ = 4πGρ . (6-8)

The linearity of this equation guarantees that if Φ1 is a particular solution thenSimeon Denis Poisson
(1781–1840). French math-
ematician. Contributed to
electromagnetism, celestial
mechanics, and probability
theory.

the most general solution is of the form Φ = Φ0 + Φ1 where Φ0 is an arbitrary
solution to Laplace’s equation,

∇2Φ0 = 0 . (6-9)

The actual solution selected in a particular problem depends on the boundary
conditions.

Constant mass density: If the universe were uniformly filled with matter at
constant density, ρ(x) = ρ0, we would have

∇2Φ = 4πGρ0 . (6-10)

It is easy to verify explicitly that a particular solution to this equation is

Φ =
2
3
πGρ0 |x|2 , (6-11)

corresponding to a gravitational acceleration

g = −4
3
πGρ0x . (6-12)

The gravitational field points everywhere towards the origin of the coordinate
system which is thus imbued with an apparently unphysical preferred status. In
section 15.6 we shall see that this field appears naturally in Newtonian cosmology.

Hydrostatic equilibrium

One may rightly ask why we need Poisson’s equation when the complete connec-
tion between a mass distribution and its gravitational potential is already given
by the integral (3-24). For compressible matter, however, the mass density de-
pends on the pressure, which in turn depends on gravity through the equation of
hydrostatic balance (4-19), and gravity depends in its turn on the mass density.
Such physical circularity is best handled by means of differential equations.

To see how this works out, we use (4-19) and (6-6) to calculate the divergence
of g = ∇p/ρ, and obtain

∇ ·
(

1
ρ
∇p

)
= −4πGρ . (6-13)

Together with a barotropic relation of the form p = p(ρ), this becomes a non-
linear, second order partial differential equation for the density field.
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6.2. SPHERICAL BODIES 97

6.2 Spherical bodies

The mass distribution ρ(r) for spherically symmetric body such as a planet or
a star is, as discussed in section 3.3, only a function of the distance r = |x|
from its center, which is taken to be at the origin of the coordinate system. The
field of gravity must correspondingly be radial, g(x) = g(r) er, with er = x/r.
Applying the global source equation (6-3) to a spherical surface S(r) of radius r,
the surface integral on the left hand side becomes

∮

S(r)

g · dS = 4πr2g(r) . (6-14)

The volume integral on the right hand side of (6-3) is simply the integrated mass
M(r) given in (3-18), so that we obtain

g(r) = −GM(r)
r2

. (6-15)

Finally, we have fulfilled the promise of deriving eq. (3-17).
The general equation of hydrostatic equilibrium (6-13) simplifies considerably

for a spherical system, and becomes an ordinary second order differential equation
for the pressure p(r) or the density ρ(r). Instead of deriving this differential
equation from (6-13), it is easier to go back to the original equation of local
hydrostatic equilibrium (4-19). Using that

∇p(r) =
dp(r)
dr

∇r =
dp(r)
dr

er ,

we get from (4-19)

dp(r)
dr

= g(r)ρ(r) = −G
M(r)

r2
ρ(r) . (6-16)

Multiplying with r2/ρ and differentiating after r, we find

d

dr

(
r2

ρ(r)
dp(r)
dr

)
= −G

dM(r)
dr

= −G4πr2ρ(r) ,

and rearranging, this becomes

1
r2

d

dr

(
r2

ρ

dp

dr

)
= −4πGρ . (6-17)

Combined with a barotropic equation of state of the form p = p(ρ), this is an
ordinary second order differential equation for the density. In fig. 6.1 the Earth’s
pressure distribution is plotted and compared with a simple model.
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Figure 6.1: Pressure distribution in the Earth. Fully drawn: data from [3] and dashed:
the two-layer model (problem 6.3). The agreement between the model and data is im-
pressive in view of the coarseness of the model.

Boundary conditions

In principle, a second order differential equation requires two boundary values
(or integration constants), for example the central pressure pc = p(0) and its
first derivative dp/dr for r = 0. We shall make the reasonable assumption that
the density ρc at the center of the body is finite. Then for “small” r we have
M(r) ≈ 4

3πr3ρc and eq. (6-16) becomes for r → 0,

dp

dr
≈ −4

3
πGρ2

c r ,

which integrates to

p(r) ≈ pc − 2
3
πGρ2

c r2 . (6-18)

Thus, under the assumption of finite central density, the pressure is parabolic
near the center with dp/dr = 0 for r = 0. This shows that under reasonable
physical assumptions the hydrostatic equation (6-17) requires in fact only one
boundary condition, for example the central pressure. Knowing pc together with
the equation of state (which also determines ρc), the pressure may be calculated
throughout the body.

-

6

r

p

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
a

pc

The pressure varies as a
parabola in the central
region of a spherically
invariant body with a finite
central density.

The central pressure and density are, of course, not known for planets and
stars, objects that are only accessible from the outside. Most such bodies have
a well-defined surface radius, r = a, at which the pressure vanishes. We shall
arbitrarily call a body a planet, if the density i jumps abruptly to zero at the
surface, and a star if the density vanishes along with the pressure at the surface.
Such a convention makes the gaseous giant planets, Jupiter and Saturn, count as
stars even if they probably do not burn much hydrogen.
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6.3. THE HOMENTROPIC STAR 99

The requirement of zero pressure at r = a will determine the central pressure.
The solutions to the hydrostatic equation can be expressed entirely in terms of
the radius of the body and the parameters in the equation of state. In particular
the mass M0 of the body is — as we shall see below — calculable in terms of a
(and the state parameters). Conversely, if the mass and radius are known, one
of the other unknown parameters may be determined.

Planet with constant density

For a planet with constant density, ρ0, the assumption of finite central density is
exactly valid throughout the planet,

p = pc − 2
3
πGρ2

0r
2 . (6-19)

At the surface of the planet where the pressure has to vanish this leads to

pc =
2
3
πGρ2

0a
2 . (6-20)

If the mass and radius are known, the density is obtained from M0 = 4
3πa3ρ0.

Example 6.2.1: The Moon’s mass is 7.3 × 1022 kg and its radius is 1738 km,
making the average density 3.34 g/cm3 The central pressure is predicted to be
46, 500 atm.

6.3 The homentropic star

Stars like the Sun are self-gravitating, gaseous, and almost perfectly spherical
bodies that generate heat by thermonuclear processes in a fairly small region close
to the center. The heat is transferred to the surface by radiation, conduction and
convection and eventually released into space as radiation. Like planets, stars
have also a fairly complex structure with several layers differing in chemical
composition and other physical properties.

Example 6.3.1: Our Sun consists of a mixture of about 71% hydrogen, 27% he-
lium, and 2% other elements. It has a central core of radius 150, 000 km, a radiative
layer of thickness 350, 000 km, and a convection layer of thickness 200, 000 km.
The “standard” values [11] for the central parameters are Tc = 15.7 × 106 K,
ρc = 154 g/cm3, and pc = 2.34× 1011 bar.

The stellar temperature lapse rate

Here we shall completely ignore the layering, heat production and chemical com-
position, and concentrate solely on hydrostatic equilibrium in a homogeneous
star. We shall assume that the whole star consists of an ideal gas with adia-
batic index γ = 5/3, and molar mass Mmol = 0.5 g/mol. This corresponds to
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Figure 6.2: The effective adiabatic index γeff near the surface of the Sun. The fully
drawn curve is taken from the ‘standard’ Sun model [11] and the dashed line is the
constant monatomic value γ = 5/3.

fully ionized hydrogen, which consists af 50% hydrogen ions (protons) and 50%
essentially massless electrons. Apart from a layer near the surface, the effective
adiabatic index, defined by 1−1/γeff = d log T/d log p is in fact very close to this
value throughout the Sun (see fig. 6.2 and problem 6.5).

In section 4.6 we argued (for the case of Earth’s atmosphere) that — provided
the time scale for local mixing is fast compared to heat conduction — a homen-
tropic dynamical “equilibrium” will be established in which pρ−γ takes the same
value everywhere (see appendix D). Assuming that the whole star is homentropic
and using the ideal gas law ρ ∼ p/T , we conclude that pρ−γ ∼ p1−γT γ is also
constant. Differentiating log(p1−γT γ) after r we obtain,

γ
1
T

dT

dr
+ (1− γ)

1
p

dp

dr
= 0 ,

and making use of the hydrostatic equation (6-16) we find the stellar temperature
lapse rate,

dT (r)
dr

=
g(r)
cp

, (6-21)

where g(r) = −GM(r)/r2 is the acceleration field (6-15), and cp = γ/(γ −
1) R/Mmol is the specific heat (4-40) of the ideal gas at constant pressure. The
only difference is that in the atmosphere the acceleration is constant, whereas in
the star it depends on r.

The above equation may be converted to a second order differential equation,

cp

r2

d

dr

(
r2 dT

dr

)
= −4πGρ . (6-22)

On the right hand side we must use the constancy of pρ−γ ∼ Tρ1−γ to eliminate
the density and make it a differential equation for T only.
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Approximative solutions near the center and the surface

There are many types of solutions to the stellar equations (6-21) or (6-22). Some
have infinite central pressure, others have non-vanishing density all the way to
infinity (see problem 6.8). We shall limit ourselves to solutions with finite central
density and a well-defined radius where the density and pressure vanish.

If the central density ρc is finite, the integrated mass becomes M(r) ≈ 4
3πr3ρc

near the center, and thus g(r) ≈ − 4
3πGρcr. From (6-21) we then obtain,

T ≈ Tc − 2π

3
Gρc

cp
r2 , (6-23)

where Tc is the central temperature. Evidently, the temperature drops parabol-
ically when one moves away from the center of the star, and in the leading
approximation this is also true for the pressure and the density.

-

6

r

T

.........................................................................................................................................................................................................................

a

Tc

...................................................................................................

...........
...........

...........
.......... .....

The temperature follows a
parabola in the central
region and approaches zero
linearly near the surface.
The dashed curve inter-
polates between these two
extremes.

If the density vanishes at the surface, r = a, the temperature and pressure
must also vanish. From (6-21) it follows that the temperature derivative is finite
close to the surface at r = a, so that we may make a linear approximation

T (r) ≈ T0

(
1− r

a

)
, (6-24)

near the surface. Inserting this into (6-21) and taking r = a on the right hand
side, we find

T0 =
g0 a

cp
, (6-25)

where g0 = GM0/a2 is the magnitude of the star’s surface gravity. Notice that
this temperature which sets the scale of the temperature gradient at the surface
is calculable in terms of the star’s known parameters.

Example 6.3.2: Putting in the Sun’s parameters, M0 ≈ 2×1030 kg, a ≈ 7×108 m,
and cp ≈ 4.2×104 J/K/kg, we find g0 ≈ 274 m/s2 and T0 ≈ 4.6×106 K. Even if the
surface approximation is not valid near the center, T0 is nevertheless of the same
magnitude as the Sun’s central temperature.

The Lane-Emden solutions

Having determined the behavior of the temperature near the center as well as
near the surface, we need to interpolate between these regions. From the general
discussion of boundary conditions in section 6.2, we expect that the stellar equa-
tion (6-22) will create a connection between the central temperature Tc and the
calculable temperature parameter T0.

Let us introduce the dimensionless variable ξ = r/λ, where λ is a suitable
constant with the dimension of length, and the dimensionless temperature func-
tion

θ(ξ) =
T (r)
Tc

. (6-26)
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Figure 6.3: The family of Lane-Emden functions for selected values of γ.

The density is calculated from the homentropic condition Tρ1−γ = Tcρ
1−γ
c ,

ρ = ρc θ
1

γ−1 , (6-27)

Choosing the length parameter to be

λ =

√
cpTc

4πGρc
, (6-28)

the homentropic equation (6-22) becomes the Lane-Emden equation,

1
ξ2

d

dξ

(
ξ2 dθ

dξ

)
+ θ

1
γ−1 = 0 . (6-29)

From the solution near the center of the star we conclude that the boundary

γ ξ0 Tc/T0

∞ 2.449 0.500
5/3 3.654 1.346
7/5 5.355 2.449
4/3 6.897 3.417

Table of the crossing points
ξ0 and scaled central tem-
perature Tc/T0 for the Lane-
Emden functions at selected
values of γ.

conditions for θ(ξ) are θ(0) = 1 and θ′(0) = 0. The solutions form a family of
functions parameterized by the adiabatic index γ.

Apart from special cases (see below and problem 6.8) this differential equation
cannot be solved analytically. In Fig. 6.3 the Lane-Emden functions have been
evaluated numerically for a few relevant values of γ. For γ > 6/5 it may be
shown that the solutions cross the ξ-axis. This means that θ vanishes at this
point, which is identified with the boundary of the star and denoted ξ0 = ξ0(γ).
Its precise value may be calculated numerically for all γ > 6/5. A few relevant
ones are given in the table in the margin.

The limiting cases of the Lane-Emden functions are easily determined analyt-
ically. For γ → 1, corresponding to an isothermal star, the solution is θ(ξ) → 1
so that T (r) = Tc for all r (with a jump at the surface that makes the star into
a planet, according to our definition). For γ → ∞, we get from (6-19) and the
ideal gas law, θ(ξ) → 1 − ξ2/6, which also follows from (6-29). This particular
curve crosses the axis at ξ0(∞) =

√
6 ≈ 2.45.
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Figure 6.4: The temperature distribution in the Sun as a function of the distance
from the center. The fully drawn curve is from the “standard” Sun model [11] and the
dashed curve is the Lane-Emden solution for γ = 5/3. The vertical lines are boundaries
between various layers of the Sun. The discrepancy between the curves represents the
thermonuclear heat production in the center.

Central values

Knowing ξ0 = ξ0(γ) the value of the scaling parameter λ = a/ξ0 can be calculated
from the known radius a of the star. Then from (6-21) at r = a we get

Tc

λ
θ′(ξ0) = −g0

cp
,

where θ′(ξ0) is the slope of the solution at ξ0. Introducing the temperature scale
T0 from (6-25) this becomes,

Tc

T0
=

1
(−θ′(ξ0))ξ0

. (6-30)

A few selected values are shown in the margin table.
Similarly from (6-28) we find the central density

ρc

ρ0
=

ξ2
0

3
Tc

T0
, (6-31)

where ρ0 = M0/
4
3πa3 is the average density of the star. Knowing both ρc and

Tc allows us to determine the central pressure is found from the ideal gas law
pc = ρcRTc/Mmol.

Example 6.3.3: For γ = 5/3 we obtain Tc/T0 = 1.35 and ρc/ρ0 = 6.0. For
the Sun this leads to a central temperature of Tc = 6.2 × 106 K, a central density
of ρc = 8.4 g/cm3, and a central pressure of pc = 8.7 × 109 bar. The temperature
distribution is shown in fig. 6.4 together with the data from the “standard” Sun
model [11]. The agreement is reasonable, except in the deeper radiative layers and
the core where it fails because we have disregarded thermonuclear heat production.
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∗ 6.4 Field energy

What is the gravitational energy of a planet or a star? Since the gravitational
potential of a finite body is always negative and grows more negative the closer
one gets to the body, one does not have to perform any work to make such a
body grow. It is sufficient to throw material into the general vicinity of the body,
and let gravity do the rest. Consequently, the gravitational energy of a body is
expected to be negative.

Gravity is in this respect different from most of the other forces we meet in
daily life, for example friction, where we have to perform work to get anything
done. It doesn’t cost us anything to make matter collapse gravitationally, quite
the contrary, we get paid for it (in heat). Matter is inherently unstable because
of gravity, and this instability [69] lies at the root of galaxy and star formation,
and thus of everything that is.

Energy in external field

In chapter 3 it was shown that the work required to move a small particle of
mass m from spatial infinity, where the gravitational potential vanishes, to a
point x, where the potential takes the value Φ(x), is mΦ(x). Consider now a
body with mass density ρ in a volume V situated in an external potential Φext,
not originating from the mass distribution itself. The total work required to
assemble the body, particle by particle brought in from spatial infinity, may then
calculated by adding up the work required for each little material particle, i.e.

Wext =
∫

V

Φext ρ dV . (6-32)

Since gravitational forces are conservative, this work is stored as potential energy
of the body in the external field.

In the special case of a constant gravitational field g0 we find from (3-26)

Wext = −xM ·Mg0 , (6-33)

where as before xM is the center of mass (3-3). With respect to potential energy,
a body in a constant gravitational field is also equivalent to a point particle with
the total mass situated at the center of mass.

Self-energy

For a mass distribution assembled in its own field, the situation is slightly more
complicated. Intuitively it is perhaps clear that each particle used to assemble
the body on the average meets only half the field of the final body. Hence the
energy is expected to be only half of (6-32).

To show that there is indeed such a factor 1/2 we shall employ a frequently
used trick. Let us assume that a part of the mass distribution is already in place
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and bring in an infinitesimal extra amount of mass density δρ(x) to the existing
distribution. The extra mass is so small that we may consider the potential of
the existing masses as external and use (6-32) to compute the extra work

δW =
∫

V

Φ δρ dV . (6-34)

Next, let us imagine that we build up the mass distribution in such a way that
it is everywhere proportional to the final distribution. At any given moment, a
certain fraction λρ of the final distribution is already in place, where 0 < λ < 1.
Since the potential is linear in the mass distribution, the current potential will
also be the same fraction λΦ of the final potential. Increasing the fraction of the
mass distribution by δλ will then cost the work

δW =
∫

V

λΦ(r) δλ ρ(r) dV = λδλ

∫

V

Φ(r)ρ(r) dV . (6-35)

Integrating over λ from 0 to 1, we get the total amount of work we have to
perform in building up the mass distribution from scratch

W =
1
2

∫

V

Φρ dV . (6-36)

This work is the also total gravitational self-energy, Egrav, stored in the mass
distribution. Since the potential of a finite mass distribution is normalized to
vanish at infinity, the gravitational energy is always negative, as we foresaw in
the beginning of this section.

Planet with constant density

A planet of radius a with constant density ρ0 and mass M0 = 4
3πa3ρ0 has the

simple potential (3-19). This yields the gravitational self-energy,

Egrav = −2
5

GM2
0

a
= −2

5
M0g0a , (6-37)

where in the last step we have introduced the surface gravity g0 of the planet. In
spite of the primitivity of the model, this expression may be used as an order of
magnitude estimate of the gravitational energy of a planet or star.

Example 6.4.1: For the Moon we get Egrav = −8.3× 1028 J, for Earth Egrav =
−1.5× 1032 J and for the Sun Egrav = −1.5× 1041 J. Since the Sun’s energy output
is 3.85×1026 W, it could only last for 3.9×1014 s or about 12.5 million years before
the gravitational energy that was converted into heat during its assembly would
have been used up. This paradox was resolved in the 1930’s with the understanding
of the thermonuclear processes responsible for the Sun’s energy production.
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Field energy density

It is possible to transform the expression for the total self-energy (6-36) into a
relation involving only the field strength g by making use of the relationship

∇ · (Φg) = Φ ∇ · g + (g ·∇)Φ . (6-38)

It is most easily proven by writing it explicitly out in coordinates. Integrating
over a volume V and using Gauss’ theorem (6-4) on the left hand side we obtain

∮

S

Φg · dS =
∫

V

∇ · (Φg) dV = −4πG

∫

V

Φρ dV −
∫

V

g2 ,

where we on the right hand side have also used the definition of the potential
(3-20) and the gravitational source equation (6-6).

If we now let the volume V expand to include not only the body but all of
space, the left hand side will tend towards zero, because at large distance r we
have Φ ∼ 1/r and g ∼ 1/r2, whereas the surface area expands only as r2. In the
limit V →∞ we may thus rewrite (6-36) in the form

Egrav =
1
2

∫
Φρ dV = − 1

8πG

∫
g2 dV , (6-39)

with the integrals running over all of space. This form explicitly demonstrates
that the gravitational self-energy of a body is always negative.

In the spherical case we use (3-17) and obtain

Egrav = −1
2
G

∫ ∞

0

M(r)2

r2
dr . (6-40)

This integral always converges for a body of finite mass, i.e. provided M(r) → M0

for r →∞, even if it has no boundary. Inserting M(r) = 4
3πr3ρ0 one immediately

recovers (6-37).

Where is the energy?

Until now we have calculated the total gravitational energy from the non-local
interaction of the mass density with itself through the potential, defined by (3-
24). It now seems that eq. (6-39) tells us, that it may also be viewed as arising
from a local distribution of energy, the energy density of the gravitational field,
−g(x)2/8πG which is non-vanishing even in regions of space completely devoid
of matter. As we discussed in section 1.4, the question whether there is really
energy out there in space depends largely on your theoretical frame-of-mind.
In classical Newtonian physics, rewriting the self-energy as an integral over an
energy density is just another mathematical trick.
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Problems

6.1 Show that Gauss’ theorem in the form (4-22) is equivalent to the usual form (6-4).

6.2 Show that for a barotropic fluid the equation of hydrostatic equilibrium (6-13)
may be rewritten

r2w = −4πGρ (6-41)

where w =
R

dp/ρ is the pressure potential (4-35). Could you derive this equation
without any calculation?

6.3 Calculate the hydrostatic pressure in a two-layer planet (see problem 3.7).

6.4 Show that for a planet with constant density and fixed mass, the central pressure
falls like a−4.

6.5 Show that the adiabatic index for an ideal gas in isentropic equilibrium is given
by

1− 1

γ
=

d log T

d log p
. (6-42)

6.6 (a) Find the power law solutions to the stellar equation (6-22) of the form T ∼ rα

with α < 0. (b) Determine the condition for finite mass for r → 0.

6.7 Show that the short distance behaviour of the Lane-Emden functions is θ(s) =
1− s2/6, independently of γ.

6.8 (a) Show that for γ = 6/5 the solution to the Lane-Emden equation is θ(s) =
(1 + s2/3)−1/2. (b) Calculate pressure and density. (c) Show that although the star
has no boundary, it nevertheless has finite mass.

6.9 Compare the gravitational energy of the Earth to an estimate of how much energy
would be needed to melt the Earth. Do you think the Earth melted when its material
was accumulated from an early cold cloud around the Sun?

6.10 Compare for a spherical planet with constant mass density the total field energy
inside the planet with the field energy outside.

∗ 6.11 Show that

r2 1

|x| = −4πδ(x) , (6-43)

where δ(x) is the three-dimensional δ-function, i.e. the mass distribution of a unit mass
point particle at the origin.

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



108 6. PLANETS AND STARS

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004


