
Part III

Deformable solids
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9
Stress

In fluids at rest pressure is the only contact force. For solids at rest or in motion,
and for viscous fluids in motion, this simple picture is no longer valid. Besides
pressure-like forces acting along the normal to a contact surface, there may also
be shear forces acting tangentially to it. In complete analogy with pressure, the
relevant quantity turns out to be the shear stress, defined to be the shear force
per unit of area. Friction forces are always caused by shear stresses.
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The force on a small piece
of a surface can be resolved
in a normal pressure-like
force and a tangential shear
force.

The two major classes of materials, fluids and solids, react differently to
stress. Whereas fluids respond by flowing, solids respond by deforming. Although
the equations of motion in both cases are derived from Newton’s second law,
fluids and solids are in fact so different, that they mostly are covered in separate
textbooks. In this book, we shall as far as possible maintain a general view of
the physics of continuous systems, applicable to all types of materials.

The integrity of a solid body is largely due to internal elastic stresses, both
normal and shear. Together they resist deformation of the material and prevent
the body from being pulled apart. Unlike friction, elastic forces do not dissipate
energy, and ideally the work done against elastic forces during deformation may
be fully recovered. In reality, some elastic energy will always be lost because of
emission of sound waves that eventually decay and turn into heat. Baron Augustin-Louis

Cauchy (1789–1857).
French mathematician who
produced an astounding 789
papers. Contributed to the
foundations of elasticity,
hydrodynamics, partial
differential equations, num-
ber theory, and complex
functions.

In this chapter the emphasis is on the theoretical formalism for contact forces,
independently of whether they occur in solids, fluids, or intermediate forms such
as clay or dough. The vector notation used up to this point is not adequate
to the task, because contact forces not only depend on the spatial position but
also on the orientation of the surface on which they act. A collection of nine
stress components, called the stress tensor, was introduced by Cauchy in 1822 to
describe the full range of contact forces that may come into play.

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



142 9. STRESS

9.1 Friction

µ0 µ

Glass/glass 0.9 0.4
Rubber/asph. 0.9 0.7
Steel/steel 0.7 0.6
Metal/metal 0.6 0.4
Wood/wood 0.4 0.3
Steel/ice 0.1 0.05
Steel/teflon 0.05 0.05

Approximate friction co-
efficients for various
combinations of materials.

The concept of shear stress is best understood through friction, a shear force
known to us all. We hardly think of friction forces, even though we all day long
are served by them and do service to them. Friction is the reason that the objects
we hold are not slippery as a piece of soap in the bathtub, but instead allow us
to grab and drag, heave and lift, rub and scrub. Most of the work we do is in
fact done against friction, from stirring the coffee to making fire by rubbing two
sticks against each other.
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Balance of forces on a crate
standing still on a horizontal
floor. The point of attack A
is here chosen at floor level
to avoid creating a moment
of force which could turn
over the crate.

Static and sliding friction

Consider a heavy crate standing on a horizontal floor. Its weight mg0 acts ver-
tically downwards on the floor, which in turn reacts back on the crate with an
equal and opposite normal force of magnitude N = mg0. If you try to drag the
crate along the floor by applying a horizontal force F , also called traction, you
may discover that the crate is so heavy that you are not able to budge it, imply-
ing that the force you apply must be fully balanced by a tangential friction force
between the floor and the crate of the same magnitude, T = F , but of opposite
direction.
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Sketch of tangential reac-
tion T as a function of
applied traction F . Up to
F = µ0N , the tangential
reaction adjusts itself to
the traction, T = F . At
F = µ0N , the tangential
reaction drops abruptly to a
lower value, and stays there
independently of the applied
traction.

Empirically, such static friction can take any magnitude up to a certain max-
imum, which is proportional to the normal load,

T < µ0N . (9-1)

The dimensionless constant of proportionality µ0 is called the coefficient of static
friction which in our daily doings may take a quite sizable value, say 0.5 or
greater. Its value depends on what materials are in contact and on the roughness
of the contact surfaces.

If you are able to pull with a sufficient strength, the crate suddenly starts to
move, but friction will still be present and you will have to do real work to move
the crate any distance. Empirically, the dynamic (kinetic or sliding) friction is
proportional to the normal load,

T = µN , (9-2)

with a coefficient of dynamic friction, µ, that is always smaller than the corre-
sponding coefficient of static friction, µ < µ0. This is why you have to heave
strongly to get the crate set into motion, whereas afterwards a smaller force
suffices to keep it going at constant speed.

It is at first sight rather surprising that friction is independent of the size of the
contact area. A crate on legs is as hard to drag as a box without, provided they
weigh the same. Since larger weight generates larger friction, a car’s braking
distance will be independent of how heavily it is loaded. Braking a car it is also
best to avoid skidding because the static (rolling) friction is larger than sliding
friction (see problem 9.2). Anti-skid brake systems automatically adjust braking
pressure to avoid skidding and thus minimize braking distance.

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



9.2. THE CONCEPT OF STRESS 143

The law of sliding friction goes back to Coulomb (1779) (and Amontons
(1699)). The full story of dynamic friction is complicated, and in spite of the ev-
eryday familiarity with friction, there is still no universally accepted microscopic
explanation of the phenomenon1. Charles-Augustin de

Coulomb (1736–1806).
French physicist, best known
from the law of electrostat-
ics and the unit of electric
charge that carries his
name.

9.2 The concept of stress

Shear stress is, just like pressure, defined as force per unit of area, and the
standard unit of stress is the same as the unit for pressure, namely pascal (Pa =
N/m2). If the crate on the floor has a contact area A, we may speak both about
the average normal stress σn = N/A and the average tangential (or shear) stress
σt = T/A that the crate exerts on the floor. Depending on the mass distribution
of the contents of crate and the stiffness of its bottom, the local stresses may
vary across the contact area A.

External and internal stress

The stresses acting between the crate and the floor are external and are found in
the true interface between a body and its environment. In analogy with pressure,
we shall also speak about internal stresses, even if we may be unable to define a
practical way to measure them. Internal stresses abound in the macroscopic world
around us. Whenever we come into contact with the environment (and when do
we not) stresses are set up in the materials we touch, and in our own bodies. The
precise distribution of stress in a body depends not only on the external forces
applied to the body, but also on the type of material the body is made from and
on other macroscopic quantities such as temperature. In the absence of external
forces there is usually no stress in a material, although fast cooling may freeze
stresses permanently into certain materials, for example glass, and provoke an
almost explosive release of stored energy when triggered by a sudden impact.
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Clamped slab of homoge-
neous material. The shear
force F at the upper clamp
is balanced by an oppositely
directed fixation force F
on the lower clamp. The
shear stress σ = F/A is
everywhere the same on all
inner surfaces parallel with
the clamps.

Estimating internal stress

In many situations it is quite straightforward to estimate average stresses in a
body. Consider, for example, a slab of homogeneous solid material bounded by
two stiff flat clamps of area A, firmly glued to it. A tangential force of magnitude
F applied to one clamp with the other held fixed will deform the slab a bit in the
direction of the applied force. Here we shall not worry about how to calculate
the deformation of the slab, but just assume that the response of the slab is the
same everywhere, so that there is a uniform shear stress σ = F/A acting on the
surface of the slab.

The fixed clamp will of course act back on the slab with a force of the same
magnitude but opposite direction. If we make an imaginary cut through the slab

1See for example D. A. Kessler,Surface physics: A new crack at friction, Nature 413, 260
(2001).
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144 9. STRESS

parallel with the clamps, then the upper part of the slab must likewise act on the
lower with the shear force F , so that the internal shear stress everywhere in the
cut again must be σ = F/A. If pressure had also been applied to the clamps, we
would have gone through the same type of argument to convince ourselves that
the normal stress would be the same everywhere in the cut.

For bodies with a more complicated geometry and non-uniform external load,
internal stresses are not so easily calculated, although their average magnitudes
may be estimated. In analogy with friction one may assume that variations in
shear and normal stresses are roughly of the same order of magnitude, provided
the material and the body geometry are not exceptional.

Example 9.2.1 (Classic gallows): The classic gallows is constructed from
a vertical pole, a horizontal beam, and sometimes a diagonal strut. A body of
mass M = 70 kg hangs at the extreme end of the horizontal beam of cross-section
A = 100 cm2. The body’s weight must be balanced by a shear stress in the beam
of magnitude σ ≈ Mg0/A ≈ 70, 000 Pa ≈ 0.7 bar. The actual distribution of shear
stress will vary over the cross-section of the beam and the position of the chosen
cross-section, but its average magnitude should be of the estimated value.
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The classic gallows. Example 9.2.2 (Water pipe): The half-inch water mains in your house have
an inner pipe radius a ≈ 0.6 cm. Tapping water at a high rate, internal friction in
the water (viscosity) creates shear stresses opposing the flow, and the pressure drops
perhaps by ∆p ≈ 0.1 bar = 104 Pa over a length of L ≈ 10 m of the pipe. In this
case, we may actually calculate the shear stress on the water from the inner surface
of the pipe without estimation errors, because the pressure difference between the
ends of the pipe is the only other force acting on the water. Setting the force due
to the pressure difference equal to the total shear force on the inner surface, we get,
πa2∆p = 2πaLσ, from which it follows that σ = ∆p a/2L ≈ 3 Pa. This stress is
indeed of the same size as we would have estimated from the corresponding pressure
drop ∆p · a/L over a stretch of pipe of the same length as the radius.

Tensile strength

Metal MPa

Lead 17
Zink 130
Cast iron 180
Copper 300
Titanium 330–500
Carbon steel 450
Nickel 460
Stainless steel 550

Typical tensile strength for
common metals. The val-
ues may vary widely for dif-
ferent specimens, depending
on heat treatment and other
factors.

When external forces grow large, a solid body may fracture and break apart. The
maximal tension, i.e. negative pressure or pull, a material can sustain without
fracturing is called the tensile strength of the material. For metals it is typically
in the region of hundreds of megapascals. Similarly, the yield stress is defined
as the stress beyond which otherwise elastic solids begin to undergo permanent
deformation.

Example 9.2.3: Plain carbon steel has a tensile strength of 450 MPa. A quick
estimate shows that a steel rod with a diameter of 2 cm breaks, if loaded with more
than 14, 000 kg. Adopting a safety factor of 10, one should not load it with more
than 1, 400 kg.
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9.3. NINE COMPONENTS OF STRESS 145

9.3 Nine components of stress

Shear stress is more complicated than normal stress, because there is more than
one tangential direction on a surface. In a coordinate system where a force dFx

is applied along the x-direction to material surface dSy with its normal in the
y-direction, the shear stress will be denoted σxy = dFx/dSy, instead of just σ.
Similarly, if the shear force is applied in the z-direction, the stress would be
denoted σzy = dFz/dSy, and if a normal force had been applied along the y-
direction, it would be consistent to denote the normal stress σyy = dFy/dSy. By
convention, the sign is chosen such that a positive value of σyy corresponds to a
pull or tension.
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Components of stress acting
on a surface element in the
xz-plane.

Cauchy’s stress hypothesis

Altogether, it therefore appears to be necessary to use at least nine numbers to
indicate the state of stress in a given point of a material in a Cartesian coordinate
system. Cauchy’s stress hypothesis (to be proved below) asserts that the force
dF = (Fx,Fy,Fz) on an arbitrary surface element, dS = (dSx, dSy, dSz), is of
the form

dFx = σxxdSx + σxydSy + σxzdSz ,

dFy = σyxdSx + σyydSy + σyzdSz ,

dFz = σzxdSx + σzydSy + σzzdSz .

(9-3)

where each coefficient σij = σij(x, t) depends on the position and time, and thus
is a field in the normal sense of the word. Collecting them in a matrix

σσσ = {σij} =




σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 . (9-4)

the force may be written compactly as a matrix equation,

dF = σσσ · dS . (9-5)

The force per unit of area is, dF/dS = σσσ ·n, where n is the normal to the surface.
It is sometimes called the stress vector, although it is not a vector field in the
usual sense of the word because it depends on the normal.

The stress tensor

Together the nine fields, {σij}, make up a single geometric object, called the
stress tensor, first introduced by Cauchy in 1822. Using index notation, we may
write

dFi =
∑

j

σijdSj . (9-6)
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146 9. STRESS

Since the force dFi as well as the surface element dSi are vectors, it follows that
σij is indeed a tensor in the sense of section 2.8 (see problem 2.20). This collection
of nine fields {σij} cannot be viewed geometrically as consisting of nine scalar or
three vector fields, but must be considered together as one geometrical object, a
tensor field σij(x, t) which is neither scalar nor vector. As for ordinary tensors
(see section 2.8), there is unfortunately no simple, intuitive way of visualizing
the stress tensor geometrically.

Example 9.3.1: The stress tensor field of the form,

{σij} = {xixj} =

0@x2 xy xz
yx y2 yz
zx zy z2

1A (9-7)

is a tensor product and thus by construction a true tensor. The stress “vector”
acting on a surface with normal in the direction of the x-axis is

�x = σσσ · ex =

0@x
y
z

1Ax (9-8)

does not transform under rotations as a true vector because of the factor x on the
right hand side.

Hydrostatic pressure

For the special case of hydrostatic equilibrium, where the only contact force is
pressure, comparison of (9-5) with (4-8) shows that the stress tensor must be

σσσ = −p 111 , (9-9)

where 111 is the [3× 3] unit matrix. In tensor notation this becomes

σij = −p δij , (9-10)

where δij is the index representation of the unit matrix, i.e. the Kronecker delta
(2-29).

Average pressure

Generally, however, the stress tensor will have both diagonal and off-diagonal
non-vanishing components. A diagonal component behaves like a (negative) pres-
sure, and one often defines the pressures along different coordinate axes to be

px = −σxx , py = −σyy , pz = −σzz . (9-11)

Since they may be different, it is not clear what the meaning of the pressure
in a point should be. Furthermore, it should be remembered that the diagonal
elements of a tensor (σxx, σyy, σzz) do not behave as a vector under Cartesian
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coordinate transformations and thus have no well-defined geometric meaning (see
section 2.8 and problem 2.23).

The pressure is defined to be the average of the three pressures along the
axes,

p =
1
3
(px + py + pz) = −1

3
(σxx + σyy + σzz) . (9-12)

This makes sense because the sum over the diagonal elements of a matrix, the
trace Tr σσσ =

∑
i σii = σxx + σyy + σzz, is invariant under Cartesian coordinate

transformations (problem 2.17). Defining pressure in this way ensures that it is
a scalar field, taking the same value in all coordinate systems.

Example 9.3.2: For the stress tensor given in example 9.3.1 the pressures along
the coordinate axes become px = −x2, py = −y2, and pz = −z2. Evidently, they do
not form a vector, but the average pressure,

p = −1

3
(x2 + y2 + z2) , (9-13)

is clearly a scalar, invariant under rotations of the Cartesian coordinate system.

∗ Proof of Cauchy’s stress hypothesis
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The tiny triangle and its
projections form a tetrahe-
dron.

Let us as in the proof of Pascal’s law (page 62) again take a surface element in
the shape of a tiny triangle with area vector dS = (dSx, dSy, dSz). The triangle
and its projections on the coordinate planes form together a little body in the
shape of a tetrahedron. Since we aim to prove the existence of the stress tensor,
we cannot assume that it exists. What we know is that the forces acting from the
inside of the tetrahedron on the three triangular faces in the coordinate planes are
vectors of the form dFx = σxdSx, dFy = σydSy, and dFz = σzdSz. Denoting
the force acting from the outside on the fourth (skew) face dF , and adding a
possible volume force fdV , the equation of motion for the small tetrahedron
becomes

dM w = fdV + dF − dFx − dFy − dFz , (9-14)

where w is the acceleration of the tetrahedron, and dM = ρdV its mass, which
is assumed to be constant. The signs have been chosen in accordance with the
inward direction of the area projections dSx, dSy and dSz.

The volume of the tetrahedron scales like the third power of its linear size,
whereas the surface areas only scale like the second power (see section 4.2).
Making the tetrahedron progressively smaller, the body force term and the ac-
celeration term will vanish faster than the surface terms. In the limit of a truly
infinitesimal tetrahedron, only the surface terms survive, so that we must have

dF = σxdSx + σydSy + σzdSz . (9-15)

This shows that the force on an arbitrary surface element may be written as
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Components of the stress
vector �x acting on a sur-
face element in the yz-plane.

a linear combination of three basic stress vectors, one for each coordinate axis.
Introducing the nine coordinates of the three triplets, σx = (σxx, σyx, σzx), σy =
(σxy, σyy, σzy), and σz = (σxz, σyz, σzz), we arrive at (9-3).

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



148 9. STRESS

9.4 Mechanical equilibrium

Including a volume force density fi, the total force on a volume V with surface
S becomes according to (9-6)

Fi =
∫

V

fi dV +
∮

S

∑

j

σij dSj . (9-16)

Using Gauss’ theorem (4-22) this may be written as single volume integral

Fi =
∫

V

f∗i dV , (9-17)

where

f∗i = fi +
∑

j

∇jσij , (9-18)

is the effective force density. The effective force is not just a formal quantity,
because the total force on a material particle of volume dV is dF = f∗ dV .
As in hydrostatics (page 64) this may be demonstrated by considering a small
box-shaped particle.

r
(x, y, z) dx

dz dy
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The total contact force on
a small box-shaped mate-
rial particle is calculated
from the variations in
stress on the sides. Thus
dF = (�x(x + dx, y, z) −
�x(x, y, z))dSx ≈ ∇x�x dV
for the stress on dSx, plus
the similar contributions
from dSy and dSz.

Cauchy’s local equilibrium equation

In mechanical equilibrium, the total force on any piece of material must vanish,
for if it doesn’t the piece of material will begin to move. So the general condition
is that F = 0 for all volumes V , and this is only possible if the effective force
density vanishes everywhere,

fi +
∑

j

∇jσij = 0 . (9-19)

This equation is called Cauchy’s equation of equilibrium and governs in spite of
its simplicity mechanical equilibrium in all kinds of continuous matter, be it solid,
fluid, or anything else. In particular, for σij = −p δij we recover the equation
of hydrostatic equilibrium, fi −∇ip = 0. It is instructive to write out the three
individual equations contained in Cauchy’s equilibrium equation,

fx +∇xσxx +∇yσxy +∇zσxz = 0 ,

fy +∇xσyx +∇yσyy +∇zσyz = 0 ,

fz +∇xσzx +∇yσzy +∇zσzz = 0 .

(9-20)

These equations are in themselves not sufficient to determine the state of con-
tinuous matter, but must be supplemented by suitable constitutive equations
connecting stress and state.

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



9.4. MECHANICAL EQUILIBRIUM 149

For fluids at rest, the equation of state served this purpose by relating hydro-
static pressure and mass density (chapter 4). In elastic solids, the constitutive
equations are more complicated and relate stress to displacement (chapter 11).
Fluids and solids in motion can by their nature not be in mechanical equilibrium
and obey instead dynamic equations closely related to the equilibrium equations.
These will be discussed in chapters 15 and 13. In addition to hydrostatic pres-
sure, fluids in motion will also be subject to stresses that depend on the spatial
variation in flow velocity (chapter 18).

Symmetry

There is one very general condition (also going back to Cauchy) which may always
be imposed, namely the symmetry of the stress tensor

σij = σji . (9-21)

Symmetry only affects the shear stress components, requiring

r -σxy

r
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A symmetric stress tensor
acts with equal strength on
orthogonal faces of a cubic
body.

σxy = σyx , σyz = σzy , σzx = σxz , (9-22)

and thus reduces the number of independent stress components from nine to six.

Being thus a symmetric matrix, the stress tensor may be diagonalized. The eigen-
vectors define the principal directions of stress and the eigenvalues the principal
tensions or stresses. In the principal basis, there are no off-diagonal elements,
i.e. shear stresses, only pressures. The principal basis is generally different from
point to point in space.

Proof of symmetry: The technical “proof” of symmetry rests on exploiting
an ambiguity in the definition of the stress tensor and will be given in section 9.5.
Here we shall only present a simple argument valid for mechanical equilibrium.
Consider a material particle in the shape of a tiny rectangular box with sides
a, b, and c. The force acting in the y-direction on a face in the x-direction is
σyxbc whereas the force acting in the x-direction on a face in the y-direction is
σxyac. On the opposite faces the contact forces have opposite sign in mechanical
equilibrium (their difference and the volume forces are as we have seen of order
abc). Since the total force vanishes, the total moment of force on the box may
be calculated around any point we wish. Using the lower left corner, we get

Mz = a σyxbc− b σxyac = (σyx − σxy)abc .

This shows that if the stress tensor is asymmetric, σxy 6= σyx, there will be a

-

a

b

σxyac

6

σyxbc

¾
−σxyac

?

−σyxbc

r -
6

x

y

An asymmetric stress tensor
will produce a non-vanishing
moment of force on a small
box (the z-direction not
shown).

resultant moment on the box. In mechanical equilibrium this cannot be allowed,
since such a moment would begin to rotate the box, and consequently the stress
tensor must be symmetric. Conversely, when the stress tensor is symmetric,
mechanical equilibrium of the forces alone guarantees that all moments of force
will vanish.
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Boundary conditions
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1 2

¾n
σσσ1 σσσ2

Contact surface separat-
ing body 1 from body 2.
Newton’s third law requires
continuity of the stress vec-
tor σσσ ·n across the boundary,
i.e. σσσ1 · n = σσσ2 · n.

Cauchy’s equation of equilibrium is a differential equation, and differential equa-
tions require boundary conditions. The stress tensor is a local physical quan-
tity, or rather collection of quantities, and may, like pressure in hydrostat-
ics, be assumed to be continuous in regions where material properties change
continuously. Across real boundaries, interfaces, where material properties
may change abruptly, Newton’s third law only demands that the stress vector,
σσσ · n = {∑j σijnj}, be continuous across a surface with normal n (in the ab-
sence of surface tension). This does not mean that all the components of the
stress tensor should be continuous. Since Newton’s third law is a vector con-
dition, it imposes continuity on three linear combinations of stress components,
but leaves for the symmetric stress tensor three other combinations free to jump
discontinuously. Surprisingly, it does not follow that the average pressure (9-12)
is continuous. In full-fledged continuum theory, the average pressure loses the
appealing intuitive content it acquired in hydrostatics.
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Only the three components
of the stress vector need to be
continuous on the interface.

Example 9.4.1: Consider a plane interface in the yz-plane. The stress compo-
nents σxx, σyx, and σzx must then be continuous, because they specify the stress
vector on such a surface. Symmetry implies that σxy and σxz are likewise continuous.
The remaining three independent components σyy, σzz, and σyz = σzy are allowed to
jump at the interface. In particular the average pressure, p = −(σxx +σyy +σzz)/3,
may be discontinuous.

∗ 9.5 “Proof” of symmetry of the stress tensor

If the stress tensor is manifestly asymmetric, we shall now show that it is always
possible to make it symmetric by exploiting an ambiguity in its definition. The
argument which will now be presented is adapted from Martin, Parodi, and
Pershan2 (see also [10, p. 7]).

The ambiguous stress tensor

The stress tensor was introduced in the beginning of this chapter as a quantity
which furnished a complete description of the contact forces that may act on any
surface element. But surface elements are not in themselves physical bodies. The
only way we can determine the magnitude and direction of a force is by observing
its influence on the motion of a real physical body having a volume and a closed
surface. The resultant of all contact forces acting on the surface of a body is

∮

S

∑

j

σij dSj =
∫

V

∑

j

∇jσij dV ,

and this shows that the relevant quantity for the dynamics of continuous matter
is the effective density of force

∑
j ∇jσij rather than the stress tensor itself.

2P. C. Martin, O. Parodi, and P. S. Pershan, Phys. Rev. A6, 2401 (1972)
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Two stress tensors, σij and σ̃ij , are therefore physically indistinguishable,
if they give rise to the same effective density of force everywhere. This is, for
example, the case if we write

σ̃ij = σij +
∑

k

∇kχijk (9-23)

where χijk is antisymmetric in j and k,

χijk = −χikj . (9-24)

For then
∑

j

∇j σ̃ij =
∑

j

∇jσij +
∑

jk

∇j∇kχijk =
∑

j

∇jσij ,

where the last term in the middle vanishes because of the symmetry of the double
derivatives and the assumed antisymmetry of χijk.

It remains to show that there exists a tensor χijk such that σ̃ij becomes
symmetric. Let us put

χijk = ∇iφjk +∇jφik −∇kφij (9-25)

where φij is an antisymmetric tensor, φij = −φji, chosen to be a solution to
Poisson’s equation with the antisymmetric part of the original stress tensor as
source,

∇2φij =
1
2
(
σij − σji

)
. (9-26)

Such a solution can in principle always be found, and then we obtain from (9-23)

σ̃ij =
1
2
(
σij + σji

)
+

∑

k

∇k

(∇iφjk +∇jφik

)
(9-27)

which is manifestly symmetric. Notice, however, that the new symmetric stress
tensor is not just the symmetric part of the old, but contains extra terms.

Non-classical continuum theories

The conclusion is, that if somebody presents you with a stress tensor which is
asymmetric, you may always replace it by a suitable symmetric stress tensor,
having exactly the same physical consequences.

But even if it is formally possible to choose a symmetric stress tensor, it may
not always be convenient, because of the non-locality inherent in the solution
to Poisson’s equation in (9-26). Asymmetric stress tensors have been used in
various generalizations of classical continuum theory, containing elementary vol-
ume and surface densities of moments (body couples and couple stresses) and
sometimes also intrinsic angular momentum (spin). We shall not go further into
these extensions of continuum theory here; so-called micropolar materials are,
for example, discussed in [33, p. 493].
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Problems

9.1 A crate being dragged over a horizontal floor with sliding friction coefficient µ.
Determine the angle α with the vertical of the total reaction force.

9.2 A car with mass m moves with a speed v. Estimate the minimal breaking distance
without skidding and the corresponding braking time. Do the same if it skids from the
beginning to the end. For numerics use m = 1000 kg and v = 100 km/h. The static
coefficient of friction between rubber and the surface of a road may be taken to be
µ0 = 0.9, whereas the sliding friction is µ = 0.7.

9.3 A strong man pulls a jumbo airplane slowly but steadily exerting a force of F =
2, 000 N on a rope. The plane has N = 32 wheels, each touching the ground in a square
area A = 40× 40 cm2. (a) Estimate the shear stress due to friction between the rubber
and the tarmac. (b) Estimate the shear stress between the tarmac and his feet, each
with area A = 5× 25 cm2.

9.4 Estimate the maximal height h of a mountain made from rock with a density of
ρ = 3, 000 kg/m3 when the maximal stress the material can tolerate before it deforms
permanently is σ = 300 MPa. How high could it be on Mars where the surface gravity
is 3.7 m/s2?

9.5 A stress tensor has all components equal, i.e. σij = τ for all i, j. Find its eigen-
values and eigenvectors.

9.6 Show that if the stress tensor is diagonal in all coordinate systems, then it can
only contain pressure.

∗ 9.7 A body of mass m stands still on a horizontal floor. The coefficients of static
and kinetic friction between body and floor are µ0 and µ. An elastic string with string
constant k is attached to the body in a point close to the floor. The string can only
exert a force on the body when it is stretched beyond its relaxed length. When the free
end of the string is pulled horizontally with constant velocity v, intuition tells us that
the body will have a tendency to move in fits and starts.

(a) Calculate the amount s that the string is stretched, just before the body begins
to move?

(b) Write down the equation of motion for the body when it is just set into motion,
for example in terms of the distance x that the point of attachment of the string
has moved and the time t elapsed since the motion began.

(c) Show that the solution to this equation is

x =
v

ω
(ωt− sin ωt) + (1− r)s(1− cos ωt)

where ω =
p

k/m, r = µ/µ0.

(d) Assuming that the string stays stretched, calculate at what time t = t0 the body
stops again?

(e) Find the condition for the string to be stretched during the whole motion.

(f) How long time will the body stay in rest, before moving again?
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∗ 9.8 One may define three invariants, i.e. scalar functions, of the stress tensor in any
point. The first is the trace I1 =

P
i σii, the second I2 = 1

2

P
ij(σiiσjj − σijσji) which

has no special name, and the determinant I3 = detσσσ. Show that the characteristic
equation for the matrix σσσ can be expressed in terms of the invariants. Can you find an
invariant for an asymmetric stress tensor which vanishes if symmetry is imposed?
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