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Surface tension

At the interface between two materials physical properties change rapidly over
distances comparable to the molecular separation scale. The transition layer is,
from a macroscopic point of view, an infinitely thin sheet coinciding with the
interface. Although the transition layer in the continuum limit thus appears
to be a mathematical surface, it may nevertheless possess macroscopic physical
properties, such as energy. And where energy is found, forces are not far away.
Surface energy is necessarily accompanied by surface forces, because work has
to performed if the area of an interface and thus its surface energy is increased.
The surface energy per unit of area or equivalently the force per unit of length
is called surface tension.

Surface tension depends on the physical properties of both of the interfacing
materials, which is quite different from other material constants, for example the
bulk modulus, that normally depend only on the physical properties of just one
material. Surface tension creates a finite jump in pressure across the interface,
but the typical magnitude of surface tension limits its influence to fluid bodies
much smaller than the huge planets and stars discussed in the preceding chap-
ters. When surface tension does come into play, as it does for a drop of water
hanging at the tip of an icicle, the shape of a fluid body bears little relation to
the gravitational equipotential surfaces that dominate the large scale systems.
The characteristic length scale where surface tension matches standard gravity
in strength, the capillary length, is merely three millimeters for the water-air in-
terface. This is the length scale of champagne bubbles, droplets of rain, insects
walking on water, and many other phenomena.

In this chapter surface tension is introduced together with the accompanying
concept of contact angle, and applied to the capillary effect, and to bubbles and
droplets. In chapter 22 we shall study its influence on surface waves.
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126 8. SURFACE TENSION

8.1 Definition of surface tension

The apparent paradox that a mathematical surface with no volume can possess
energy may be resolved by considering a primitive three-dimensional model of a
material in which the molecules are placed in a cubic grid with grid length Lmol.
Each molecule in the interior has six bonds to its neighbors with a total binding
energy of −ε, but a surface molecule will only have five bonds when the material
is interfacing to vacuum. The (negative) binding energy of the missing bond is
equivalent to an extra positive energy ε/6 for a surface molecule relative to an
interior molecule, and thus an extra surface energy density,
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Two-dimensional cross
section of a primitive
three-dimensional model of
a material interfacing to
vacuum. A molecule at the
surface has only five bonds
compared to the six that tie
a molecule in the interior.

α ≈ 1
6

ε

L2
mol

. (8-1)

The binding energy may be estimated from the specific enthalpy of evaporation
H of the material as ε ≈ HMmol/NA. Notice that the unit for surface tension is
J/m2 = kg/s2.

Example 8.1.1: For water the specific evaporation enthalpy is H ≈ 2.2×106 J/kg,
leading to the estimate α ≈ 0.12 J/m2. The measured value of the surface energy
for water/air interface is in fact α ≈ 0.073 J/m2 at room temperature. Less than a
factor of 2 wrong is not a bad estimate at all!

α[mN/m]

Water 72
Methanol 22
Ethanol 22
Bromine 41
Mercury 485

Surface tension of some liq-
uids against air at 1 atm and
25◦C in units of millinewton
per meter (from [3]).

Surface energy and surface tension

Increasing the area of the interface by a tiny amount dA, takes an amount of
work equal to the surface energy contained in the extra piece of surface,

dW = α dA . (8-2)

This is quite analogous to the mechanical work dW = −p dV performed against
pressure when the volume of the system is expanded by dV . But where a volume
expansion under positive pressure takes negative work, increasing the surface area
takes positive work. This resistance against extension of the surface shows that
the interface has a permanent internal tension, called surface tension1 which we
shall now see equals the energy density α.

Formally, surface tension is defined as the force per unit of length that acts
orthogonally to an imaginary line drawn on the interface. Suppose we wish to
stretch the interface along a straight line of length L by a uniform amount ds.
Since the area is increased by dA = Lds, it takes the work dW = αLds, implying
that the force acting orthogonally to the line is F = αL, or F/L = α. Surface
tension is thus identical to the surface energy density. This is also reflected in
the equality of the natural units for the two quantities, N/m = J/m2.

dA

ds

L -
F

An external force F per-
forms the work dW = F ds
to stretch the surface by
ds. Since the area increase
is dA = Lds, the force is
F = α L. The force per unit
of length, α = F/L, is the
surface tension.

1There is no universally agreed-upon symbol for surface tension which is variously denoted
α, γ, σ, S, Υ and even T . We shall use α, even if it collides with other uses, for example the
thermal expansion coefficient.
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8.1. DEFINITION OF SURFACE TENSION 127

Since the interface has no macroscopic thickness, it may be viewed as being
locally flat everywhere, implying that the energy density cannot depend on the
macroscopic curvature, but only on the microscopic properties of the interface. If
the interfacing fluids are homogeneous and isotropic — as they normally are —
the value of the surface energy density will be the same everywhere on the surface,
although it may vary with the local temperature. Surface tension depends as
mentioned on the physical properties of both of the interfacing materials, which
is quite different from other material constants that normally depend only on the
physical properties of just one material.

Fluid interfaces in equilibrium are usually quite smooth, implying that α must
always be positive. For if α were negative, the system could produce an infinite
amount of work by increasing the interface area without limit. The interface
would fold up like crumbled paper and mix the two fluids thoroughly, instead
of separating them. Formally, one may in fact view the rapid dissolution of
ethanol in water as due to negative interfacial surface tension between the two
liquids. The general positivity of α guarantees that fluid interfaces seek towards
the minimal area consistent with the other forces that may be at play, for example
pressure forces and gravity. Small raindrops and champagne bubbles are for this
reason nearly spherical. Larger raindrops are also shaped by viscous friction,
internal flow, and gravity, giving them a much more complicated shape.

Pressure excess in a sphere

Consider a spherical ball of liquid of radius a, for example hovering weightlessly
in a spacecraft. Surface tension will attempt to contract the ball but is stopped
by the build-up of an extra pressure ∆p inside the liquid. If we increase the radius
by an amount da we must perform the work dW1 = α dA = αd(4πa2) = α8πa da
against surface tension. This work is compensated by the thermodynamic work
against the pressure excess dW2 = −∆p dV = −∆p 4πa2 da. In equilibrium there
should be nothing to gain, dW1 + dW2 = 0, leading to,

∆p =
2α

a
. (8-3)

The pressure excess is inversely proportional to the radius of the sphere.
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Surface tension increases
the pressure inside a
spherical droplet or bubble.

It should be emphasized that the pressure excess is equally valid for a spherical
raindrop in air and a spherical air bubble in water. A spherical soap bubble of
radius a has two spherical surfaces, one from air to soapy water and one from
soapy water to air. Each gives rise to a pressure excess of 2α/a, such that the
total pressure inside a soap bubble is 4α/a larger than outside.

Example 8.1.2: A spherical raindrop of diameter 1 mm has an excess pressure
of only about 300 Pa, which is tiny compared to atmospheric pressure (105 Pa). A
spherical air bubble the size of a small bacterium with diameter 1 µm acquires a
pressure excess due to surface tension a thousand times larger, about 3 atm.
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128 8. SURFACE TENSION

When can we disregard the influence of gravity on the shape of a raindrop?
For a spherical air bubble or raindrop of radius a, the condition must be that
the change in hydrostatic pressure across the drop should be negligible compared
to the pressure excess due to surface tension, i.e. ρ0g02a ¿ 2α/a, where ρ0 is
the density of water (minus the negligible density of air). Consequently, we must
require

a ¿ Rc =
√

α

ρ0g0
, (8-4)

where the critical radius Rc is called the capillary constant or capillary radius.
It equals 2.7 mm for water and 1.9 mm for mercury.

Pressure discontinuity due to surface tension
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A plane containing the nor-
mal in a point intersects the
surface in a planar curve
with a signed radius of
curvature in the point. The
extreme values of the signed
radii of curvature define the
principal directions. The
small rectangle has sides
parallel with the principal
directions.

A smooth surface may in a given point be intersected with an infinity of planes
containing the normal to the surface. In each normal plane the intersection
is a smooth planar curve which at the given point may be approximated by a
circle centered on the normal. The center of this circle is called the center of
curvature and its radius the radius of curvature of the intersection. Usually the
radius of curvature is given a sign depending on which side of the surface the
center of curvature is situated. As the intersection plane is rotated, the center
of curvature moves up and down the normal between extreme values R1 and R2

of the signed radius of curvature, called the principal radii of curvature. It may
be shown (problem 8.2) that the corresponding principal intersection planes are
orthogonal, and that the radius of curvature along any other normal intersection
may be calculated from the principal radii.
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The rectangular piece of the
surface of size d`1 × d`2
is exposed to two tension
forces along the 1-direction
resulting in a normal force
pointing towards the center
of the circle of curvature.
The tension forces in the
2-direction also contribute
to the normal force.

Consider now a small rectangle d`1× d`2 with its sides aligned with the prin-
cipal directions, and let us to begin with assume that R1 and R2 are positive. In
the 1-direction surface tension acts with two nearly opposite forces of magnitude
αd`2, but because of the curvature of the surface there will be a resultant force
in the direction of the center of the principal circle of curvature. Each of the ten-
sion forces forms an angle d`1/2R1 with the tangent, and projecting both on the
normal we obtain the total inwards force 2αd`2×d`1/2R1. Since the force is pro-
portional to the area d`1d`2 of the rectangle, it represents an excess in pressure
∆p = α/R1 on the side of the surface containing the center of curvature. Finally,
adding the contribution from the 2-direction we obtain the Young-Laplace law
for the pressure discontinuity due to surface tension,

∆p = α

(
1

R1
+

1
R2

)
. (8-5)

For the sphere we have R1 = R2 = a and recover the preceding result (8-3). The
Young-Laplace law may be extended to signed radii of curvature, provided it is
remembered that a contribution to the pressure discontinuity is always positive
on the side of the surface containing the center of curvature, otherwise negative.
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water

air

Sketch of the meniscus
formed by evaporation of
water from the surface of
a plant leaf, resulting in a
high negative pressure in the
water, capable of lifting the
sap to great heights.
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8.2. CONTACT ANGLE 129

Example 8.1.3 (How sap rises in plants): Plants evaporate water through
tiny pores on the surface of the leaves. This creates a hollow air-to-water surface in
the shape of a half-sphere of the same diameter as the pore. Both radii of curvature
are negative R1 = R2 = −a because the center of curvature lies outside the water,
leading to a negative pressure excess in the water. For a pore of diameter 2a ≈ 1 µm
the excess pressure inside the water will be about ∆p ≈ −3 atm, capable of lifting
sap through a height of 30 m. In practice, the lifting height is considerably smaller
because of resistance in the xylem conduits of the plant through which the sap
moves. Taller plants and trees need correspondingly smaller pore sizes to generate
sufficient negative pressures, even down to −100 atm! Recent research has confirmed
this astonishing picture (see M. T. Tyree, Nature 423, 923 (2003)).

8.2 Contact angle
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An air/liquid interface
meeting a wall. The up-
per curve makes an acute
contact angle, like water,
whereas the lower curve
makes an obtuse contact
angle, like mercury.

An interface between two fluids is a two-dimensional surface which makes contact
with a solid wall along a one-dimensional line. Locally the plane of the fluid
interface forms a certain contact angle χ with the wall. For the typical case of a
liquid/air interface, χ is normally defined as the angle inside the liquid. Water
and air against glass meet in a small acute contact angle, χ ≈ 0, whereas mercury
and air meets glass at an obtuse contact angle of χ ≈ 140◦. Due to its small
contact angle, water is very efficient in wetting many surfaces, whereas mercury
has a tendency to make pearls. It should be emphasized that the contact angle
is extremely sensitive to surface properties, fluid composition, and additives.

In the household we regularly use surfactants that are capable of making dishwater
wet greasy surfaces where it otherwise would tend to pearl. After washing our
cars we apply a wax which makes rainwater pearl and prevents it from wetting
the surface, thereby diminishing rust and corrosion.

The contact angle is a material constant which depends on the properties of
all three materials coming together. Whereas material adhesion can sustain a
tension normal to the wall, the tangential tension has to vanish. This yields an
equilibrium relation between the three surface tensions,
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Two fluids meeting at a solid
wall in a line orthogonal
to the paper. The tangen-
tial component of surface
tension must vanish.

α13 = α23 + α12 cosχ , (8-6)

This relation is, however, not particularly useful because of the sensitivity of χ to
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An insect foot making con-
tact with the water surface
at an obtuse angle.

surface properties, and it is better to view χ as an independent material constant.

Example 8.2.1 (Walking on water): Insects capable of walking on the
surface of water must “wax” their feet to obtain an obtuse contact angle and avoid
getting wet. Since they are carried by surface tension we may estimate an insect’s
ability to walk on water by the so-called Jesus number [70] Je = αL/Mg0 where M
is the mass of the insect and L the length of the circumference of all the contact
regions. Thus, to obtain Je > 1 an insect with M = 10 mg must have L > 1.3 mm.
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130 8. SURFACE TENSION

Capillary effect

Water has a well-known tendency to rise above the ambient water level in a
narrow vertical glass tube which is lowered into the liquid. Closer inspection
reveals that the surface inside the tube is concave. This is called the capillary
effect and is caused by the acute contact angle of water in conjunction with its
surface tension which creates a negative pressure just below the liquid surface,
balancing the weight of the raised water column. Mercury with its obtuse contact
angle displays instead a convex surface shape, creating a positive pressure just
below the surface which forces the liquid down to a level where the pressure
equals the pressure at the ambient level.
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Water rises above the ambi-
ent level in a glass tube and
displays a concave surface
inside the tube. Mercury
behaves oppositely and sinks
with a convex surface.

......................................
......................................

...............
............................................................. h < 0

Mercury sinks below the gen-
eral level in a capillary glass
tube.

Let us first calculate the effect for an acute angle of contact. At the center of
the tube the radii of curvature are equal, and since the center of curvature lies
outside the liquid, they are also negative, R1 = R2 = −R0 where R0 is positive.
Hydrostatic balance at the center of the tube then takes the form, ρ0g0h = 2α/R0

where h is the central height, such that

h =
2α

ρ0g0R0
= 2

R2
c

R0
. (8-7)

It should be noticed that this is an exact relation which does not depend on the
surface being spherical. It also covers the case of an obtuse contact angle by
taking R0 to be negative.

Assuming now that the surface is in fact spherical, which should be the case for
a . Rc where gravity has no effect on the shape, a simple geometric construction
shows that a = R0 cosχ, and thus,

h = 2
R2

c

a
cos χ . (8-8)

It is as expected positive for acute and negative for obtuse contact angles. From
the same geometry it also follows that the depth of the central point of the surface
is d = R0(1− sin χ), or

d = a
1− sin χ

cosχ
, (8-9)

Both of these expressions are modified for larger radius, a & Rc where the surface
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surface with acute contact
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flattens.

Example 8.2.2: A capillary tube has diameter 2a = 1 mm. Water with χ ≈ 0
rises h = +30 mm with a surface depth d = +0.5 mm . Mercury with contact angle
χ ≈ 140◦ sinks on the other hand to h = −11 mm and d = −0.2 mm under the same
conditions.
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8.3. CAPILLARY EFFECT AT A VERTICAL WALL 131

8.3 Capillary effect at a vertical wall
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d

The interface at a vertical
wall with an acute angle of
contact.

In the limit of infinite tube radius the capillary effect only deforms the liquid
surface close to the nearly flat vertical wall to accommodate the finite contact
angle. Far from the wall the surface is perfectly flat, and there will be no pressure
jump due to surface tension, and consequently no general capillary rise of the
surface above the ambient level. This is an exactly solvable case which nicely
illustrates the mathematics of planar curves.

The rise or drop at the wall may be estimated by a geometric argument of the
same kind as at the end of the preceding section. Assuming that the shape is a
circle of radius R, the pressure change due to surface tension inside the liquid is
∆p = −α/R roughly in the middle at z = d/2. Hydrostatic balance thus requires
ρ0g0d/2 ≈ α/R, and since the radius R as before is related by geometry to the
depth by d = R(1− sin χ), we find for an acute angle of contact,

d ≈ Rc

√
2(1− sinχ) = 2Rc sin

90◦ − χ

2
. (8-10)

The last expression is also valid for an obtuse angle of contact. We shall see
below that this expression is in fact identical to the exact result.

For water with nearly vanishing angle of contact, we find d ≈ √
2Rc ≈ 3.9 mm

whereas for mercury with χ = 140◦ we get d ≈ −1.6 mm.
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Geometry of planar curves

Taking the x-axis orthogonal to the wall, and the z-axis vertical, the surface
shape may be assumed to be independent of y and described by a simple curve
in the xz-plane. The best way to handle the geometry of a planar curve is to
use two auxiliary parameters: the arc length s along the interface curve, and the
elevation angle θ between the x-axis and the oriented tangent to the curve. From
this definition of θ we obtain immediately,
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Here the radius of curvature
is positive.

dx

ds
= cos θ ,

dz

ds
= sin θ . (8-11)

The radius of curvature may conveniently be defined as,

R =
ds

dθ
. (8-12)

Evidently this geometric radius of curvature is positive if s is an increasing func-
tion of θ, otherwise negative. One should be aware that this sign convention may
not agree with the physical sign convention for the Young-Laplace law (8-5). De-
pending on the arrangement of liquid and air, it may be necessary to introduce
an explicit sign to get the physics right.
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132 8. SURFACE TENSION

Hydrostatic balance

Assuming that the air pressure is constant, p = p0, the pressure in the liquid
just below the surface is p = p0 + ∆p where ∆p is given by the Young-Laplace
(8-5) law. Denoting the local geometric radius of curvature by R we have for an
acute angle of contact R1 = −R and R2 = ∞, because the center of curvature
lies outside the liquid. The pressure is thus negative ∆p = −α/R just below the
surface, and the hydrostatic pressure of the raised surface must balance the drop
in pressure, ρ0g0z = α/R, everywhere on the surface. Introducing the capillary
radius (8-4), this may be written as 1/R = z/R2

c , and we find from (8-12)

dθ

ds
=

z

R2
c

. (8-13)

This equation together with the two definitions (8-11) determine x, z and θ as
functions of s.

There are several different types of solutions, depending on the boundary
conditions. For the surface near the wall the boundary conditions are x = 0 and
θ = χ − 90◦ for s = 0, and z → 0 for s → ∞. Having obtained the solution we
may then determine the depth z = d for x = 0.

The pendulum connection

Since Rc is a constant for the liquid, we may without loss of generality choose
the unit of length such that Rc = 1. Differentiating (8-13) once more after s, we
obtain the equation of motion for an inverted mathematical pendulum,

d2θ

ds2
= sin θ . (8-14)

The boundary conditions correspond to starting the pendulum at an angle θ =
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the pendulum has to start
from the other side of the
unstable equilibrium.

θ0 = χ − 90◦ with velocity dθ/ds = d, according to (8-13) (for Rc = 1). The
depth d must be chosen precisely such that the pendulum eventually comes to
rest in the unstable equilibrium at θ = 0.

If the velocity is chosen larger than the depth, the pendulum will continue through
the unstable equilibrium, and the liquid surface will start to rise again. When the
pendulum reaches the angle θ = −θ0, another vertical wall may be placed there,
forming the same angle of contact with the liquid surface. This is the planar
analogue of the capillary effect in a circular tube, but this problem is not solvable
in terms of elementary functions. The periodic pendulum solutions obtained by
letting the pendulum move through the stable equilibrium at θ = π correspond
to a strip of liquid hanging at the lower edge of the vertical plate.

To find the solution for the problem at hand, the surface shape near a single wall,
we multiply the pendulum equation of motion by dθ/ds and integrate, to get

1
2

(
dθ

ds

)2

= 1− cos θ ,
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8.4. AXIALLY INVARIANT SHAPES 133

where the constant 1 has been determined from the condition that dθ/ds = 0
and θ = 0 for s →∞. From this equation and (8-13) we derive that,

z = −2 sin
θ

2
, (8-15)

independently of whether the contact angle is acute or obtuse. Taking θ = χ−90◦

we recover indeed (8-10).
The dependence of x on θ is calculated from,

dx

dθ
=

dx/ds

dθ/ds
=

cos θ

−2 sin θ
2

= sin
θ

2
− 1

2 sin θ
2

.

This differential equation integrates to

1 2 3 4 x

-1
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0.5

1

1.5
z

Capillary surface shape of
water and mercury in units
where Rc = 1. Notice the
exaggerated vertical scale.

x = x0 − 2 cos
θ

2
− log

∣∣∣∣tan
θ

4

∣∣∣∣ , (8-16)

where x0 = 2 cos(θ0/2) + log |tan(θ0/4)| and θ0 = χ− 90◦. Together with (8-15)
this constitutes a parametric form for the surface shape.

8.4 Axially invariant shapes

Many static interfaces — capillary surfaces in circular tubes, droplets and bubbles
— are invariant under rotations around an axis, allowing us to establish a fairly
simple formalism for the shape of the equilibrium surface.

Geometry of axially invariant interfaces

In cylindrical coordinates an axially invariant interface is a planar curve in the
rz-plane. Using again the arc length s along the curve and the angle of elevation
θ for its slope, we find as in the planar case,
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dr

ds
= cos θ ,

dz

ds
= sin θ , (8-17)

The first principal radius of curvature may be directly taken over from the planar
case, whereas it takes some work to show that the second center of curvature lies
on the z-axis (see problem 8.3), such that

R1 =
ds

dθ
, R2 =

r

sin θ
. (8-18)

One should be aware that this sign convention for these geometric radii of curva-
ture may not agree with the physical sign convention for the Young-Laplace law
(8-5), and that it may be necessary to introduce explicit signs to get the physics
right. This will become clear in the calculations that follow.
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Figure 8.1: Capillary effect in water for a circular tube of radius a in units where
Rc = 1. (a) Surface shape z(r)/a plotted as a function of r/a for χc = 1◦ and a =
0, 1, 2, 3, 5, 10. Notice how the shape becomes gradually spherical as the tube radius a
approaches 1. For a . 1 the shape is constant. (b) Computed capillary rise h and
depth d as functions of a (fully drawn). For a & 1 the computed values deviate from the
spherical surface results (8-8) and (8-9) (dashed).

The capillary surface

For the rising liquid/air capillary surface with acute contact angle both geometric
radii of curvature, R1 and R2, are positive. Since both centers of curvature
lie outside the liquid, the physical radii will be −R1 and −R2 in the Young-
Laplace law (8-5). Assuming that the air pressure is constant, hydrostatic balance
demands that g0z + ∆p/ρ0 be constant, or
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½
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...........
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For the capillary with acute
angle of contact both centers
of curvature lie outside the
liquid.

g0z − α

ρ0

(
dθ

ds
+

sin θ

r

)
= − 2α

R0
.

The value of the constant has been determined from the initial condition in the
center, where r = z = θ = 0 and the geometric radii of curvature are equal to
the central radius of curvature, R1 = R2 = R0. Solving for dθ/ds we find,

dθ

ds
=

2
R0

− sin θ

r
+

z

R2
c

, (8-19)

where Rc is the capillary constant (8-4). In the second term one must remember
that r/θ → R0 for θ → 0.

Together with the two equations (8-17) we have obtained three first order
differential equations for r, z, and θ. Since s does not occur explicitly, and since θ
grows monotonically with s, one may eliminate s and instead use θ as the running
parameter. Unfortunately these equations cannot be solved analytically, but
given R0 they may be solved numerically with the boundary conditions r = z = 0
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Figure 8.2: Shapes of stable air bubbles and droplets of water (Rc = 2.7 mm, χc = 1◦)
and mercury (Rc = 1.9 mm, χc = 140◦). (a) Air bubbles in water under a lid (to scale).
(b) Water droplet on table plotted with vertical scale enlarged 40 times. (c) Air bubbles
in mercury (to scale). (d) Mercury droplets on a table (to scale).

for θ = 0. The solutions are quasi-periodic curves that spiral upwards forever.
The physical solution must however stop at the wall r = a for θ = θ0 = 90◦ − χ,
and that fixes R0. The numeric solutions are displayed in fig. 8.1.
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Sessile bubbles and droplets

If a horizontal plate (a “lid”) is inserted into water, air bubbles may come up
against its underside, and remain stably sitting (sessile) there. The bubbles are
pressed against the plate by buoyancy forces that in addition tend to flatten
bubbles larger than the capillary radius. The shape may be obtained from the
above solution to the capillary effect by continuing it to θ0 = 180◦ − χ.
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Mercury sitting on the upper side of a horizontal plate likewise forms small
nearly spherical droplets which may be brought to merge and form large flat
puddles of “quick silver”. In this case the geometric radii of curvature will both
be negative while the physical radii of curvature are both positive because the
centers of curvature lie inside the liquid. The formalism is consequently exactly
the same as before, except that the central radius of curvature R0 is now negative.
The shapes are nearly the same as for air bubbles, except for the different angle
of contact.

In fig. 8.2 the four sessile configurations of bubbles and droplets are displayed.
The depth approaches in all cases a constant value for large central radius of
curvature R0, which may be estimated by the same methods as before to be
d = Rc

√
2(1± cos χ) for bubbles(+) and droplets(−). Notice that the depth of

the water droplet (frame 8.2b) is enlarged by a factor 40. If water really has
contact angle χ = 1◦, the maximal depth of a water droplet on a flat surface is
only d = 0.018Rc ≈ 50 µm. This demonstrates how efficient water is in wetting
a surface, because of its small contact angle.
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Figure 8.3: Static droplet shapes at the mouth of a circular tube in units of Rc = 1.
There are no solutions with larger volumes than the largest ones shown here. All contact
angles are assumed to be possible at the mouth of the tube. (a) Tube with radius a = 1
which is larger the critical radius (a1 = 0.918). (b) Tube with radius a = 0.5 which is
smaller than the critical radius.

Pending droplets

Whereas sessile droplets in principle can have unlimited size, hanging liquid
droplets will fall if they become too large. Here we shall investigate the shape of
a droplet hanging at the end of a thin glass tube, for example a pipette provided
with a rubber bulb which allows us to vary the pressure. The column of fluid in
the tube may be held static by using the bulb to create a sufficiently negative
pressure. When the bulb is slowly squeezed, a droplet emerges at the end of the
tube and eventually falls when it becomes large enough.
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Both the geometric and physical radii of curvature are positive in this system,
such that we get (for Rc = 1),

dθ

ds
=

2
R0

− sin θ

r
− z , (8-20)

with a negative sign of z. In this case θ is not a monotonic function of s, and we
may not eliminate s. Assuming that the tube material is very thin, the boundary
conditions may be taken to be r = z = θ = 0 for s = 0, because the rounded end
of the tube material is able to accommodate any angle of contact. The condition
that the liquid surface must always make contact with the end of the glass tube
at r = a then determines the total curve length s0 as a function of the central
curvature R0, and thereby the height d = z(s0).

The volume of a droplet,

V =
∫ d

0

πr2 dz , (8-21)
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is a function of R0. As the bulb is squeezed slowly, the volume of the droplet
must grow continuously through a sequence of hydrostatic shapes. At some
point instability sets in and the drop falls. It is not possible to determine the
point of instability in a purely hydrostatic calculation, but as it turns out the
droplet can only grow continuously through hydrostatic solutions to a certain
maximum volume, beyond which it has to jump discontinuously to reach even
larger volumes. We shall take this to indicate that instability has surely set in.

The solutions fall in two classes. If R0 is larger than a certain critical value,
R0 > R01 = 0.778876 . . ., the radial distance r(s) will grow monotonically with s,
but if R0 < R01 the surface will be shaped like an old-fashioned bottle with one or
more waists. The critical solution at R0 = R01 has a turning point with vertical
tangent, allowing us to locate the critical point by solving r′(s) = r′′(s) = 0. The
result is that at the critical point the curve length is s1 = 1.95863 . . ., the radius
a1 = 0.917622 . . . and the depth d1 = 1.47804 . . . . 2 4 6 8 10 12 r

0.5
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Critical solution for R0 ≈
0.78.
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In fig. 8.3a is shown the family of shapes for a droplet with tube radius a = 1.
For large central radius of curvature R0 the shape is flat, but as R0 diminishes the
droplet grows in volume and develops a “waist”. It finally reaches a maximum
volume of 5.26R3

c , beyond which it cannot pass continuously. In fig. 8.3b is
shown a family of shapes for a droplet with tube radius a = 0.5. In this case
the droplet may expand beyond the radius of the tube until it reaches a maximal
volume of 2.32R3

c .
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Problems

8.1 A soap bubble of diameter 6 cm floats in the air. What is the pressure excess inside
the bubble when the surface tension between water and air is taken to be α = 0.15 N/m?
How would you define the capillary length in this case, and how big is it? Do you expect
the bubble to keep its spherical shape?

∗ 8.2 Consider a quadratic surface z = ax2 + by2 + 2cxy with a unique extremum at
x = y = 0. For a suitable choice of coordinates, a smooth function may always be
approximated with such a function in any given point. (a) Determine the radius of
curvature of the surface along a line in the xy-plane forming an angle φ with the x-axis.
(b) Determine the extrema of the radius of curvature as a function of φ and show that
they correspond to orthogonal directions.

∗ 8.3 Determine the radii of curvature in section 8.4 by expanding the shape z = f(r)
with r =

p
x2 + y2 to second order around x = x0, y = 0, and z = z0.
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