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Elastic vibrations

Sound is the generic term for harmonic running waves of deformation in materials,
be they solid, liquid or gaseous. Our daily existence as humans, communicating
in and out of sight, is strongly dependent on sound transmission in air, and only
rarely — for example in the dentists chair — do we notice primary effects of
sound in solids. What we do experience in our daily lives is mostly secondary
effects of vibrations in solids transferred to air as sound waves, for example a
mouse scratching on the other side of a wooden wall, or more insidiously the
neighbor’s drilling into concrete.

In this chapter we shall see that there are essentially two kinds of vibrations
in solids, longitudinal pressure waves and transverse shear waves. The two kinds
of waves are generally transmitted with different phase velocities even in isotropic
elastic solids, because such materials respond differently to pressure and shear
stress. Sound waves in ideal elastic materials do not dissipate energy while prop-
agating, but energy can be lost to spatial infinity through radiation of sound.

There are also wave motions in elastic solids, for example earthquakes that
we would hardly call sound, except sometimes it is called infrasound. We don’t
hear these phenomena directly but experience earthquakes rather as a motion of
the ground, though usually accompanied by audible sound. Infrasound may be
felt through an increased level of anxiety and may one day be recognized as a
stress factor.

In this chapter we shall study the basic properties of vibrations in isotropic
elastic materials. The equations of motion for small displacements in isotropic
elastic materials are derived from Newton’s second law and applied to a few
typical situations. This chapter is important because it is the first time we study
continuous media in motion, the main theme for the remainder of this book.
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212 13. ELASTIC VIBRATIONS

13.1 Elastic waves

The instantaneous state of a deformable material is described by a time-
dependent displacement field u(x, t) which indicates how much a material par-
ticle at time t is displaced away from its reference position x. Since the ac-
tual position of the particle is x′ = x + u(x, t), its actual velocity is evidently
v(x′, t) = ∂u(x, t)/∂t and its acceleration w(x′, t) = ∂2u(x, t)/∂t2 without any
non-linear terms.

The equation of motion for a displaced material particle becomes

ρ(x, t)
∂2ui(x, t)

∂t2
=

∑

j

∇jσij(x, t) + fi(x, t) , (13-1)

where we on the right hand side have ignored the small differences in position
created by the displacement itself and by the small displacement gradients (see
however problem 12.11). The right hand side is now rewritten in the same way
as in section 12.1. In a linear, homogeneous, and isotropic elastic material the
contact forces are given by the stress-strain relation (11-8), and inserting Cauchy’s
strain tensor (10-17), we get

ρ
∂2u

∂t2
= µ∇2u + (λ + µ)∇∇ · u + f . (13-2)

This equation is called Navier’s equation of motion (1821) and reduces to Navier’s
equilibrium equation (12-3) for a time-independent displacement.

The field u(x, t) should as before be understood as the displacement away
from a reference state which may itself already be highly stressed and deformed.
There are, for example, huge static stresses in balance with gravity in the pylons
and girders of a bridge, but when the wind acts on the bridge, small vibrations
obeying (13-2) may arise around the static state. Time-dependence is in fact
often driven by such surface forces which like the wind on the bridge impose
time-varying stresses on the surface a body. If you hit a nail with a hammer or
stroke the strings of a violin, time varying displacement fields obeying the above
equation are set up in the material.

The force density f should likewise be understood as the extra forces driving
time dependence. The Moon’s tidal deformation of the rotating Earth is caused
by time-dependent gravitational body forces, acting on top of the gravitational
force of Earth itself. Magnetostrictive, electrostrictive, and piezoelectric materi-
als deform under the influence of electromagnetic fields, and are for example used
in loudspeakers to set up vibrations that can be transmitted to air as sound.

In a homogenous solids, the Lamé coefficients λ and µ are constants, and
similarly the density may normally also be taken to be a constant, ρ(x, t) = ρ0. At
the boundaries between homogeneous solids, the density and the elastic constants
may change. In general the displacement field has to be continuous across such
boundaries, unless the continuity of the material breaks down. Newton’s third
law requires as before the stress vector to be continuous across any boundary.

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



13.2. FREE ELASTIC WAVES 213

Adiabatic versus isothermal

As long as changes are quasistatic, a system will run through states of mechanical
as well as thermodynamic equilibrium. No temperature differences will arise any-
where during an infinitely slow displacement, and elastic constants, for example
the bulk modulus KT , are in that case defined for constant temperature.

During rapid changes in deformation, temperature may not have time enough
to adjust itself to the changes, and sufficiently fast processes will effectively pro-
ceed without heat transport, i.e. adiabatically or isentropically. This leads to a
small local temperature changes and replaces the isothermal compressibility by
the isentropic one,

1
KS

=
1

KT
− α2T

Cp
, (13-3)

where T is the absolute temperature of the body, α the thermal expansion coef-
ficient, and Cp the specific heat capacity at constant pressure. The sign of the
second term shows that the adiabatic bulk modulus is always larger than the
isothermal one, KS > KT . One may understand this as a consequence of the
universal tendency for matter to expand when heated and for expansion to cause
an increase in pressure and thus an increase in the resistance against compres-
sion, i.e. the incompressibility K. In the same approximation, the isothermal
and isentropic shear moduli are identical, µS = µT .

Whether vibrations in solids are isothermal or isentropic depend on their fre-
quency and on the thermal properties of the material. In the following discussion
we shall for simplicity disregard this normally tiny difference and just denote the
bulk modulus by K.

13.2 Free elastic waves

Elastic waves are free, if there are no time-dependent body or surface forces.
This is very much analogous to the equation for free electromagnetic waves, that
also may be studied by themselves, even if we know that they always owe their
existence to time-dependent interactions with matter in the environment. Taking
f = 0 and ρ = ρ0 in (13-2), the equation for free displacement waves becomes

ρ0
∂2u

∂t2
= µ∇2u + (λ + µ)∇∇ · u . (13-4)

As for electromagnetic waves, this is an equation for a vector field, but the
difference is that it contains two material constants, whereas the equation for
free electromagnetic waves in vacuum or in isotropic media only depends on one,
namely the velocity of light in the material. The effect is that there will be two
kinds of displacement waves moving with different phase velocities in isotropic
solids.
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214 13. ELASTIC VIBRATIONS

Figure 13.1: Displacement fields for longitudinal (left) and transverse (right) plane
waves. The waves are moving upwards on the page and have the same wave length. The
small arrows show the instantaneous direction of the displacement field in an array of
points. The compressional and shear nature of the two types of waves is quite visible.

Longitudinal and transverse waves

An arbitrary vector field may always be resolved into longitudinal and transverse
components (see problem 13.1),

u = uL + uT , (13-5)

where the longitudinal component has no curl, ∇× uL = 0, and the transverse
component has no divergence, ∇ · uT = 0. By the “double-cross” rule it follows
that ∇× (∇× uL) = ∇∇ · uL −∇2uL = 0, or ∇∇ · uL = ∇2uL, so that the
free wave equation (13-4) for purely longitudinal and transverse waves becomes

ρ0
∂2uL

∂t2
= (2µ + λ)∇2uL , (13-6)

ρ0
∂2uT

∂t2
= µ∇2uT . (13-7)

Both of these equations are in the form of the standard equation for waves with
phase velocity c,

1
c2

∂2u

∂t2
= ∇2u . (13-8)

The phase velocity of longitudinal waves may now be read off to be,

cL =

√
λ + 2µ

ρ0
=

√
K + 4

3µ

ρ0
, (13-9)

and for transverse waves

cT =
√

µ

ρ0
. (13-10)
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13.2. FREE ELASTIC WAVES 215

We have mentioned before that elastic materials with vanishing shear modulus,
µ = 0, behave like ideal fluids (without viscosity). In such materials, the trans-
verse velocity vanishes, cT = 0, so that transverse waves cannot propagate. We
shall later see that although transverse waves may be created in viscous fluids,
they die quickly out. The lack of transverse wave propagation is in fact a strong
argument for the liquid nature of the Earth’s core.

The ratio between the transversal and longitudinal velocities is a useful pa-
rameter

q =
cT

cL
=

√
µ

λ + 2µ
=

√
1− 2ν

2(1− ν)
. (13-11)

It depends only on Poisson’s ratio, ν, and is a monotonically decreasing function.
Its maximal value

√
3/2 is obtained for ν = −1 so the transverse velocity is

always smaller than the longitudinal one. In practice there are no materials with
ν < 0, so the practical upper limit to the ratio is instead 1/

√
2. For the typical

value ν = 1
3 we get q = 1/2, and longitudinal waves run with the double of the

speed of transverse waves.
The pressure generated by the deformation is

p = −K∇ · u = −K∇ · uL, (13-12)

according to (11-15), and depends only on the longitudinal part of a wave. Lon-
gitudinal waves are for this reason also called pressure waves or compressional
waves and sometimes denoted by P (for primary). Transverse waves, on the other
hand, generate no pressure changes in the material, only shear, and are therefore
also called shear waves and sometimes denoted by S (for secondary). In fig. 13.1
the displacement fields are shown for planar longitudinal and transverse waves.

Even if a displacement field may always be resolved into longitudinal and
transverse parts, this does not mean that there will exist purely longitudinal and
transverse solutions to any particular problem. In general, this will only be the
case far from any boundaries, because boundary conditions tend not to respect
the separation of longitudinal and transverse waves and will mix them with each
other (see section 13.3).

Harmonic waves

A harmonic displacement field obeys the equation

∂2u

∂t2
= −ω2u (13-13)

where ω is the (circular) frequency. Solutions to the harmonic equation are
superpositions of two standing waves,

u(x, t) = u1(x) cos ωt + u2(x) sin ωt . (13-14)
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216 13. ELASTIC VIBRATIONS

It is often most convenient instead to write the harmonic wave as the real part
of a complex field,

u(x, t) = Re
[
u(x)e−iωt

]
, (13-15)

where the complex standing wave

u(x) = u1(x) + iu2(x) (13-16)

is also called the amplitude field. For the standard wave equation (13-8), standing
waves, real or complex, must satisfy the equation

∇2u = −ω2

c2
u , (13-17)

which may be viewed as an eigenvalue-equation for the displacement field. For a
finite body, only a discrete spectrum of frequencies will be possible.

Plane waves

Infinitely extended material bodies do not exist, but deeply inside a finite body,
far from the boundaries, conditions are almost as if the body were infinite. Intu-
itively it seems clear that this requires the typical wave lengths involved in the
wave to be much smaller than the dimensions of the body or, more precisely,
much smaller than the distance to the boundaries. For waves with significant
amplitude in wave lengths comparable to the distance to the surface of the body,
or to boundaries between different materials, a special approach is necessary. We
shall return to this problem in section 13.3.

In an infinitely extended medium, Fourier’s theorem tells us that an arbitrary
wave is a superposition of plane waves with complex amplitude field of the form

u(x) = u0e
ik·x , (13-18)

where k is the wave vector and u0 is the (constant) polarization vector. Inserting
this into the standard wave equation (13-8), we obtain

ω2 = c2k2 , (13-19)

where c is the phase velocity.
For longitudinal plane waves with phase velocity cL, we must have ∇×uL ∼

k × u0 = 0, so that the polarization vector is proportional to the wave vector

u0 ∼ k . (13-20)

For transverse waves with phase velocity cT , the polarization vector must be
orthogonal to the wave vector

k · u0 = 0 , (13-21)

and there will in general be two linearly independent transverse polarizations.
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∗ 13.3 Rayleigh waves
John William Strutt, 3rd
Baron Rayleigh (1842–
1919). Discovered and
isolated the rare gas Argon
for which he got the Nobel
Prize (1904). Published
the influential book “The
Theory of Sound” on vibra-
tions in solids and fluids in
1877-78.

At the surface of a body, boundary conditions will put limits on the free variation
of the displacement field. If for example the surface is free from external stresses,
the stress vector acting on the surface must vanish,

∑
j σijnj = 0, and that

places restrictions on the spatial derivatives of the displacement field. The clean
separation between free longitudinal and transverse plane waves is for this reason
not possible near the surface, and only certain superpositions of longitudinal and
transverse waves will be allowed. Lord Rayleigh discovered that there are special
types of waves near a free surface which cannot penetrate into the depth of the
material, but decay exponentially with the distance to the surface.

Planar surface

The simplest case which differs from from an infinitely extended medium is a
semi-infinite medium bounded by a plane surface. We take the surface to be the
xy-plane of the coordinate system with the material corresponding to negative
z values, whereas there is vacuum for z > 0. In a sense we are looking at the
surface from “above”. In the x- and y-directions there are no restrictions, and
we expect to be able to choose the wave vectors, kx and ky, freely. In discussing
a particular wave we may always choose the x-axis so that ky = 0 and kx = k.
In other words, the wave propagates along the x-axis with wave vector k and has
constant phase in the y-direction.
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A plane surface wave mov-
ing along the x-direction
with no amplitude in the
y-direction.

We are interested in elementary surface waves that are exponentially damped
in the material for z < 0,

u = u0e
κzei(kx−ωt), (13-22)

where κ > 0 corresponds to an imaginary wave number kz = −iκ. Apart from
that, the formalism for longitudinal and transverse waves is unchanged. Lon-
gitudinal waves have amplitude proportional to the (now complex) wave vector
u0 ∼ k, and frequency ω2 = c2

L(k2 +k2
z). Transverse waves are orthogonal to the

wave vector with frequency ω2 = c2
T (k2 + k2

z). Solving for kz = −iκ, we obtain
the decay constants for longitudinal and transverse waves

κL =

√
k2 − ω2

c2
L

, κT =

√
k2 − ω2

c2
T

. (13-23)

The most general decaying superposition of the one longitudinal and the two
transverse waves becomes

u(x, t) =
[
A(k, 0,−iκL)eκLz +

(
B(κT , 0,−ik) + C(0, 1, 0)

)
eκT z

]
ei(kx−ωt) ,

(13-24)

where A, B, and C are complex constants. One may verify that the longitudinal
wave is indeed proportional to its (complex) wave vector, and that the transverse
waves are orthogonal to their wave vector and to each other.
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Boundary conditions

The free boundary conditions imply that the stress vector must vanish, σxz =
σyz = σzz = 0, at the surface z = 0. From Hooke’s law (11-8) we get for z = 0
(since uyy = ∇yuy = 0 everywhere)

(2µ + λ)uzz + λuxx = 0 , (13-25a)
uxz = 0 , (13-25b)
uyz = 0 . (13-25c)

Expressing the strains in terms of the displacement field via Cauchy’s strain
tensor (10-17), we get for z = 0 (and dropping the common oscillating factor)

uxx = ∇xux = ik(Ak + BκT ) ,

uzz = ∇zuz = −i(κ2
LA + kκT B) ,

2uxz = ∇xuz +∇zux = 2kκLA + (k2 + κ2
T )B ,

2uyz = ∇yuz +∇zuy = κT C .

The boundary conditions thus lead to C = 0 and

(k2 + κ2
T )A + 2kκT B = 0 , (13-26a)

2kκLA + (k2 + κ2
T )B = 0 . (13-26b)

In the first equation we have used that λ/(λ + 2µ) = 1 − 2c2
T /c2

L, and that
c2
Lκ2

L = c2
T κ2

T + (c2
L − c2

T )k2, which follows from the definitions of κT and κL.
These equations can only have a non-vanishing solution for A and B, if the
determinant vanishes, or

(k2 + κ2
T )2 = 4k2κT κL . (13-27)

Eliminating κL and κT , we obtain

(
2k2 − ω2

c2
T

)2

= 4k2

√(
k2 − ω2

c2
T

)(
k2 − ω2

c2
L

)
(13-28)

Surface wave velocity

The above equation only depends on the ratio c = ω/k. Defining the parameter
ξ = (c/cT )2 and introducing the ratio q given by (13-11), we arrive at the equation
(2 − ξ)2 = 4

√
1− ξ

√
1− q2ξ and upon squaring this we finally obtain the third

degree polynomial equation

ξ3 − 8ξ2 + 8(3− 2q2)ξ − 16(1− q2) = 0 . (13-29)

A third degree equation always has at least one real root. For the typical value
of q = 1/2 there is only one real root at ξ = 0.870 corresponding to c = 0.933 cT .
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The surface wave velocity is normally very close to the velocity of free transverse
waves (see problem 13.3).

The amplitude of the surface waves decays exponentially with the depth below
the surface as shown by the exponentials in (13-24). The transverse part of the
wave decays with the rate κT = k

√
1− ξ whereas the rate for the longitudinal

part is κL = k
√

1− q2ξ which is larger than the transverse rate, κT , because
q < 1.

∗ 13.4 Radial waves

Due to the problem of surface waves it turns out that radial oscillations in a
spherical geometry is one of the few exactly solvable problems for finite bodies.
In this subsection we shall solve the spherical case in general for the case of purely
radial oscillations.

We assume as in section 12.6 that the form of the instantaneous displacement
is radial u(r, t) = u(r, t)er. Then the equation of motion for a harmonically
oscillating field u(r, t) = u(r) exp(−iωt) becomes

− ω2ρ0

λ + 2µ
u =

d

dr

(
1
r2

d(r2u)
dr

)
=

[
d2

dr2
+

2
r

d

dr
− 2

r2

]
u . (13-30)

Since the radial oscillations by their form are purely longitudinal with no transver-
sal components this expression only depends on the longitudinal velocity, and it
is convenient to introduce the dimensionless variable s = kr with k = ω/cL. In
this variable the equation becomes

d

ds

(
1
s2

d(s2u)
ds

)
=

[
d2

ds2
+

2
s

d

ds
− 2

s2
+ 1

]
u = 0 . (13-31)

The general solution to this equation is a linear combination of the spherical
Bessel function j1(s) = sin s/s2 − cos s/s and the spherical Neumann function
n1(s) = − cos s/s2 − sin s/s, as one may easily verify.

Free massive sphere

In a finite body with free boundaries, the waves with definite frequency are always
standing waves, because running waves can never fulfill the boundary conditions.
Since the Neumann function n1(s) is singular for s = 0 the displacement field for
a massive elastic sphere must be proportional to the Bessel function, u ∝ j1(s).
The radial strain is simply urr = du/dr, and the radial stress becomes

σrr = λ∇ · u + 2µurr = λ(
du

dr
+ 2

u

r
) + 2µ

du

dr
,

∝ (λ + 2µ)
sin s

s
+ 4µ

(
cos s

s2
− sin s

s3

)
.
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Figure 13.2: Graph of eq.(13-32) for q = 1/2 . The first solution is found for s = 2.82.
The rest of the solutions come roughly spaced by π. There is no solution for s = 1.

At the surface of the sphere the stress must vanish, σrr(a) = 0, and this leads to
the following implicit equation for s

tan s− s

1− s2

4q2

= 0 , (13-32)

where q as before is the ratio between the transverse and longitudinal sound
velocity in the material. There is an infinite sequence of solutions to this equation
(shown graphically in Fig. 13.2) for q = 1/2 which may be denoted sn(q) for
n = 1, 2, . . .. In problem 13.4 an approximate expression is derived for sn.

The corresponding frequencies are

ωn =
cL

a
sn(q) , (13-33)

and these are the only possible frequencies for standing waves in a massive sphere.
In problem 13.4 it is shown that

sn = nπ − 4q2

nπ
(13-34)

is a reasonable approximation to the eigenvalues.
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Problems

13.1 Show that an arbitrary vector field may be resolved into (not necessarily unique)
longitudinal and transverse components, and that the longitudinal component may be
chosen to be a gradient.

13.2 Show that the most general sound wave in an infinite isotropic and homogeneous
medium is of the form

u(x, t) =

Z
d3k

(2π)3

3X
i=1

ei(k)
�
ai(k)eik·x−iωit + ai(k)×e−ik·x+iωi

�
, (13-35)

where ω1 = ω2 = cT k and ω3 = cLk. The set of vectors eλ(k) (λ = 1, 2, 3) are
called polarisation vectors and required to be orthonormal ei · ej = δij . The third
e3 = k/k is defined to be longitudinal with respect to the wave number. The generally
complex coefficients ai(k) are called the amplitude of the wave for wave number k and
polarisation i.

13.3 In the equation for the surface wave velocity (13-29) the coefficients are numer-
ically rather large compared to 1. Since for ξ = 1 the left hand side takes the value 1
one may expect that there is a root close to ξ = 1. Show that the solution near 1 is
approximately given by

1− ξ =
1

11− 16q2
, (13-36)

and determine the magnitude of the error. Compare with the exact result ξ =
0.869605 . . . for q = 1/2.

13.4 Show that for large values of s the solution to (13-32) is

sn = nπ − 4q2

nπ
. (13-37)

Compare for q = 1/2 this approximation with the exact result.
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