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22
Small-amplitude
surface waves

Surface waves in the sea are created by the interaction of wind and water which
somehow transforms the steady motion of the streaming air into the nearly peri-
odic swelling and subsiding of the water. The waves appear to roll towards the
coast in fairly orderly sequence of crests and troughs that is translated into the
quick ebb and flow of water at the beach, so well-known to all of us. On top of
that there is of course the slow ebb and flow of the tides.

In constant “flat-earth” gravity, the interface between two fluids at rest is
always horizontal. In moving fluids the interface can take a very complex in-
stantaneous shape under the simultaneous influence of inertia, pressure, gravity,
container shape, surface tension, and viscosity. Waves controlled by pressure and
gravity are naturally called gravity waves, whereas waves controlled by pressure
and surface tension are called capillary waves. If the fluids have vastly different
densities, as is the case for the sea and the atmosphere, one may often disregard
the lighter fluid and instead consider the open surface of the heavier fluid towards
vacuum. For fluids of nearly equal density, for example a saline bottom layer in
the sea with a brackish layer above, internal gravity waves driven by pressure
and buoyancy may arise in the interface.

This chapter is devoted to the various types of small-amplitude surface waves
and the conditions under which they occur (see [58, 59, 40, 16, 9] for extended
discussions of surface waves). Mathematically, small-amplitude waves are by far
the most easy to deal with. More interesting and unusual wave types arise when
amplitudes grow so large that the nonlinear aspects of fluid mechanics come into
play. Nonlinear waves are common everyday occurrences, for example the familiar
run-up of waves on a beach or the less familiar sonic boom from an aircraft
overhead, but the subject of nonlinear waves is unfortunately so mathematically
challenging that we shall postpone it until chapter 30.
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414 22. SMALL-AMPLITUDE SURFACE WAVES

22.1 Basic physics of surface waves

In chapter 7 we saw that the shape of an interface between two fluids in hydro-
static equilibrium is determined by the balance between the pressure gradient
and gravity everywhere in the interior of the fluids. Surface tension in the inter-
face may also have profound influence on the shape of small fluid volumes, for
example a raindrop. What we shall call waves in this chapter are time-dependent
disturbances in the shape of an interface originally in hydrostatic equilibrium.

Although surface waves may occur wherever material properties change
rapidly, we shall mostly think of gravity waves in water so well-known to all
of us. In constant gravity, the hydrostatic interface between the sea and the air
is flat and horizontal, usually taken to be z = 0 in the flat-earth coordinate sys-
tem. A wave will disturb the surface so that its instantaneous height is a function
of the horizontal coordinates and time,

z = h(x, y, t) . (22-1)

We shall mainly be interested in trains of waves that progress periodically and
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A surface wave in the flat-
earth coordinate system.

in a regular pattern across the horizontal surface of the sea, although everyday
experience tells us that waves may be much more complicated. In a breaking
wave, the surface height is not even a single-valued function of position and time.

Waves can be created in many ways. The splash you make when you jump
bottom-first into a swimming pool creates primarily a single large ring-shaped
wave, perhaps followed by several smaller waves. When these waves hit the edge
of the pool they are reflected and interfere with themselves to create quite chaotic
patterns. In this chapter we shall, however, not be concerned much with the
mechanisms by which waves are created, but rather with their internal dynamics
after they have somehow been brought into existence.

Wave parameters

Any non-breaking surface wave consists locally of mounds and hollows of roughly
the same size in the otherwise smooth equilibrium surface. Although a general
wave can be very complex, it is convenient to describe these local features in
terms of parameters that normally are reserved for harmonic waves:
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A general wave consists of
mounds and hollows. Lo-
cally, the amplitude a is
related to the vertical dis-
tance between maxima and
minima, the wavelength λ
to the horizontal size of a
mound or hollow, and the
period τ to the time scale
for major changes in the
local pattern. The depth d
to the vertical distance to
the bottom.

• a — amplitude. It sets the scale for vertical variations in the height of the
wave. Mostly it is taken to be the height of a mound above the equilibrium
level, or equivalently the depth of a hollow below.

• λ — wavelength. This is the horizontal length scale of the wave, typically
related to the width of a mound or a hollow.

• τ — period. A measure of the time scale for major changes in the wave
pattern, for example the time it takes for a mound to become a hollow

• d — depth. The vertical distance to a solid boundary, the “bottom”.
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22.1. BASIC PHYSICS OF SURFACE WAVES 415

The ratio c = λ/τ is called the celerity or phase velocity and characterizes the
speed with which the waveform changes shape.

If the wavelength is much greater than the depth, λ À d, we shall speak
about long waves or more graphically shallow-water waves. Similarly, waves
with wavelength much smaller than the depth, λ ¿ d, are called short waves or
deep-water waves. Waves with amplitude much smaller than both wavelength
and depth, a ¿ λ, d, are called a small-amplitude waves.

The dispersion law

In a gravity wave the force of gravity pulls the water in a mound downwards
and sets it into motion, and this motion may in turn make the water rise again.
Whereas the potential energy of the wave only depends on its shape, the kinetic
energy also depends on the flow velocities in the wave, and thus on the period.
Therefore, if no energy is lost to friction, this continual conversion of potential
energy into kinetic energy and back must provide a relation between the period
of a wave and the other parameters,

τ = τ(a, λ, d, . . .) . (22-2)

The precise form of this dispersion law for a particular type of wave is normally
obtained from careful analysis of the wave dynamics, several examples of which
will be given later. Here we shall only make a coarse estimate of the general
form of the dispersion law using that potential and kinetic energies must be of
comparable magnitudes.

Collapse of a “waterberg”

Suppose we have somehow created a mound of water, instantaneously at rest,
for example by pulling an inverted water-filled bucket up through the flat surface
of the sea. Common experience tells us that such a “waterberg” will quickly
collapse into the sea, creating instead a smaller and wider hollow which may
later rise again to make an even smaller mound that in turn collapses, and so on.
Eventually all traces of the initial mound will have disappeared into secondary
waves running away over the surface.
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A “waterberg” of height a
and width λ rising out of a
sea of depth d. When the
waterberg collapses verti-
cally, all the water in it has
to leave in the horizontal
directions.

Let the initial mound have height a and width λ so that its volume is of
magnitude λ2a. During the first collapse all the water in the mound will move
vertically downwards and reach the sea level in a characteristic time τ . Since
water is incompressible, an equal volume has to move horizontally away from
the collapse region with a typical speed U . For long waves with λ À d, the
proximity of the bottom forces all the water underneath the mound to move
away horizontally, so that λ2a ∼ λd Uτ . Solving for U we find

U ∼ aλ

τd
. (22-3)
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416 22. SMALL-AMPLITUDE SURFACE WAVES

Since the typical vertical speed is a/τ , the horizontal flow velocity in a shallow
sea will be much greater than the vertical by a factor λ/d À 1. For short waves
with λ ¿ d, there is no bottom to divert the water flow so that the horizontal
velocity tends to be of same order of magnitude as the vertical, i.e. U ∼ a/τ near
the surface. From the expression for U , one may thus conclude that the deep
sea may be characterized by an effective depth of the same magnitude as the
wavelength, d ∼ λ. These claims will later be confirmed by precise calculations,
showing in fact that the effective depth of the deep sea is d ≈ λ/2π.

The potential energy of the initial mound relative to the general level of the
sea is of magnitude,

V ∼ ρ0λ
2a · g0 a = ρ0g0a

2λ2 . (22-4)

Interestingly, a hollow of depth a and width λ would have potential energy of the
same magnitude, for the simple reason that buoyancy presses the surface upward,
like the hull of a ship.

The kinetic energy of the volume of water of size λ2d under the wave becomes
of magnitude

T ∼ ρ0λ
2d · U2 ∼ ρ0

λ4a2

τ2d
. (22-5)

In the absence of dissipation, the kinetic energy must be comparable to the
potential energy, T ∼ V, and solving for τ we obtain the estimate of the dispersion
law,

τ ∼ λ√
g0d

. (22-6)

Notice that this dispersion law is merely a coarse estimate of the overall mag-
nitude of the collapse time. It may still be multiplied with an unknown factor
of order unity which can depend on the dimensionless ratios a/λ and d/λ, and
possibly on other dimensionless parameters characterizing the actual shape of
the wave.

From the dispersion law we immediately get the phase velocity

c =
λ

τ
∼

√
g0d (22-7)

Like an echo of Toricelli’s law (page 266) it is of the same order of magnitude as
the free-fall velocity

√
2g0d from height d. In shallow water where d is the true

depth of the sea, the phase velocity is independent of wavelength. In deep water
where the true depth is infinite, the effective depth may as pointed out above be
taken to be d ≈ λ/2π.

Example 22.1.1: A little “waterberg” created by lifting an inverted bucket of
height a = 30 cm and width λ = 50 cm out of water of depth d = 1 m collapses in
τ ∼ 0.1 s, a mere blink of the eye.
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22.1. BASIC PHYSICS OF SURFACE WAVES 417

Gravity waves are nearly ideal

The shape of a surface wave is only a manifestation of the (literally) underlying
hydrodynamics, governed by the Navier-Stokes equations. From the estimate (22-
3) of the horizontal flow velocity we estimate the Reynolds number in shallow
water to be,

Re =
|(v ·∇)v|
ν

∣∣∇2v
∣∣ ∼ U2/λ

νU/d2
=

ad

ντ
. (22-8)

Here we have assumed that the advective acceleration is dominated by the fast
horizontal motion over a length scale λ, whereas the viscous acceleration is dom-
inated by the vertical variation in the horizontal flow over the depth d. For
deep-water waves d may as before be replaced by λ/2π.

The typical sea waves we encounter when swimming close to the shore at
a depth of a couple of meters have amplitudes up to a meter and periods of
some seconds. With ν ≈ 10−6 m2/s for water, the Reynolds number will be in
the millions, and viscosity plays essentially no role for such waves. In daily life
we are otherwise quite familiar with viscous waves, for example while stirring
porridge, but they are not so interesting because they quickly die out. Nearly
ideal gravity waves in water simply keep rolling along. Eventually viscosity will
also make these waves die away if left on their own, but that problem can be
dealt with separately (see section 22.6).

Small-amplitude waves are nearly linear

The nonlinearity of the equations of fluid mechanics makes surface waves much
more complex than, for example, electromagnetic waves governed by the linear
Maxwell equations. The nonlinear advective acceleration of the fluid (v ·∇)v can
however often be disregarded in comparison with the local acceleration ∂v/∂t,
so that the Navier-Stokes equations also become linear. For shallow-water waves
we obtain the ratio of advective to local acceleration,

|(v ·∇)v|
|∂v/∂t| ≈ U2/λ

U/τ
≈ U

c
≈ a

d
. (22-9)

Quite generally we can conclude that the advective term plays no role for small-
amplitude waves with a ¿ d (with d ≈ λ/2π in deep water). In short: the
Navier-Stokes equations become linear in the small-amplitude limit.

The most general solution to a set of linear field equations with constant
coefficients is a linear superposition of elementary harmonic solutions (possibly
damped). We have seen this for small-amplitude vibrations in solids (chapter 13)
as well as for small-amplitude pressure waves in fluids (section 18.6). In these
cases the three-dimensional waves are superpositions of elementary plane waves,
each of which at any given time has constant physical properties in any plane
orthogonal to its direction of propagation. The same will be the case for the flow
underlying small-amplitude surface waves.
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418 22. SMALL-AMPLITUDE SURFACE WAVES

Harmonic line waves

Three-dimensional plane waves have identical physical properties in every plane
orthogonal to the direction of propagation. Surface waves are two-dimensional,
and elementary harmonic surface waves have correspondingly the same physical
properties on any line orthogonal to the direction of propagation. A harmonic
line wave is of the form

h = a cos(kxx + kyy − ωt + χ) (22-10)

where k = (kx, ky, 0) is wave vector, k = |k| = 2π/λ the wave number, ω = 2π/τ
the circular frequency, and χ the phase shift. The argument of the cosine, φ =
kxx + kyy − ωt + χ, is called the phase of the wave. The phase shift can for a
single wave always be absorbed in the choice of origin of the coordinate system or
of time, but differences between phase shifts may become of physical importance
when waves are superposed.
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A periodic line wave on the
surface. The crests are par-
allel lines orthogonal to the
vector n = (cos θ, sin θ, 0),
forming an angle θ with the
x-axis .

The maxima or minima, or crests and troughs as they are called for surface
waves, move steadily along in the direction n = k/k = (cos θ, sin θ, 0) with the
phase velocity,

c =
λ

τ
=

ω

k
. (22-11)

For small-amplitude shallow-water waves where the dispersion law is linear, the
phase velocity is independent of the wave number k. In general, however, the
dispersion law will be nonlinear, τ = τ(λ) or equivalently ω = ω(k), as we saw
for deep-water waves, and the phase velocity will depend on the wave number.

Group velocity

Consider now two harmonic line waves which for simplicity are chosen to run
along the x-axis with the same amplitudes. Their phases are φ1 = k1x−ω1t+χ1

and φ2 = k2x− ω2t + χ2, and using the trigonometric relation,

cosφ1 + cos φ2 = 2 cos
φ1 + φ2

2
cos

φ1 − φ2

2
, (22-12)

the superposition h = h1 + h2 may be written,

h = 2a cos(kx− ωt + χ) cos
1
2
(∆k x−∆ω t + ∆χ) , (22-13)

where k = (k1 + k2)/2 etc are the average quantities for the two waves, and
∆k = k1−k2 etc are the differences. The first oscillating factor evidently describes
a line wave moving along the x-axis with the average values of the wave numbers,
frequencies, and phase shifts, but the amplitude of this wave is now modulated
by the second factor.

If the differences are much smaller than the averages, |∆k| ¿ |k|, |∆ω| ¿ |ω|,
and |∆χ| ¿ |χ|, the second cosine factor will only slowly modulate the rapid
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22.1. BASIC PHYSICS OF SURFACE WAVES 419
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Figure 22.1: Superposition of two harmonic line waves with nearly equal wave numbers,
here at t = 0 for k = 8∆k, ∆k = 2π, a = 1, and χ = 0. The rapid oscillations of the
“carrier” wave is modulated and broken into a “beat pattern” of wave packets of length
2π/∆k = 1 centered at x = n for all integer n.

oscillations of the first. Since the second cosine vanishes when its arguments
passes through 1

2π + nπ where n is an arbitrary integer, it will chop the average
wave up into a string of wave packets of typical length L = 2π/ |∆k|, as pictured
in fig. 22.1. Inside each wave packet, the crests will move with the phase velocity
c = ω/k, whereas the center of each wave packet will move with the speed
∆ω/∆k = (ω(k1) − ω(k2))/∆k ≈ dω(k)/dk. Thus, the propagation speed of a
wave packet is given by the derivative of the dispersion law,

cg =
dω

dk
, (22-14)

called the group velocity.
A single Gaussian wave
packet.

Any superposition of waves with nearly equal wave vectors will in fact form
one or more wave packets moving with the group velocity (see problem 22.1).
If the dispersion law is linear, the group and phase velocities are equal, but if
the dispersion law is non-linear they will be different, and the waves are said to
be dispersive. If the group velocity is smaller than the phase velocity, cg < c,
the wave crests will move forward inside a wave packet as it proceeds across the
surface, and conversely if it is larger.

Energy transport and group velocity

In a single wave packet, the velocity field is only non-zero in the region covered
by the wave packet, so that the energy of the wave must be concentrated here
and transported along the surface with the group velocity, rather than with the
phase velocity. The same must be true for any superposition of single wave
packets with wave numbers taken from a narrow band of width ∆k around k,
such as the one shown in fig. 22.1. In the limit where the bandwidth ∆k narrows
down to nothing, the energy must still be transported with the group velocity,
so in the end we reach the slightly strange conclusion, that even in a purely
monofrequent line wave, the energy must be transported with the group velocity.
This will be shown explicitly to be true in section 22.3.
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420 22. SMALL-AMPLITUDE SURFACE WAVES

22.2 Small-amplitude gravity waves

Small-amplitude, inviscid gravity waves in incompressible water obey a linear
version of Euler’s equation,

∂v

∂t
= − 1

ρ0
∇p + g , ∇ · v = 0 , (22-15)

where g = (0, 0,−g0). These equations do not explicitly involve the surface
height, which will only come in via the boundary conditions.

Boundary conditions

At the open surface, z = h, there are two boundary conditions which must be
fulfilled. The first is purely kinematic and expresses that a fluid particle sitting
on the surface should follow the surface motion. Under the assumption of small
amplitudes, a ¿ d, λ, the surface is nearly horizontal everywhere, so that the
vertical velocity of the fluid just below the surface should equal the vertical
velocity of the surface itself (see chapter 30 for the general condition),

∂h

∂t
= vz for z = h . (22-16)

The second boundary condition is dynamic and expresses the continuity of the
pressure across the surface . Assuming that there is air or vacuum with constant
pressure p0 above the surface, the condition becomes

p = p0 for z = h . (22-17)

Here we have disregarded surface tension which would add a contribution to the
right hand side (see section 8.1).

Besides these, there will be further boundary conditions that depend on the
shape of the container.

Velocity potential

The time derivative of the velocity field ∂v/∂t is evidently a gradient field, so
if the velocity field initially is a gradient field, it will keep on being one. Thus,
in view of the linearity, the most general solution to the field equations is an
irrotational (gradient) field superposed with a constant field, possibly containing
vorticity. We shall from now on focus on the time dependent irrotational com-
ponent and write it as the gradient of the velocity potential Ψ, which due to the
divergence condition has to satisfy Laplace’s equation (see section 16.6),

v = ∇Ψ , ∇2Ψ = 0 . (22-18)

Inserting this into the field equation and solving for the pressure, we find

p = p0 − ρ0

(
g0z +

∂Ψ
∂t

)
. (22-19)
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22.2. SMALL-AMPLITUDE GRAVITY WAVES 421

Here p0 could in principle be an arbitrary function of time which we shall chose
to be equal to the pressure at the open surface. With this choice we obtain

∂h

∂t
= ∇zΨ , g0h = −∂Ψ

∂t
for z = h (22-20)

from the open surface boundary conditions.

Harmonic line wave solution

Suppose now that the surface wave is an elementary harmonic line wave in the
x-direction, h = a cos(kx − ωt), so that the flow underneath can be assumed to
be everywhere independent of y. From the kinematic condition (22-16), it follows
that ∇zΨ = aω sin(kx− ωt) for z = h. This suggests that the velocity potential
at all depths will be of the form

Ψ = f(z) sin(kx− ωt) , (22-21)

where f(z) is a so far unknown function of z. The Laplace equation (22-18)
takes here the form ∇2

zΨ = −∇2
xΨ and leads immediately to f ′′ = k2f . The

most general solution to this equation is

f(z) = Aekz + Be−kz (22-22)

where A and B are constants to be determined from the boundary conditions.

Deep-water waves

In deep water the velocity field must be finite for z → −∞, implying that B = 0
so that f(z) = Aekz. The open surface boundary conditions (22-20) now lead to,

aω sin(kx− ωt) = k Aekh sin(kx− ωt)

g0a cos(kx− ωt) = ωAekh cos(kx− ωt)

In a small-amplitude wave, the wave height is small compared to the wavelength,
so that k |h| ¿ 1 and ekh ≈ 1 on the right hand side. Solving both equations for
A we get

A =
aω

k
=

ag0

ω
. (22-23)

Solving the last equality for ω we obtain the dispersion law for deep-water waves

ω =
√

g0k . (22-24)

In terms of period and wavelength we have τ =
√

2πλ/g0 which is of the same
form as the previous estimate (22-6), except that now the numerical constant
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Figure 22.2: Phase and group velocities of deep-water waves as a function of wave-
length. This figure corresponds to the small-wavelength part of fig. 22.3. Typical ocean
swells have wavelengths of λ ≈ 150 m, phase velocity c ≈ 15 m/s ≈ 55 km/h and group
velocity equal to half of this. Closer to the coast the waves slow down because the water
gets shallower (see fig. 22.3).

has also been determined to be
√

2π. The corresponding deep-water phase and
group velocities become

c =
√

g0

k
=

√
g0λ

2π
, cg =

1
2
c . (22-25)

and are plotted in fig. 22.2. Since the phase velocity is the double of the group
velocity, the wave crests will move forward inside a wave packet.

The dispersive nature of deep-water waves have important consequences. A local
surface disturbance in deep water — for example created by a storm far out at sea
— usually contains more than one wavelength. The long-wave components are
faster and will run ahead to arrive at the beach maybe a day or so before the slower
short-wave components. The separation of wavelengths over long distances also
causes the waves that arrive on the beach to be nearly monofrequent, rolling in
at regular time intervals which slowly become shorter as the smaller wavelengths
take over.

The complete deep-water solution for all the fields in the wave is,

Ψ = acekz sin(kx− ωt) , (22-26a)

vx = aωekz cos(kx− ωt) , (22-26b)

vz = aωekz sin(kx− ωt) , (22-26c)

p = p0 − ρ0g0

(
z − aekz cos(kx− ωt)

)
. (22-26d)

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



22.2. SMALL-AMPLITUDE GRAVITY WAVES 423

The x and z velocities have the same scale, aω = 2πa/τ , but are 90◦ out of phase.
The fluid particles move through orbits that approximatively are circles of radius
aekz at depth z (see problem 22.3).

Due to the exponential, a deep-water surface wave only influences the flow
to a depth, |z| ≈ 1/k = λ/2π, i.e. of the order one wavelength, as pointed out
before. What happens at the bottom has no influence on the surface waves, as
long as the ocean is much deeper than a wavelength.

Harmonic line waves at finite depth

For a horizontally infinite container with perfectly flat impermeable bottom at
constant depth z = −d, the only condition is that the vertical velocity should
vanish at the bottom,

vz = 0 for z = −d . (22-27)

In the absence of viscosity, we are not at liberty to impose a no-slip condition on
the horizontal velocities.

If the depth is of the same magnitude as the wavelength, the bottom has
influence on the flow, and the B-term in (22-22) becomes important. The flat-
bottom boundary condition above implies that f ′(−d) = 0, or Ae−kd = Bekd, so
that we have

f(z) = C cosh k(z + d) (22-28)

where C is another constant. It is as for deep-water waves determined by the
open surface boundary conditions (22-20), and we find for |h| ¿ d,

C =
aω

k sinh kd
=

ag0

ω cosh kd
. (22-29)

The last equality yields the dispersion law,

ω =
√

g0k tanh kd , (22-30)

with the corresponding phase and group velocities,

c =
√

g0

k
tanh kd , cg =

1
2
c

(
1 +

2kd

sinh 2kd

)
. (22-31)

They are plotted in fig. 22.3 for d = 20 m. The phase velocity appears to curve
downwards for all wavelengths, whereas the group velocity changes curvature
twice, once for λ ≈ 35 m and once for λ ≈ 70 m. Generally, the finite depth
becomes important from λ & πd. For large wavelengths, kd ¿ 1 or λ À 2πd,
both velocities approach the common value c = cg =

√
g0d.

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



424 22. SMALL-AMPLITUDE SURFACE WAVES

50 100 150 200
Λ@mD

2.5

5

7.5

10

12.5

15

@m�sD

phase

group

Figure 22.3: Phase and group velocities of flat-bottom gravity waves as a function of
wavelength at a bottom depth of d = 20 m. The phase and group velocities level out
and become equal for large wavelengths, approaching the common shallow-water values
of c = cg =

√
g0d ≈ 14 m/s. The influence of the finite depth is clearly noticeable in

the group velocity for λ & πd ≈ 63 m.

The complete solution for all the fields underneath a small-amplitude har-
monic line wave h = a cos(kx− ωt) at any depth d À a is finally,

Ψ = ac
cosh k(z + d)

sinh kd
sin(kx− ωt) , (22-32a)

vx = aω
cosh k(z + d)

sinh kd
cos(kx− ωt) , (22-32b)

vz = aω
sinh k(z + d)

sinh kd
sin(kx− ωt) , (22-32c)

p = p0 − ρ0g0

(
z − a

cosh k(z + d)
cosh kd

cos(kx− ωt)
)

. (22-32d)

The pressure is clearly different from the purely hydrostatic pressure p0−ρ0g0(z−
h) of the water column above, although it oscillates in tune with the motion of
the surface wave.

The fluid particle orbits are approximatively elliptical and become flatter as
the bottom is approached, i.e. for z → −d (problem 22.3). This implies that
there is no net mass motion in the wave in the linear approximation (see however
section 22.3). One might say that in the open sea, a passing small-amplitude
wave leaves the water (roughly) where it found it.

Shallow-water limit

For waves with wavelength much greater than the depth, i.e. for λ À 2πd or
equivalently kd ¿ 1, we have tanh kd ≈ kd and thus obtain the shallow-water
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dispersion law,

ω =
√

g0d k , (22-33)

which confirms the correctness of the previous estimate (22-6). Shallow-water
waves are non-dispersive with the same phase and group velocities

c = cg =
√

g0d . (22-34)

The leading terms in the solution become in the shallow wave limit, kd ¿ 1,

Ψ =
ag0

ω

(
1 +

k2(z + d)2

2

)
sin(kx− ωt) , (22-35a)

vx ≈ ca

d
cos(kx− ωt) , (22-35b)

vz ≈ aω
(
1 +

z

d

)
sin(kx− ωt) , (22-35c)

p ≈ p0 − ρ0g0 (z − a cos(kx− ωt)) . (22-35d)

The horizontal velocity is the same for all z, so that all the water underneath
sloshes back and forth in unison as the wave proceeds. The vertical velocity
decreases and reaches zero at the bottom, as it must (this the reason for keeping
the second order terms in Ψ). At any depth z, the pressure is just the hydrostatic
pressure from the water column above, including the height of the wave. The
horizontal velocity scale, c a/d = λa/τd, equals precisely the previously estimated
shallow-water value (22-3) which is larger than the vertical velocity scale 2πa/τ
by a factor λ/2πd.

Example 22.2.1 (Tsunami): Huge shallow-water wave trains, tsunamis, with
wavelengths up to 500 km can be generated by underwater earthquakes, landslides,
volcanic eruptions, or large meteorite impacts. The average depth of the oceans
is about 4000 m so tsunamis move with typical speeds of a passenger jet plane,
c ≈ 200 m/s ≈ 720 km/h, in deep waters. For λ = 500 km the period becomes
τ = λ/c ≈ 2500 s ≈ 42 minutes, but since the amplitude is small, say a ≈ 1 m,
a tsunami will be completely imperceptible for a ship at sea. When the tsunami
approaches a coastline, the water depth decreases and the wave slows down while
increasing its amplitude with sometimes devastating effect on the shore.

22.3 Wave energy and momentum

Waves contain mass, momentum, and energy, and the movement of fluid also
moves these quantities around. Although there is no net transport of mass,
momentum, or energy in a gravity wave to first order in the amplitude a, we
shall see that there will in fact be in second order.
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Mass transport

The rate of mass transported through a vertical cut S through the wave of length
L in the y-direction is

-
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z

...................................
......................................................................................................................................................................................................................................................................................................................................................

h

d

x

S

A vertical cut S through the
wave (dashed). Its length is
L in the y-direction. Q =

∫

S

ρ0v · dS =
∫ h

−d

ρ0vx Ldz . (22-36)

Under the small-amplitude assumption, |h| ¿ d, we can expand the integral to
first order in h to get1,

Q = ρ0L

∫ 0

−d

vx dz + ρ0Lh vx|z=0 . (22-37)

The first term oscillates in tune with the wave and represents the amount of
water that is merely sloshing back and forth. Inserting (22-32b) this term is seen
to be of the form Q0 cos(kx− ωt) with amplitude

Q0 = ρ0Lac . (22-38)

What we are really interested in is the average mass transport during a complete
period,

〈Q〉 =
1
τ

∫ τ

0

Q dt . (22-39)

Since 〈vx〉 = 0 the first (sloshing) term in Q gives no contribution, so that we get

〈Q〉
ρ0L

= 〈h vx|z=0〉 = a2ω coth kd
〈
cos2(kx− ωt)

〉
=

1
2
a2ω coth kd .

In the last step have used that the average of the squared cosine over a complete
period is 1/2. Finally, simplifying by means of the dispersion law (22-30) we
arrive at

〈Q〉 =
ρ0g0La2

2c
, (22-40)

where c = ω/k is the phase velocity. Somewhat against intuition, the mass flow is
smaller the higher the phase velocity. The ratio between the sloshing amplitude
and the average mass flow is,

〈Q〉
Q0

=
g0a

2c2
, (22-41)

which is indeed small for small-amplitude waves.

Example 22.3.1: A wave with a = 0.1 m and phase velocity c = 10 m/s,
transports on the average 〈Q〉 /L = 5 kg/s/m per unit of transverse length. A
destructive tsunami with a = 1 m and c = 200 m/s only carries an average mass
flow of 〈Q〉 /L = 25 kg/s/m.

1There is a subtlety in this expression because there could be corrections of order h to the
field vx (see problem 22.7).
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Total energy

Consider a thin column of water of width ∆x along x and length L along y, so
that its “footprint” area is A = ∆xL. Relative to the static water level z = 0,
its potential energy is,
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h
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A thin water column of
“footprint” area A = ∆xL
and height h in a sea of
depth d.

V =
∫

V

ρ0g0z dV =
∫ h

0

ρ0g0z Adz =
1
2
ρ0g0h

2A , (22-42)

The potential energy is always positive, and rises and falls in tune with the
square of the wave height h = a cos(kx− ωt). Its time average over a full period
τ becomes

〈V〉 =
1
2
ρ0g0

〈
h2

〉
A =

1
4
ρ0g0a

2A . (22-43)

This result agrees in magnitude with the estimate on page 416 for A = λ2.
The kinetic energy of the water in the column is similarly

T =
∫

V

1
2
ρ0v

2 dV =
∫ h

−d

1
2
ρ0(v2

x + v2
z)Adz ≈

∫ 0

−d

1
2
ρ0(v2

x + v2
z)Adz . (22-44)

In the last step we have used that the amplitude is small, |h| ¿ d, and replaced
h by 0 in the upper limit of the integral. Inserting the explicit gravity wave
solution (22-32), we obtain the time average of the integrand,

〈
v2

x + v2
z

〉
=

1
2

( aω

sinh kd

)2 (
cosh2 k(z + d) + sinh2 k(z + d)

)
.

Finally, making use of the relation cosh2 φ + sinh2 φ = cosh 2φ, the integral over
z can be done, and we find after some rearrangement,

〈T 〉 =
1
4
ρ0A

( aω

sinh kd

)2 sinh 2kd

2k
=

1
4
ρ0g0a

2A . (22-45)

As expected, we have 〈T 〉 = 〈V〉 (see also problem 22.10). The average of the
total energy thus becomes

〈E〉 = 〈T 〉+ 〈V〉 =
1
2
ρ0g0a

2A , (22-46)

Somewhat surprisingly, the average energy per unit of surface area, 〈E〉 /A, only
depends on the amplitude and not on the depth or wavelength.

Example 22.3.2: A small-amplitude surface wave in water with amplitude a =
1 m thus carries an energy of about 〈E〉 /A = 5000 J/m2.
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Wave power
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A vertical cut S through the
wave (dashed). Its length is
L in the y-direction.

Waves are able to do work and many ingenious schemes have been thought up
for the exploitation of wave power. The power of a wave may be calculated from
the rate of work performed by the pressure on a vertical cut S through the wave,

P =
∫

S

p v · dS =
∫ h

−d

p vx Ldz ≈
∫ 0

−d

p vx Ldz . (22-47)

Writing the pressure (22-32d) as p = p0− ρ0g0z + ρ0cvx and using that 〈vx〉 = 0,
we find the average 〈p vx〉 = ρ0c

〈
v2

x

〉
. Inserting vx from (22-32b) we find,

〈
v2

x

〉
=

1
2

( aω

sinh kd

)2

cosh2 k(z + d) .

Finally, using that 2 cosh2 φ = 1 + cosh 2φ the integral can be done, and the
average power of the wave may be written

〈P 〉 =
1
4
ρ0g0a

2c

(
1 +

2kd

sinh 2kd

)
=

1
2
ρ0g0a

2Lcg , (22-48)

where the group velocity is given by (22-31).
We can now confirm the claim that energy indeed moves with the group

velocity even if the wave contains only one wave number, because we have 〈E〉 =
〈P 〉∆t where ∆t = ∆x/cg is the time it takes for for a group of waves to move
through the distance ∆x, covering an area A = L∆x.

Example 22.3.3: The tsunami of example 22.2.1 with λ = 500 km, cg = 200 m/s,
and a = 1 m carries an average power per unit of transverse length of 〈P 〉 /L =
106 W/m. Such a Tsunami can really wreak havoc when it hits a coast.

cg∆t

L A

The energy contained in the
rectangle A = L×∆x passes
the dashed line in the time
∆t = ∆x/cg.

Wave force from momentum transport

The total momentum transport through the vertical cut may be taken as a mea-
sure of the force that the moving fluid exerts in the cut,

Fx =
∫

S

ρ0vxv · dS =
∫ h

−d

ρ0v
2
x Ldz ≈

∫ 0

−d

ρ0v
2
x Ldz . (22-49)

There is a small subtlety in using the relation between momentum transport and
force which is cleared up in problem 22.8. Averaging over time and using

〈
v2

x

〉
from above we find

〈Fx〉 =
〈P〉
c

=
1
2
ρ0g0a

2L
cg

c
. (22-50)
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This is related to the force of a wave hitting an obstacle, although that is strongly
complicated by the shape of the obstacle and by reflected waves [60].

Example 22.3.4: If you are L = 50 cm wide and wade near the shore, a wave of
amplitude a = 10 cm would act on you with an average force of 〈Fx〉 ≈ 1

2
ρ0g0La2 =

25 N. That won’t topple you.

Rise of a shallow-water swell

When a small-amplitude wave train with wavelength much larger than the depth
approaches a gently sloping beach, the phase and group velocity of the waves
will fall with decreasing water depth according to the shallow-water expression
(22-34). It is well-known that the amplitude grows at the same time, but how
fast does it grow? And what about the wavelength?

Suppose the waves roll steadily in from afar with constant period τ . In the
steady situation, wave crests cannot accumulate anywhere, so that the same
number of waves must hit the coast in a given time interval as roll in from far
away, implying that the period τ between successive wave crests must be the
same everywhere, independently of the bottom depth. The constancy of τ in
turn implies that the wavelength must scale with depth like the phase velocity,
λ = cτ ∼

√
d. Similarly, energy cannot accumulate anywhere in the steady

situation, so that the average rate of energy transport 〈P 〉 ∼ a2cg ∼ a2
√

d must
be independent of d, implying that a ∼ d−1/4. Altogether, these considerations
show that a shallow-water wave starting out at depth d0 with amplitude a0 and
wavelength λ0, will have

a = a0

(
d0

d

)1/4

, λ = λ0

√
d

d0
, (22-51)

when the depth is reduced to d (see fig. 22.4).
These expression are only valid for very gently sloping beaches which may

be viewed as locally flat so that the waves propagate according to the shallow-
water expressions everywhere. When this is not fulfilled, the bottom boundary
condition must take into account the actual beach slope d′(x), and a much more
complicated formalism ensues [59]. On top of that, there are the unavoidable
non-linear effects close to the shore where the depth becomes comparable to the
amplitude.

Example 22.3.5 (Ocean swell): Typical wind-generated oceanic swells have
wavelengths of λ0 = 150 m, velocity c0 = 15 m/s, period τ = 10 s in deep water,
and perhaps an amplitude of a0 = 1 m. When the depth decreases to about d0 ≈
λ0/2π ≈ 25 m, the water becomes shallow and the wave starts to rise. At a depth
of d ≈ 2 m, the wave characteristics are a ≈ 2 m, λ ≈ 43 m, c = 4.5 m/s. At this
point, the amplitude has become equal to the depth and strong non-linear effects
will take over the wave, so that it breaks and produces a surf.
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Figure 22.4: Gravity waves coming in from the right towards a coast along a gently
sloping flat bottom. The waves increase gently in amplitude as they decrease in wave-
length. When the amplitude becomes comparable to the depth (on the left), non-linear
effects take over and make the waves break.

Example 22.3.6 (Tsunami): A tsunami with λ0 = 500 km, τ = 2500 s,
a0 = 1 m, c0 = 200 m/s at a water depth d0 = 4000 m rises to a = 4.5 m,
λ = 25 km, and c = 10 m/s at a depth of d = 10 m. Beyond this point non-linear
effects set in and the tsunami will break. At the coast this tsunami appears as a
sequence of powerful tidal waves arriving every 42 minutes and rolling far inland.

22.4 Capillary surface waves

Surface tension was introduced in section 8.1 on page 126 and was shown to exert
strong influence on the shapes small fluid objects at rest, for example raindrops.
In this section we shall study the interplay between gravity and surface tension
for surface waves.

Surface tension is characterized by a material constant α, representing the
attractive force per unit of length of the surface, or equivalently the extra energy
per unit of surface area from the missing molecular bonds. Surface tension gen-
erates a pressure jump (8-5) across any interface between two fluids, expressed
through the principal radii of curvature of the surface. We saw in section 8.1
that the relative influence of surface tension and gravity in a liquid/air interface
is characterized by a characteristic length (8-4), called the capillary constant or
the capillary radius, which is Rc =

√
α/ρ0g0 ≈ 2.7 mm for the interface between

water and air. Surface tension only plays a major role for length scales around
and below the capillary constant.

Pressure jump across a nearly flat surface��
�###

..............................................................................................................
.................
...................
........................
.......................................
...............................................................................................................................................................................................................

∆x

∆y

The small rectangle in the
xy-plane defines a piece of
the wave surface of area
A = ∆x∆y.

To calculate the pressure jump over a nearly flat surface, z = h(x, y) with
|∂h/∂x| , |∂h/∂y| ¿ 1, we consider a tiny piece of the surface situated above
a small rectangle between (x, y) and (x+∆x, y +∆y). All four sides of this piece
of surface are subject to tension from the surroundings, and we wish to calculate
the resultant vertical force. Since the slope of the surface is small, we may dis-
regard the slight misalignment between the vertical force and the pressure force
which strictly speaking must be orthogonal to the surface. The slope of the sur-
face at (x, y) is ∂h/∂x along x, and it follows from the geometry that the surface
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tension acting on the two ∆y-sides of the rectangle generates a vertical force

∆Fz = −α∆y
∂h(x, y)

∂x
+ α∆y

∂h(x + ∆x, y)
∂x

≈ α∆x∆y
∂2h(x, y)

∂x2
.

Adding the forces acting on the two ∆x-sides and dividing by the area A = ∆x∆y,

...................
.....................
..........................

..........................................
................................................................................................

r
r

¡ª
@R

- x

6
z

x x + ∆x

−α∆y

α∆y

The total vertical force on
the small piece of surface is
determined by projecting the
forces due to surface tension
on the vertical.

we see that in order to balance the vertical force from surface tension, the pressure
just below the surface must be higher by,

∆p = −α(∇2
x +∇2

y)h . (22-52)

If the surface curves downwards in all directions in a given point, we have (∇2
x +

∇2
y)h < 0, and the extra pressure will be positive below the surface.

The curvature of a small-amplitude surface wave thus generates a pressure
jump ∆p at the surface. Whereas the Euler equation (22-15) is unchanged, the
value of the pressure just below the surface is p0 +∆p rather than p0, so that the
dynamic boundary condition (22-17) is replaced by,

p = p0 + ∆p for z = h . (22-53)

Since ∆p given by (22-52) is positive at a wave crest and negative at a trough, sur-
face tension collaborates with gravity in attempting to flatten the water surface.
Waves completely dominated by surface tension are called capillary waves.

Deep-water capillary gravity waves

Surface tension is only expected to become important for waves of very small
wavelength, which except for special situations may be assumed to be deep-water
waves. The velocity potential is in that case Ψ = Aekz sin(kx − ωt), and from
the kinematic boundary condition (22-16) and the modified dynamic boundary
condition (22-53) we obtain in the usual way,

A = a
ω

k
= a

ρ0g0 + αk2

ρ0ω
. (22-54)

This shows that the only effect of surface tension is to increase the gravitational
acceleration from g0 to,

g = g0 +
αk2

ρ0
= g0(1 + k2R2

c) , (22-55)

where we have introduced the capillary constant Rc =
√

α/ρ0g0. As foreseen,
surface tension collaborates with gravity and becomes more important than grav-
ity for kRc & 1, or

λ . λc = 2πRc . (22-56)
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Figure 22.5: Phase and group velocities for deep-water capillary gravity waves (in
water) as a function of the wavelength λ = 2π/k. For λ . 5 cm surface tension makes
phase and group velocities rise again. Phase and group velocities cross each other at
λ = λc = 1.7 cm.

In water this capillary wavelength is λc ≈ 1.7 cm.
Replacing g0 by g in the deep-water dispersion law (22-24), we find

ω =
√

g0k +
α

ρ0
k3 =

√
g0k

(
1 + k2R2

c

)
. (22-57)

This dispersion law agrees very well with experiments (see for example Chris-
tiansen et al, J. Fluid Mech. 291, 323 (1995)).

The phase and group velocities

c =
√

g0

k
(1 + k2R2

c) , cg =
1
2
c
1 + 3k2R2

c

1 + k2R2
c

. (22-58)

are plotted for water in fig. 22.5. Notice that the phase velocity has a minimum
for kRc = 1 (i.e. λ = λc) where the group velocity also equals the phase velocity
(see problem 22.13). The minimum of the group velocity occurs for a somewhat
larger wavelength.

For very small wavelengths, λ ¿ λc or kRc À 1, surface tension dominates
completely, and we find the dispersion law for purely capillary waves,

ω =

√
αk3

ρ0
, c =

√
αk

ρ0
, cg =

3
2
c . (22-59)

In purely capillary waves the phase velocity is only 2/3 of the group velocity, and
the wave crests appear to move backwards inside a wave packet!
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22.5 Internal waves

In the ocean a heavier saline layer of water may often be found below a lighter
more brackish layer, and so-called internal waves may arise in the interface. Even
if the difference in density between the fluids is small, the equilibrium interface
will always be horizontal with the lighter liquid situated above the heavier, as
discussed previously in section 7.1. Were it somehow possible to invert the ocean
so that the lighter fluid came to lie below the heavier, instability would surely
arise, and the liquids would after some time find back to their “natural” order.
As we shall see, surface tension can in fact stabilize the inverted situation in
sufficiently small containers.

Boundary conditions

...............................................
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...............
................
....................
........................
..................................
............................................................................................................................................................................................................................................................................................................................................................................................
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...............
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............
.............
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.....................
..................................................................................................................................................................................................................................................................................................

...

6
z

ρ1

ρ2

Internal waves at an inter-
face with a heavier liquid
below and a lighter above.

Let the lower layer have density ρ1 and the upper layer ρ2 with a separating
interface z = h(x, y, t) between the two fluids with velocity potentials Ψ1 and Ψ2.
For small-amplitude waves, the kinematic boundary conditions express that both
fluids and the separating surface must move together in the vertical direction,

v1z = v2z =
∂h

∂t
for z = h. (22-60)

Including surface tension (22-52), the dynamic boundary condition becomes,

p1 + ∆p = p2 for z = h. (22-61)

where ∆p is given by (22-52), and the pressures are expressed like (22-19) in each
of the fluids.

Dispersion law

Suppose again that the interface takes the form of a pure line wave, h = a cos(kx−
ωt). We shall only consider deep-water waves in which the wave flow is required
to vanish far below and far above the interface. The velocity potentials are then
of the same form as for deep-water waves,

Ψ1 = A1e
+kz sin(kx− ωt) , Ψ2 = A2e

−kz sin(kx− ωt) ,

with a notable change of sign in the exponential factors. The boundary conditions
(22-60) and (22-61) imply for k |h| ¿ 1 that

kA1 = −kA2 = aω , ρ1(g0a− ωA1) + αk2a = ρ2(g0a− ωA2) . (22-62)

Solving these we find,

A1 = −A2 =
a

ω

g0(ρ1 − ρ2) + αk2

ρ1 + ρ2
= a

ω

k
. (22-63)
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From the last equality we obtain the dispersion law for deep-water internal waves,

ω =

√
g0k(ρ1 − ρ2) + αk3

ρ1 + ρ2
. (22-64)

If the upper density is much smaller than the lower, ρ2 ¿ ρ1, these waves become
ordinary deep-water gravity waves, but when the densities are nearly equal, ρ2 .
ρ1, the internal waves have much lower frequencies (and velocities) than waves of
the same wavelength at the surface. The capillary constant is as before defined
as the length scale where gravity and surface tension are of the same magnitude,

Rc =
√

α

|ρ1 − ρ2| g0
. (22-65)

It diverges when the densities become equal, because gravity then plays no role,
and internal waves become purely capillary waves.

Example 22.5.1: If a brackish surface layer lies above a saline layer with 4%
higher density, the capillary wavelength for internal waves becomes λc = 2πRc =
2.7 m. A wave of this wavelength has period τ = 6.6 s, and moves with the majestic
speed of c = 0.4 m/s.

The Rayleigh-Taylor instability

When the heavier fluid lies below the lighter, ρ1 > ρ2, the frequency ω of an
internal wave is always real, but if the container is quickly turned upside down,
such that ρ1 < ρ2, the heavier fluid will be on top, and the dispersion law may
be written as,

ω =
√

g0
ρ2 − ρ1

ρ1 + ρ2
k(k2R2

c − 1) , (22-66)

The argument of the squareroot will be negative for kRc < 1, or λ > λc =
2πRc. In that case, ω becomes imaginary, and the otherwise sinusoidal form the
line wave is replaced by and exponential growth e|ω|t in time. This signals an
instability, called the Rayleigh-Taylor instability.

In an infinitely extended ocean, there is room for waves with wavelengths
of any size, and the inverted situation will always be unstable. It can only
be maintained for a very short while, because the smallest perturbation of the
surface will lead to a run-away process that ends with the heavier liquid again
being arranged below the lighter.

-

6
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........................................................................................................................................................................................................................................................................................................................................... x

vx

0 L
Any flow in a box of length
L must obey vx = 0 for
x = 0 and x = L.

In a finite container, there is an upper limit to the allowed wavelengths,
because the boundary conditions require the horizontal velocities to vanish at the
vertical walls surrounding the fluids. Any flow in a finite box-shaped container
of horizontal length L must obey the boundary conditions vx = 0 for both x = 0
and x = L. Linear Euler flow in a box can, like the flows we are studying here,
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Figure 22.6: Plot of U/Uc as a function of λ/λc. For the water-air interface the
capillary wavelength is λc = 1.7 cm and the critical velocity is Uc = 7.4 m/s. For a
given velocity U , one can read off the range of unstable wavelengths from this figure.

always be resolved into a superposition of standing waves with horizontal velocity
vx ∼ sin kx cos ωt. The boundary conditions select the allowed wave numbers to
be k = nπ/L where n = 1, 2, . . . is an arbitrary integer. For n = 1 we obtain the
largest wavelength, λ = 2π/k = 2L, and this shows as long as

L <
1
2
λc = πRc = π

√
α

(ρ2 − ρ1)g0
, (22-67)

unstable wave modes with λ > λc cannot occur. If a container with horizontal
size smaller than half the capillary wavelength is inverted, the heavyer liquid will
remain stably on top of the lighter.

Example 22.5.2: Air against water has as we have seen before a capillary wave-
length of λc = 1.7 cm so that we must require L < 0.85 cm. Try it yourself with a
glass tube of, for example, 5 mm diameter. It works!

The Kelvin-Helmholtz instability

Layers of inviscid fluids are capable of sliding past each other with a finite slip-
velocity, if we disregard the viscous boundary layers that otherwise will soften
the sharp discontinuity in velocity. When waves arise in the interface between
the fluids, they will so to speak “get in the way” of the smooth flow, leading us
to expect instability at a sufficiently high slip-velocity.

Suppose the upper layer is moving with velocity U in the restframe of the
lower layer. Taking into account the slope ∇xh of the interface, the horizontal
flow in the upper layer will add U∇xh to the vertical velocity, such that the
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kinematic boundary conditions are replaced by,

v1z =
∂h

∂t
, v2z =

∂h

∂t
+ U∇xh for z = h. (22-68)

The same is the case for the pressure which becomes

p2 = p0 − ρ0

(
g0h +

∂Ψ2

∂t
+ U∇xΨ2

)
. (22-69)

Putting it all together we find the boundary conditions,

kA1 = aω , −kA2 = a(ω − kU) ,

ρ1(g0a− ωA1) + αk2a = ρ2(g0a− (ω − kU)A2) ,

which when combined lead to a quadratic equation for the frequency

(ρ1 + ρ2)ω2 − 2ρ2kUω + ρ2k
2U2 = k((ρ1 − ρ2)g0 + αk2) . (22-70)

Given the wave number k, the roots are real for

U2 <

(
1
ρ1

+
1
ρ2

)
(ρ1 − ρ2)g0 + αk2

k
. (22-71)

For ρ1 > ρ2, the right hand side has an absolute minimum when kRc = 1, where
Rc is the capillary radius for internal waves (22-65). Selecting the minimum of
the right hand side by setting k = 1/Rc, the condition for absolute stability
becomes

U < Uc =

√
2g0Rc

(
ρ1

ρ2
− ρ2

ρ1

)
. (22-72)

For air flowing over water the critical velocity is Uc = 7.4 m/s. In fig. 22.6 the
ratio

U

Uc
=

√
1
2

(
λ

λc
+

λc

λ

)
(22-73)

is plotted as a function of λ/λc. For U > Uc there will be a range of wavelengths
around the capillary wavelength λ = λc for which small disturbances will diverge
exponentially with time. This is the Kelvin-Helmholtz instability which permits
us at least in principle to understand how the steadily streaming wind is able to
generate waves from infinitesimal disturbances.

What actually happens to the unstable waves with their exponentially growing
amplitudes, for example how they grow into the larger waves created by a storm,
cannot be predicted from linear theory. It is, however, possible to say something
about the statistics of wind-generated ocean waves without going into too much
nonlinear theory (see section 22.7).
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∗ 22.6 Attenuation of small-amplitude waves

Surface waves are attenuated by several effects. First of all, there is viscous
attenuation due to internal friction in the fluid. Secondly, there is attenuation
from bottom friction, and thirdly there is dissipation due to deviations of surface
tension from its equilibrium value, which for example plays a role when oil is
poured on troubled waters. Here we shall only focus on viscous attenuation.

Rate of viscous dissipation

In an incompressible liquid, we have ∇ · v = 0, and the internal rate of viscous
energy dissipation (17-79) in a thin vertical column of liquid with area A simplifies
to

Pint = −2η

∫ h

−d

∑

ij

v2
ij Adz ≈ −2η

∫ 0

−d

∑

ij

v2
ij Adz , (22-74)

where vij = 1
2 (∇ivj +∇jvi) and η is the viscosity. For a line wave running along

x the integrand may be recast as
∑

ij

v2
ij = (∇xvx)2 + (∇zvz)2 +

1
2
(∇xvz +∇zvx)2 = 2(∇xvx)2 + 2(∇xvz)2 .

In the last step have used mass conservation ∇zvz = −∇xvx and irrotationality
∇zvx = ∇xvz. For a harmonic wave (22-32) we may replace ∇x by k in the time
average, so that it becomes

〈∑

ij

v2
ij

〉
= 2k2

〈
v2

x + v2
z

〉
. (22-75)

This is proportional to the integrand in the kinetic energy (22-44) and taking
over the result (22-45) this leads to 〈−Pint〉 = 8νk2 〈T 〉, where ν = η/ρ0 is the
kinematic viscosity. Relative to the average of the total energy, 〈E〉 = 2 〈T 〉 the
rate of dissipation finally becomes

〈−Pint〉
〈E〉 = 4νk2 . (22-76)

The dissipative energy loss grows quadratically with the wave number and is
most important for small wavelengths, i.e. for capillary waves. These may as
before be included by replacing g0 by the effective gravity (22-55), but that does
not change the above result.

The loss of energy over a wave period τ = 2π/ω is Pint τ , and relative to the
average energy of the wave (22-46), it becomes

〈−Pint〉 τ

〈E〉 = 4νk2τ = 8πν
k2

ω
= 16π2 ντ

λ2
, (22-77)
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Figure 22.7: The viscous amplitude attenuation coefficient κ for water plotted as a
function of wavelength λ. The viscosity is ν = 8.64 × 10−7 m2/s and the surface ten-
sion α = 0.073 N/m. Viscous attenuation essentially only plays a role for very small
wavelengths.

where ν is the kinematic viscosity. The condition for our calculation to be valid is
that the relative attenuation should be small. In deep water with ν ≈ 10−6 m2/s,
this quantity becomes larger than unity for λ . 40 µm, so that the condition
should be well satisfied in practice where wavelengths are much larger.

Energy and amplitude attenuation coefficients

The energy propagates, as we have shown before, with the group velocity cg.
Dividing the rate of dissipation (22-76) by cg, we obtain the spatial energy at-
tenuation coefficient (i.e. the relative loss of energy per unit of length)

2κ =
4νk2

cg
. (22-78)

As the energy is quadratic in the amplitude, the energy attenuation coefficient
is twice the amplitude attenuation coefficient κ, plotted in fig. 22.7. It is clearly
only of importance for small wavelengths.

Example 22.6.1: In water for λ = 1 m one finds κ ≈ 10−4 m−1 whereas for
λ = λc = 1.7 cm one gets κ ≈ 1 m−1. A raindrop hitting a lake surface thus creates
a disturbance that dies out after propagating through a meter or less whereas a big
object, like the human body, will make waves with longer wavelength that continue
essentially unattenuated right across the lake. In these cases, however, the amplitude
of the ring-shaped surface waves will also diminish for purely geometric reasons.
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∗ 22.7 Statistics of wind-generated ocean waves

Waves arise spontaneously from tiny perturbations at the wind/water interface
when the wind speed surpasses the Kelvin-Helmholtz instability threshold (see
page 435). The continued action of the wind and nonlinear wave interactions
raise the waves further, until a kind of dynamic equilibrium is reached in which
the surface may be viewed as a statistical ensemble of harmonic waves with a
spectrum of periods, wavelengths, and amplitudes. Even if we do not understand
the mechanism at play, it is nevertheless possible to draw some quite general
conclusions about its statistics and compare them with observations.

Surface height observations

A ship or buoy bobbing at a fixed position (x, y) of the ocean surface reflects the
local surface height, h(t) = h(x, y, t). The variations in surface height may be
determined by many different techniques, for example based on accelerometers,
radar or sattelites. While the wind blows steadily, a long record of N À 1
measurements hn = h(tn) can be collected at the discrete times, tn = nε (n =
1, 2, . . . , N), which for simplicity are assumed to be evenly spaced.

The underlying wave structure of the surface creates strong correlations be-
tween successive measurements of the local height. Short waves are carried on
top of larger waves and so on. To get rid of such correlations, we shall for odd
N = 2M +1 write the record as a superposition of simple harmonics (see problem
22.15 for the precise theory of discrete Fourier transformations),

hn = a0 +
M∑

m=1

am cos(ωmtn − χm) (22-79)

where ωm = 2πm/Nε is the circular frequency, am the amplitude, and χm the
phase shift of the m’th harmonic. Given the N = 2M + 1 measured values hn

these equations may be solved for the 2M +1 unknowns, consisting of amplitudes
and phase shifts plus the constant a0. Notice that the highest frequency that can
be resolved by N observations is ωM = 2πM/Nε ≈ π/ε.

From the data record we may calculate various averages that may be related
to the parameters of the harmonic expansion. Thus, we find the average height
〈h〉 = 1

N

∑N
n=1 hn = a0 because all the cosines average out to zero. Without any

loss of generality we may always subtract the average water level a0 from the
measured heights. Assuming from now on that 〈h〉 = a0 = 0, the variance of the
height becomes

〈
h2

〉
=

1
N

N∑
n=1

h2
n =

1
2

M∑
m=1

a2
m . (22-80)

In the last step we have used that the harmonics are uncorrelated so that the
average of the product of different harmonics vanishes, whereas the average of
the square of any of the cosines is 1/2 (see problem 22.15).
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For large N the frequencies constitute almost a continuum and since the
energy is proportional to the square of the amplitude, the power spectrum of the
observed waves may be defined to be

S(ωm) =
Nε

4π
a2

m . (22-81)

The coefficient in front has been chosen such that for large N we may write the
sum over m as an integral

〈
h2

〉
=

1
2

M∑
m=1

a2
m ≈

∫ ωM

0

S(ω) dω , (22-82)

where dω = 2π/Nε is the distance between neighboring frequencies.

The “canonical” form of the spectrum

The empirical spectra have a single peak with a long tail towards higher fre-
quencies and a sharp drop-off below. The position of the peak depends strongly
on the wind velocity U whereas the high-frequency tail appears to be the same
for all U (see fig. 22.8). We shall now see that it is possible to understand the
general form of the spectrum using the methods of statistical mechanics.

The wind speed U sets the level of excitation of the ocean surface at large,
but cannot control what happens locally so that the local wave energy E in a
small neighborhood of a fixed point in principle can take any value. But because
the energy has to come from the huge reservoir of wave energy in the surrounding
ocean, the probability that the local energy actually gets the value E is suppressed
by a canonical Boltzmann factor e−βE , where the “inverse temperature” β is a
measure of the level of excitation of the ocean. Multiplying with the energy per
unit of frequency dE/dω the energy spectrum becomes

S ∼ e−βE dE

dω
. (22-83)

Provided the nonlinearity is not excessive, the local energy is proportional to the
square of the amplitude E ∼ a2. Since the local energy cannot depend on U , the
amplitude must be of magnitude a ∼ g0/ω2, because that is the only length scale
which may be constructed from g0 and ω. Taking E ∼ g2

0/ω4 and normalizing the
frequency in the exponent by g0/U , we get the following model for the spectrum,

S(ω) = α
g2
0

ω5
exp

[
−β

( g0

Uω

)4
]

, (22-84)

where α and β are dimensionless parameters. This spectrum has indeed a sharp
low-frequency cutoff, a single peak, and a high-frequency tail that is independent
of U (when α is independent of U).
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Figure 22.8: Pierson-Moskowitz wave spectrum S as a function of circular frequency
ω for three different wind speeds U = 10, 15, 20 m/s. Notice that the high frequency tail
is independent of U .

The root-mean-square amplitude and the peak frequency are easily evaluated,

√
〈h2〉 =

√
α

β

U2

2g0
, ωp =

(
4β

5

)1/4
g0

U
. (22-85)

Notice that these quantities are scaled by the only possible combinations of U
and g0 that have the right dimensions.

The Pierson-Moskowitz empirical spectrum

Assuming that the statistical equilibrium is the same everywhere on the ocean
surface, the dimensionless parameters α and β can only depend on U and g0, but
since there is no dimensionless combination of U and g0, both α and β must be
constants. Pierson and Moskowitz2 fitted empirical spectra for a range of wind
velocities and found the values

α = 8.1× 10−3 , β = 0.74 . (22-86)

The root-mean-square amplitude and spectrum peak position are

√
〈h2〉 = 0.11

U2

2g0
, ωp = 0.88

g0

U
. (22-87)

The actual spectrum is quite sensitive to the height at which the wind speed is
determined because of air turbulence close to the surface. In the data used in the
fit, the wind speed was measured about 20 m above the average surface level.

In fig. 22.8 the Pierson-Moskowitz spectrum is shown for three different wind
speeds. One notices how the high-frequency tails coincide, and how the low-
frequency cutoff becomes sharper as the wind speed increases.

2W. J. Pierson and L. Moskowitz, J. Geophysical Research 69, 5181 (1964); L. Moskowitz,
ibid p. 5161;W. J. Pierson, ibid p. 5191.
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Example 22.7.1: At a wind speed of U = 15 m/s the period at peak is about
τp = 11 s, corresponding to a deep-water wavelength of λp = 186 m and a phase
velocity of cp = 17 m/s. The average amplitude of the waves raised by this wind
is
p
〈h2〉 = 1.2 m. As a measure of the nonlinearity one may take kp

p
〈h2〉 = 0.04

where kp = ω2
p/g0 = 0.03 m−1 is the peak wave number, determined from the

deep-water dispersion relation (22-24). According to this estimate, the average
nonlinearity at play at this wind speed is indeed quite small.

The assumed dynamic equilibrium of the ocean surface takes a long time to
develop, and more so the higher the wind speed. A wind with velocity U lasting
a time t must have travelled over an upwind distance L = Ut, called the fetch.
Even for a moderate wind at 15 m/s the sea takes about 8 hours to develop, so
that the fetch is about 500 km. Since the fetch empirically grows roughly like U3,
much stronger winds in practice rarely manage to fully develop the equilibrium
power spectrum of the sea because of the finite distance to the lee shore and the
finite size of the weather systems generating the winds.
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Problems

22.1 Calculate explicitly the form of a superposition of harmonic waves

h =

Z ∞

−∞
a(k) cos[kx− ω(k)t + χ(k)] dk , (22-88)

where

a(k) =
1

∆k
√

π
exp

�
− (k − k0)

2

∆k2

�
(22-89a)

ω(k) = ω0 + cg(k − k0) (22-89b)

χ(k) = χ0 − x0(k − k0) . (22-89c)

Describe its form and determine what x0 represents. Hint: write the wave as the real
part of a complex wave and use the known Gaussian integrals.

22.2 Check whether the shallow-wave solution (22-35) actually satisfies the field equa-
tions (22-15). Discuss what is wrong, if they do not.

22.3 Show that the fluid particles move in ellipses in a flat-bottom gravity wave, and
that the ellipses become flat close to the bottom. What happens in the deep-water
limit?

22.4 Show that the depth at which non-linear effects become important in waves
rolling up on a gently sloping beach is of order of magnitude,

d ≈ a
4/5
0 d

1/5
0 (22-90)

where a0 and d0 is the amplitude and depth at the beginning of the beach.

22.5 Define the depth-averaged velocity for a small-amplitude gravity wave,

v̄x =
1

d + h

Z h

−d

vx dz (22-91)

Show that in the leading approximation its time average is

〈v̄x〉 =
g0a

2

2cd

�
1− c2

g0d

�
(22-92)

What happens in the flat-water limit?

22.6 Calculate the ratio between the amount of water transported during a period
and the total amount of water in a shallow-water wave. Estimate its typical value.

∗ 22.7 There is a small subtlety in the derivation of the average mass transport in
a wave (22-40), because the leading (sloshing term) could have corrections of order
h. Show that for any kind of potential flow v = rΨ with periodic velocity potential
Ψ = Ψ(kx− ωt, z), the average transport rate will always be

〈Q〉 = −ρ0L 〈hvx〉z=h (22-93)

in the small amplitude limit. Hint: Use that the average over a period is equivalent to
an average over a wavelength.
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∗ 22.8 In the derivation of (22-50) there is a subtlety in the use of momentum transport
instead of the proper pressure force acting on a vertical cut through the wave

Fx = −
Z h

−d

p Ldz (22-94)

Show that in potential flow, its average equals the average rate of momentum transport,

〈Fx〉 =

�Z h

−d

ρ0v
2
x Ldz

�
(22-95)

Hint: Include the quadratic terms.

22.9 Consider a small-amplitude gravity line wave and

(a) Show that

v2
x + v2

z = ∇x(Ψvx) +∇z(Ψvz) (22-96)

(b) Show that the time average satisfies

v2

x + v2
z

�
= ∇z 〈Ψvz〉 (22-97)

(c) Use this to calculate the kinetic energy (22-45).

22.10 Prove the virial theorem

〈T 〉 =
n

2
〈V〉 (22-98)

for a single particle in periodic motion in a power potential V = krn.

22.11 Justify qualitatively the common observation that waves rolling towards a
beach tend to straighten out so that the wave crests become parallel to the beach.

22.12 For what size raindrop will the pressure due to surface tension equal atmo-
spheric pressure?

22.13 a) Determine where the phase and group velocities (22-25) for deep-water waves
cross (use α = 0.073 N/m) and the common value at the crossing. b) Determine the
minimal value of the phase velocity and the corresponding wavelength .

22.14 A square jar is half filled with water of density 1 g/cm3 lying below oil of
density 0.8 g/cm3. The interface has surface tension 0.3 N/m. Determine the largest
horizontal size of the jar which permits the oil to be stably above the water.
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22.15 Discrete Fourier transformation.
Assume that a set of N generally complex numbers hn numbered n = 0, 1, 2, . . . , N−

1. Define the Fourier coefficients

ĥm =
1√
N

N−1X
n=0

hn exp
h
2πi

nm

N

i
(22-99)

(a) Show that

N−1X
m=0

exp
h
2πi

nm

N

i
=

(
N for n = 0

0 for 1 < n < N
(22-100)

(b) Show the reciprocity theorem

hn =
1√
N

N−1X
m=0

ĥm exp
h
−2πi

nm

N

i
(22-101)

(c) Show Parseval’s theorem

N−1X
n=0

|hn|2 =

N−1X
m=0

���ĥm

���2 (22-102)

(d) Assume from now on that that hn is real. Show that

ĥ×m = ĥ−m (22-103)

where ĥ−m means ĥN−1−m.

(e) Put

ĥ0 =
√

N a0 ĥm =
1

2

√
N am eiχm (22-104)

where an and χn are real. Show that a−n = an and χ−n = −χn. Show that for
odd N = 2M + 1

hn = a0 +

MX
m=1

am cos(ωmtn − χm) (22-105)

where tn = nε, and ωm = 2πm/Nε.

(f) Show that

1

N

N−1X
n=0

(hn − a0)
2 =

1

2

MX
m=1

a2
m (22-106)
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