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1
Continuous matter

The everyday experience of the smoothness of matter is an illusion. Since the
beginning of the twentieth century it has been known with certainty that the
material world is composed of microscopic atoms and molecules, responsible for
the macroscopic properties of ordinary matter. Long before the actual discovery
of molecules, chemists had inferred that something like molecules had to exist,
even if they did not know how big they were. Molecules are small — so small
that their existence may be safely disregarded in all our daily doings. Although
everybody possessing a powerful microscope will notice the irregular Brownian
motion of small particles in a liquid, it took quite some mental effort and a big
step away from the everyday manipulation of objects to recognize that this is a
sign that molecules are really there.

Continuum physics deals with the systematic description of matter at length
scales that are large compared to the molecular scale. Most macroscopic length
scales occurring in practice are actually huge in molecular units, typically in the
hundreds of millions. This enormous ratio of scales isolates continuum theories
of macroscopic phenomena from the details of the microscopic molecular world.
There might in principle be many different microscopic models leading to the
same macroscopic physics.

This chapter paints in broad outline the transition from molecules to contin-
uous matter, or mathematically from particles to fields. It is emphasized that
the macroscopic continuum description must necessarily be of statistical nature,
but that random statistical fluctuations are strongly suppressed by the enormity
of the number of molecules in any macroscopic material object. The central
theme of this book is the recasting of Newton’s laws for point particles into a
systematic theory of continuous matter, and the application of this theory to the
wealth of exotic and everyday phenomena of the macroscopic material world. For
completeness, a short review of Newton’s laws is presented in appendix B.
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4 1. CONTINUOUS MATTER

1.1 Molecules

The microscopic world impinges upon the macroscopic almost only through ma-
terial constants characterizing the interactions between macroscopic amounts of
matter, such as coefficients of elasticity and viscosity. It is of course an impor-
tant task for the physics of materials to derive the values of these constants, but
this task lies outside the realm of continuum physics. In continuum physics it is
nevertheless sometimes instructive to consider the underlying atomic or molec-
ular structure in order to obtain an understanding of the origin of macroscopic
phenomena and of the limits to the macroscopic continuum description.

Molecular weight

Chemical reactions such as 2H2 +O2 → 2H2O are characterized by simple integer
coefficients. Two measures of hydrogen plus one measure of oxygen yield two
measures of water without anything left over of the original ingredients. What
are these measures? For gases at the same temperature and pressure, it is simply

H2

H2

+
H2O

H2O

→O2

The meaning of a chemical
formula.

the volume, so that for example two liters of hydrogen plus one liter of oxygen
yield two liters of water vapor, assuming that the water vapor without condensing
can be brought to the same temperature and pressure as the gases had before
the reaction.Count Avogadro of Italy proposed already in 1811 that the simpleLorenzo Romano Amadeo

Carlo Avogadro (1776–
1856). Italian philosopher,
lawyer, chemist and physi-
cist. Count of Quaregna
and Cerratto. Formulated
that equal volumes of gas
contain equal numbers of
molecules. Also argued
that simple gases consist of
diatomic molecules.

integer coefficients in chemical reactions between gases could be explained by the
rule that equal volumes of gases contain equal numbers of molecules (at the same
temperature and pressure).

The various measures do not weigh the same. A liter of oxygen is roughly 16
times heavier than a liter of hydrogen at the same temperature and pressure. The
weight of a liter of water vapor must — of course — be the sum of the weights
of the ingredients, hydrogen and oxygen, and from the formula it now follows
that this becomes roughly (2 × 1 + 1 × 16)/2 = 9 times the weight of a liter of
hydrogen. Such considerations lead early to the introduction of the concept of
relative molecular weight or mass in the ratio 1:16:9 (or equivalently 2:32:18) for
hydrogen, oxygen and water.

In the beginning there was no way of fixing an absolute scale for molecular
mass, because that would require knowledge of the number of molecules in a
macroscopic amount of a substance. Instead, a unit, called a mole, was quite
arbitrarily fixed to be one gram of atomic hydrogen (H). Such a scale is practical
for the chemist at work in his laboratory, and the ratios of molecular masses
obtained from chemical reactions would then determine the mass of a mole of
any other substance. Thus the molar mass of molecular hydrogen (H2) is 2
grams and that of molecular oxygen (O2) 32 grams, whereas water has a molar
mass of (2 × 2 + 1 × 32)/2 = 18 grams. This system could be extended to all
chemical reactions allowing the determination of molar mass for any substance
participating in chemical reactions.
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1.1. MOLECULES 5

Avogadro’s number
Jean-Baptiste Perrin (1870–
1942). French physicist. Re-
ceived the Nobel Prize for
his work on Brownian mo-
tion in 1926. He founded
several French scientific in-
stitutions, among them the
now famous “Centre Na-
tional de la Rechèrche Scien-
tifique (CNRS)”.

We now know that chemical reactions actually describe microscopic interactions
between individual molecules built from atoms and that molecular mass is sim-
ply proportional to the mass of a molecule. The constant of proportionality was
called Avogadro’s number by Perrin, who in 1908 carried out the first modern
determination of its value from Brownian motion experiments. Perrin’s exper-
iments relying on Einstein’s recent (1905) theory of Brownian motion were not
only seen as a confirmation of this theory but also as the most direct evidence
for the reality of atoms and molecules. Today, Avogadro’s number is defined to
be the number of atoms in exactly 12 gram of the fundamental carbon isotope
(12C), and its value is NA = 6.022137(3)× 1023 molecules per mole1.

Molecular separation

Consider a substance with mass density ρ and molar mass Mmol. A mole of
the substance occupies a volume Mmol/ρ, and the volume per molecule becomes
Mmol/ρNA. A cube with this volume would have sides of length

Lmol =
(

Mmol

ρNA

) 1
3

, (1-1)

which may be called the scale of molecular separation. For iron we get Lmol ≈
0.24 nm, for water Lmol ≈ 0.31 nm, and for air at normal temperature and
pressure Lmol ≈ 3.4 nm. For liquids and solids, where the molecules touch each
other, this length is roughly the size of a molecule, whereas in gases it may be
much larger. There is a lot of vacuum in a gas, in fact about 1000 times the
volume of matter at normal temperature and pressure. Johannes Diederik van der

Waals (1837–1923). Dutch
physicist. Developed an
equation of state for gases,
now carrying his name. Re-
ceived the Nobel Prize in
1910 for his work on fluids
and gases.

Molecular forces

Apart from the omnipresent gravitational interaction between all bodies, molecu-
lar interactions are entirely electromagnetic in nature, from the fury of a tornado
to the gentlest kiss. A deeper understanding of the so-called van der Waals forces
acting between neutral atoms and molecules requires quantum theory and falls
outside the scope of this book.

- r
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repulsive

attractive

V

Sketch of the intermolecular
potential energy V (r) as a
function of intermolecular
distance r. It is attractive at
moderate range and strongly
repulsive at close distance.

Generally, however, the forces between neutral atoms and molecules are short-
ranged and barely reach beyond nearest molecular neighbors. They are strongly
repulsive if the atoms are forced closer than their natural sizes allow and mod-
erately attractive when they are moved apart a little distance, but farther away
they quickly die out. When two molecules are near each other, this tug of war
between repulsion and attraction leads to a minimum in the potential energy
between the molecules. The state of matter depends, broadly speaking, on the

1In this book the absolute error on the last digits of a quantity is indicated by means of a
parenthesis following the mantissa.
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6 1. CONTINUOUS MATTER

relation between the depth of this minimum, called the binding energy, and the
average kinetic energy due to the thermal motion of the molecules.

Solids, liquids and gases

In solid matter the minimum lies so deep that thermal motion cannot overcome
the attraction. Each individual atom or molecule is tied to its neighbors by
largely elastic forces. The atoms constantly undergo small-amplitude thermal
motion around their equilibrium positions, but as long as the temperature is not
so high that the solid melts, they are bound to each other. If external forces are
applied, solids may deform elastically with increasing force, until they eventually
become plastic or even fracture. Most of the work done by external forces in
deforming elastic solids can be recovered as work when the forces disappear.

In fluid matter, liquids and gases, the minimum is so shallow that the thermal
motion of the molecules is capable of overcoming the attractive forces between
them. The molecules effectively move freely around between collisions, more so in
gases than in liquids where molecular conglomerates may form. External forces
make fluids flow — in liquids a kind of continual fracturing — and a part of the
work done by such forces is dissipated into random molecular motion, or heat,
which cannot directly be recovered as work when the forces cease to act.

1.2 The continuum approximation

Whether a given number of molecules is large enough to warrant the use of a
smooth continuum description of matter depends on the precision desired. Since
matter is never continuous at sufficiently high precision, continuum physics is
always an approximation. But as long as the fluctuations in physical quantities
caused by the discreteness of matter are smaller than the desired precision, mat-
ter may be taken to be continuous. Continuum physics is, like thermodynamics,
a limit of statistical physics where all macroscopic quantities such as mass den-
sity and pressure are understood as averages over essentially infinite numbers of
microscopic molecular variables.

Luckily, it is only rarely necessary to exploit this connection. In a few cases,
such as in the analysis below, it is useful to look at the molecular underpinnings of
continuum physics. In doing so, we shall use the simplest “molecular” description
possible. A quite general meta-law of physics says that the physical laws valid
at one length scale are not very sensitive to the details of what happens at much
smaller scales. Without this law, physics would in fact be impossible, because
we never know what lies below our currently deepest level of understanding.

Precision and continuity

Suppose that we want to determine the mass density ρ = mN/V of a gas to a
certain relative precision r, say r = 1 %, by counting the number of identical
molecules N of mass m in a small volume V . Due to random motion of the gas
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Figure 1.1: Measured density as a function of volume size. A 3-dimensional “universe”
consisting of 20 × 20 × 20 = 8000 cells is randomly filled with as many “molecules”.
On average each of the 8000 cells should receive a single molecule, corresponding to a
density of ρ = 1. A “material particle” consisting of V cells will in general not receive
precisely V molecules, and thus get an actual density that deviates from unity. The plot
shows the actual density of a random collection of V cells as a function of V . The fully
drawn curves, ρ = 1± 1/

√
V , indicate the expected fluctuations.

molecules, the number N will fluctuate and yield a different value if measured
again. For a typical fluctuation ∆N in N , the relative fluctuation in density
will be the same as in N , or ∆ρ/ρ = ∆N/N . If the relative density fluctuation
should be at most ε we must require that ∆N . εN . Provided the time between
measurements is large compared to the time between molecular collisions, the
molecules in the volume V will all be replaced by other molecules, and be an
essentially random collection of molecules from the gas at large. In such a random
process the fluctuation is of order ∆N ≈ √

N , and the condition becomes
√

N .
εN , or N & ε−2 (see fig. 1.1 and problem 1.1). The smallest allowed number of
molecules, Nmicro ≈ ε−2, occupies a cubic volume with side length
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In a gas the molecules move
rapidly in and out of a
small volume with typical
velocities of the order of the
speed of sound.

Lmicro = N
1/3
microLmol ≈ ε−2/3Lmol . (1-2)

At a precision level of ε = 1 %, the smallest volume under consideration should
contain at least Nmicro ≈ 104 molecules, and the linear dimension of such a volume
will be greater than Lmicro ≈ 22Lmol. For air under normal conditions this comes
to about 80 nanometers, while for liquids and solids it is an order of magnitude
smaller because of the smallness of Lmol.

In liquids and especially in solids the molecules do not move around much but
oscillate instead randomly around more or less fixed positions, and the density
fluctuations in a volume are mainly due to molecules passing in and out of the
surface. In problems 1.2 and 1.3 the fluctuations are estimated for a cube and a
sphere, resulting in a microscopic length scale of roughly the same form as above,
although with an exponent of − 1

2 instead of − 2
3 .
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8 1. CONTINUOUS MATTER

Mean free path

Another condition for obtaining a smooth continuum description, is that
molecules should interact with each other to “iron out” strong differences in ve-
locities. If there were no interactions, a molecule with a given velocity would keep
on moving with that velocity forever. In solids and liquids where the molecules
are closely packed, these interactions take place over a couple of molecular sepa-
ration lengths and put no further restriction on the microscopic length scale.

In gases there is a lot of vacuum and molecules move freely over long distances.
The mean free path between collisions may be estimated by considering a spher-
ical molecule or atom of diameter d with its center tracing out a straight path
through the gas. It will hit any other sphere of the same diameter within a “strik-
ing” distance d from the path, i.e. inside a cylinder of diameter 2d. Since there
is on average one molecule in each volume L3

mol, the distance the original sphere
has to move before being sure of hitting another is on average, λ = L3

mol/πd2. A
more careful analysis leads to the following expression for the mean free path,

½¼

¾»½¼

¾»

A sphere of diameter d will
collide with any other sphere
of the same diameter with
its center inside a cylinder
of diameter 2d.

λ =
L3

mol√
2 πd2

, (1-3)

with an extra factor
√

2 in the denominator.
For air at normal temperatures we find λ ≈ 94 nm which is not much larger

than the microscopic length scale, Lmicro ≈ 80 nm (with ε = 1%). For dilute gases
the mean free path is much larger than the microscopic scale and sets the length
scale for the smallest continuum volumes rather than Lmicro, unless the desired
relative precision is very small (see problem 1.5).

Macroscopic smoothness

The macroscopic smoothness of the continuum description also depends on the
microscopic length scale. If L denotes the typical macroscopic length scale for
major variations in density, the relative density change over the distance Lmicro

will typically be of magnitude ∆ρ/ρ ≈ Lmicro/L. Since there should be no mea-
surable variation in density between neighboring molecular volumes, we shall
require ∆ρ/ρ to be smaller than the measurement precision ε. This implies that
we must have L & Lmacro where

Lmacro ≈ 1
ε
Lmicro . (1-4)

Any region in which the density varies by a sizeable fraction must be larger in
scale than Lmacro. Otherwise the smooth continuum description breaks down.
With ε = 1% we find Lmacro ≈ 100Lmicro. For air under normal conditions this is
about 10 micrometers, and for solids an order of magnitude smaller.

Both the micro and macro scales diverge for ε → 0, substantiating the claim
that it is impossible to maintain a continuum description to arbitrarily small
relative precision. The smallness of both length scales for ordinary matter and

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



1.3. NEWTONIAN MECHANICS 9

for reasonable relative precision shows that there is ample room for a smooth
continuum description of everyday phenomena. Nanophysics, however, straddles
the border between the continuum and particle descriptions of matter, resulting
in a wealth of new phenomena outside the scope of classical continuum physics.

Material particles

In continuum physics we shall generally permit ourselves to speak about material
particles as the smallest objects that may consistently be considered part of the
continuum description within the required precision. A material particle will
always contain a large number of molecules but may in the continuum description
be thought of as infinitesimal or point-like.

Although we usually shall think of material particles as being similar in differ-
ent types of matter, they are in fact quite different. In solids, we may with some
reservation think of solid particles as containing a fixed collection of molecules,
whereas in liquids and gases we should not forget that the molecules making up a
fluid particle at a given instant will shortly after be replaced by other molecules.
If the molecular composition of the material in the environment of a material
particle has a slow spatial variation, this incessant molecular game of “musical
chairs” may slowly change the composition of the material inside the particle.
Such diffusion processes driven by spatial variations in material properties lie
at the very root of fluid mechanics. Even spatial variations in the average flow
velocity will drive momentum diffusion, causing internal (viscous) friction in the
fluid.

1.3 Newtonian mechanics

In Newtonian mechanics (see appendix B) the basic material object is a point
particle with a fixed mass m. Newton’s second law is the fundamental equation
of motion, and states that mass times acceleration equals force. Mathematically,
it is expressed as a second order differential equation in time t, Sir Isaac Newton (1642–

1727). English physicist and
mathematician. Founded
classical mechanics on three
famous laws in his books
“Philosophiae Naturalis
Principia Mathematica”
(1687). Newton devel-
oped calculus to solve the
equations of motion, and
formulated theories of op-
tics and of chemistry. He
still stands as perhaps the
greatest scientific genius of
all time.

m
d2x

dt2
= f , (1-5)

where x the instantaneous position of the particle, and f the force acting on it.
In chapter 2 we shall introduce vector calculus to handle quantities like x and f
in a systematic way, but for now any understanding of the meaning of a vector
will work fine.

Since the force on any given particle can depend on the positions and veloci-
ties of the particle itself and of other particles, as well as on external parameters,
the dynamics of a collection of particles becomes a web of coupled ordinary sec-
ond order differential equations in time. Even if macroscopic bodies are huge
collections of atoms and molecules, it is completely out of question to solve the
resulting web of differential equations. In addition there is the problem that
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10 1. CONTINUOUS MATTER

molecular interactions are quantum mechanical in nature, and Newtonian me-
chanics strictly speaking does not apply at the atomic level. This knowledge is,
however, relatively new and has as mentioned earlier some difficulty in making
itself apparent at the macroscopic level. So even if quantum mechanics rules the
world of atoms, its special character is rarely amplified to macroscopic propor-
tions.

Global mechanical quantities

In Newtonian particle mechanics, a “body” is taken to be a fixed collection of
point particles, each obeying the second law (1-5). For any body one may define
various global mechanical quantities which like the total mass are calculated as
sums over contributions from each and every particle in the body. Some of the
global quantities are kinematic: momentum, angular momentum, and kinetic
energy. Others are dynamic: force, moment of force, and power (rate of work of
the forces).

Newton’s second law for particles leads to three simple laws of balance between
the kinematic and dynamic quantities,

• the rate of change of momentum equals force,

• the rate of change of angular momentum equals moment of force,

• the rate of change of kinetic energy equals power.

Even if these laws are insufficient to determine the dynamics of a body, they rep-
resent seven individual constraints on the motion of any system of point particles,
independently of how complex it is. In particular they can be taken over in con-
tinuum mechanics when exchange of matter between a body and its environment
is properly taken into account.

1.4 Continuum physics

In continuum physics a macroscopic body is seen as a huge collection of tiny
material particles, each of which contains a sufficiently large number of molecules
to justify a continuum description. Continuum physics does not “on its own”
go below the level of the material particles. Although the mass density may
be calculated by adding together the masses of all the molecules in a material
particle and dividing with the volume occupied by it, this procedure falls strictly
speaking outside continuum physics.

In the extreme mathematical limit, the material particles are taken to be
truly infinitesimal and all physical properties of the particles as well as the forces
acting on them are described by smooth functions of space and time.
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1.4. CONTINUUM PHYSICS 11

The field concept

Continuum physics is therefore a theory of fields. Mathematically, a field f is
simply a real-valued function f(x, y, z, t) of spatial coordinates x, y, z, and time
t, representing the value of a physical quantity in this point of space at the given
time, for example the mass density ρ or ρ(x, y, z, t). Sometimes a collection of
such functions is also called a field and the individual real-valued members are
called its components. Thus, the most fundamental field of fluid mechanics,
the velocity field v = (vx, vy, vz), has three components, one for each of the
coordinate directions.

Besides fields characterizing the state of the material, such as mass density
and velocity, it is convenient to employ fields that characterize the forces acting
on and within the material. The gravitational acceleration field g is a body force
field, which penetrates bodies from afar and acts on their mass. Some force fields
are only meaningful for regions of space where matter is actually present, as for
example the pressure field p, which acts across the imagined contact surfaces that
separate neighboring volumes of a fluid at rest. Pressure is, however, not the only
contact force. For fluids in motion, for solids and more general materials, contact
forces are described by the 9-component stress field, σσσ = {σij}, which is a 3× 3
matrix field with rows and columns labelled by coordinates: i, j = x, y, z.

Mass density, velocity, gravity, pressure, and stress are the usual fields of
continuum mechanics and will all be properly introduced in the chapters to come.
Some fields are thermodynamic, like the temperature T and the specific internal
energy density u. Others describe different states of matter, for example the
electric charge density ρc and current density jc together with the electric and
magnetic field strengths, E and B. Like gravity g, these force fields are thought
to exist in regions of space completely devoid of matter.

There are also fields that refer to material properties, for example the coeffi-
cient of shear elasticity µ of a solid and the coefficient of shear viscosity η of a
fluid. Such fields are usually constant within homogeneous bodies, i.e. indepen-
dent of space and time, and are mostly viewed as material constants rather than
true fields.

Field equations

Like all physical variables, fields evolve with time according to dynamical laws,
called field equations. In continuum mechanics, the central equation of motion
descends directly from Newton’s second law applied to every material particle.
Mass conservation which is all but trivial and most often tacitly incorporated
in particle mechanics turns into an equation of motion for the mass density in
continuum theory. Still other field equations such as Maxwell’s equations for
the electromagnetic fields have completely different and non-mechanical origins,
although they do couple to the mechanical equations of motion.

Mathematically field equations are partial differential equations in both space
and time. This makes continuum mechanics considerably more difficult than par-
ticle mechanics where the equations of motion are ordinary differential equations
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12 1. CONTINUOUS MATTER

in time. On the other hand, this greater degree of mathematical complexity also
leads to a plethora of new and sometimes quite unexpected phenomena.

In some field theories, for example Maxwell’s electromagnetism, the field equa-
tions are linear in the fields, but that is not the case in continuum mechanics.
The non-linearity of the field equations of fluid mechanics adds a further layer
of mathematical difficulty to this subject, making it very different from linear
theories. The non-linearity leads to dynamic instabilities and gives rise to the
chaotic and as yet not fully understood phenomenon of turbulence, well-known
from our daily dealings with water and air.

Physical reality of force fields

Whereas the mass density only has meaning in regions actually containing matter,
or may be defined to be zero in the vacuum, the gravitational field is assumed
to exist and take non-vanishing values even in the vacuum. It specifies the force
that would be exerted on a unit mass particle at a given point, but the field is
assumed to be there even if no particles are present.

In non-relativistic Newtonian physics, the gravitational field has no inde-
pendent physical meaning and may be completely eliminated and replaced by
non-local forces acting between material bodies. The true physical objects ap-
pear to be the material bodies, and the gravitational field just a mathematical
convenience for calculating the gravitational force exerted by these bodies. There
are no independent dynamical equations that tell us how the Newtonian field of
gravity changes with time. When material bodies move around or change their
mass distributions, the fields of gravity changes instantaneously everywhere as
they move around.

In relativistic mechanics, on the other hand, fields take on a completely dif-
ferent meaning. The reason is that instantaneous action-at-a-distance cannot
take place. If matter is moved, the current view is that it will take some time
before the field of gravity adjusts to the new positions, because no signal can
travel faster than light. Due to relativity, fields must travel independently, obey
their own equations of motion, and carry physical properties such as energy and
momentum. Electromagnetic waves bringing radio and tv signals to us, are ex-
amples of force fields thus liberated from their origin. Gravitational waves have
not yet been observed directly, but indirectly they have been observed in binary
neutron star systems which can only be fully understood if gravitational radiation
is taken into account.

Even if we shall not deal with relativistic theories of the continuum, and
therefore may consider the gravitational field to be merely a mathematical con-
venience, it may nevertheless be wise, at least in the back of our minds, to think
of the field of gravity as having an independent physical existence. Then we
shall have no philosophical problem endowing it with physical properties, even
in matter-free regions of space.
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1.4. CONTINUUM PHYSICS 13

Is matter really discrete or continuous?

Although continuum physics is always an approximation to the underlying dis-
crete atomic level, this is not the end of the story. At a deeper level it turns out
that matter is best described by another continuum formalism, relativistic quan-
tum field theory, in which the discrete particles — electrons, protons, neutrons,
nuclei, atoms, and everything else — arise as quantum excitations in the fields.
Relativistic quantum field theory without gravitation emerged in the first half
of the twentieth century as the basic description of the subatomic world, but in
spite of its enormous success it is still not clear how to include gravity.

Just as the continuity of macroscopic matter is an illusion, the quantum field
continuum may itself one day become replaced by even more fundamental discrete
or continuous descriptions of space, time, and matter. It is by no means evident
that there could not be a fundamental length in nature setting an ultimate lower
limit to distance and time, and theories of this kind have in fact been proposed2.
It appears that we do not know, and perhaps will never know, whether matter
at its deepest level is truly continuous or truly discrete.

2See for example J. A. Wheeler, It from bit, Proceedings of the 3rd International Symposium
on Foundations of Quantum Mechanics, Tokyo (1989).
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14 1. CONTINUOUS MATTER

Problems

1.1 Consider a small volume of a gas which is a fraction p of a larger volume containing
M molecules. The probability for any molecule to find itself in the small volume may
be taken to be p.

(a) Calculate the probability that the small volume contains n molecules.

(b) Show that the average of the number of molecules in the small volume is N ≡
〈n〉 = pM .

(c) Show that the variance is ∆N2 ≡ 〈(n− 〈n〉)2〉 = p(1− p)M ≈ N for p ¿ 1.

1.2 Show that a cube containing N = M3 smaller cubes of equal size will have
K = 6M2 − 12M + 8 smaller cubes lying on the surface. Estimate the fluctuation ∆N
when N molecules in a cube oscillate with amplitude equal to the molecular size.

1.3 A spherical volume contains a large number N of molecules. Estimate the number
of molecules NS situated at the surface and show that the fluctuation in this number
is ∆N ≈ 61/3π1/6N1/3 ≈ 2.2N1/3 when they randomly oscillate with amplitude equal
to the molecular size.

1.4 Consider a material gas particle containing N identical molecules. Write the
velocity of the n-th molecule as vn = v+un where v is the center of mass velocity and
un is a random contribution from thermal motion. It may be assumed that the average
of the random component of velocity vanishes 〈un〉 = 0, that all random velocities are
uncorrelated, and that their fluctuations are the same for all particles 〈u2

n〉 = v2
0 . Show

that the average of the center of mass velocity for the fluid particle is 〈vc〉 = v and that
its fluctuation due to thermal motion is ∆vc = v0/

√
N .

1.5 At what precision is the microscopic scale Lmicro equal to the mean free path,
when the air density is 100 times smaller than normal.
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