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Linear elasticity

When you bend a stick the reaction grows noticeably stronger the further you go
— until it perhaps breaks with a snap. If you release the bending force before
it breaks, the stick straightens out again and you can bend it again and again
without it changing its reaction or its shape. That is elasticity. Robert Hooke (1635–1703).

English physicist. Worked
on elasticity, built tele-
scopes, and the discovered
diffraction of light. The
famous law which bears
his name is from 1660.
He stated already in 1678
the inverse square law
for gravity, over which he
got involved in a bitter
controversy with Newton.

In elementary mechanics the elasticity of a spring is expressed by Hooke’s law
which says that the force necessary to stretch or compress a spring is propor-
tional to how much it is stretched or compressed. In continuous elastic materials
Hooke’s law implies that stress is proportional to strain. Some materials that we
usually think of as highly elastic, for example rubber, do not obey Hooke’s law
except under very small deformation. When stresses grow large, most materials
deform more than predicted by Hooke’s law. The proper treatment of non-linear
elasticity goes far beyond the simple linear elasticity which we shall discuss in
this book.

The elastic properties of continuous materials are determined by the under-
lying molecular structure, but the relation between material properties and the
molecular structure and arrangement in solids is complicated, to say the least.
Luckily, there are broad classes of materials that may be described by a few Thomas Young (1773–1829).

English physician, physicist,
and egyptologist. He ob-
served the interference of
light and was the first to
propose that light waves are
transverse vibrations, ex-
plaining thereby the origin of
polarization. He contributed
much to the translation of
the Rosetta stone.

material constants which can be determined by macroscopic experiments. The
number of such constants depends on the complexity of the crystalline structure
of the material, but we shall almost exclusively concentrate on the properties of
structureless, isotropic elastic materials, described by just two material constants,
Young’s modulus and Poisson’s ratio.

In this chapter, the emphasis will be on matters of principle. We shall derive
the basic equations of linear elasticity, but only solve them in the simplest possible
cases. In the next chapter we shall solve these equations in a number of generic
situations of more practical interest.
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172 11. LINEAR ELASTICITY

11.1 Hooke’s law

Ideal massless elastic springs obeying Hooke’s law are a mainstay of elementary
mechanics. If a spring of length L is anchored in one end and pulled at the other
with a force F , its length is increased to L + x. Hooke’s law states that there is
proportionality between force and change in length,

F = kx , (11-1)

with a constant of proportionality, k, called the spring constant.
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A spring anchored at the left
and pulled towards the right
by a force F will be stretched
by the amount x = F/k.

Young’s modulus

Real springs are physical bodies with mass, shape and internal molecular struc-
ture. Almost any solid body, anchored in one end and pulled in the other, will
react like a spring, when the pull is not too strong. Basically, this reflects that
interatomic forces are approximately elastic, when the atoms are only displaced
slightly away from their positions (problem 11.1).

Many elastic bodies that we handle daily, for example rubber bands, piano
wire, sticks, or water hoses, are long string-like objects with constant cross sec-
tion, typically made from homogeneous and isotropic material without any par-
ticular internal structure. Their uniform composition and simple form make
material strings convenient models for real springs.

The force, F , necessary to extend the length of a real string by x must be
proportional to the area, A, of the string cross section, because if we bundle N
such such strings loosely together to make a thicker string of area NA, the total
force will have to be NF in order to get the same change of length. This shows
that the relevant quantity to speak about is not the force F itself, but rather the
(average) normal stress, or tension, σxx = NF/NA = F/A, which is independent
of the number of substrings and thus of the size A of the cross section.

-- σxx F

The same tension must act
on any cross section in the
string.

-¾
−F F

L′

The force acts in opposite
directions at the terminal
cross sections of a smaller
slice of the string. The
extension is proportionally
smaller.

Since the same force, F , acts on any cross section of the string, the tension
σxx must also be the same everywhere along the string. For a smaller slice of the
string of length L′ < L, the uniformity implies that such a part will be stretched
proportionally less, i.e. x′/L′ = x/L. This shows that the relevant parameter is
not the absolute change of length, x, but rather the relative longitudinal exten-
sion, or strain, uxx = x/L, which must be independent of the length L of the
string.

Putting everything together, we conclude that the quantity

E =
σxx

uxx
=

F/A

x/L
= k

L

A
(11-2)

must be independent of both the length of the spring and the area of its cross
section. It is a material constant, called the modulus of extension or Young’s
modulus (1807), and given this quantity we may calculate the actual spring con-
stant,

k = E
A

L
, (11-3)
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11.1. HOOKE’S LAW 173

for a string of length L and cross section A made from this material.
Young’s modulus characterizes the behavior of the material of the spring,

when stretched in one direction. The relation (11-2) also tells us that a unidirec-
tional tension σxx creates a relative extension,

uxx =
σxx

E
, (11-4)

in the material. Evidently, Hooke’s law leads to a linear relation between stress,
σxx, and strain, uxx, and materials with this property are generally called linear.

Young’s modulus is by way of its definition (11-2) measured in units of pres-
sure, and typical values for metals are, like the bulk modulus, of the order of
1011 Pa = 106 bar. In the same way as the bulk modulus is a measure of

Material
E

GPa
ν
%

Wolfram 411 28
Plain steel 205 29
Nickel 200 31
Cast iron 152 27
Copper 130 34
Titanium 116 32
Brass 100 35
Glass 75 17
Aluminium 70 35
Magnesium 45 29
Lead 16 44

Young’s modulus and Pois-
son’s ratio for various mate-
rials (from [2])

the in-compressibility of a material, Young’s modulus is a measure of the in-
stretchability. The larger it is, the harder it is to stretch the material. In order to
obtain a large strain uxx ≈ 100 %, one would have to apply stresses of magnitude
σxx ≈ E, as shown by (11-4). Such strains are of course not permitted in the
theory of small deformations, but Young’s modulus nevertheless sets the scale.

Example 11.1.1: At company outings, employees often play the game of pulling
in teams at each end of a rope. Before the inevitable terminal instability sets in,
there is often a prolonged period where the two teams pull with almost equal force
F . If the teams each consist of 10 persons, all pulling with about their average
weight of 70 kg, the total force becomes F = 7, 000 N. For a rope diameter of 5 cm,
the stress becomes quite considerable, σxx ≈ 3.6 MPa. For a reasonable value of
Young’s modulus, say E = 36 MPa, the rope will stretch by uxx ≈ 10 %.

Poisson’s ratio

Normal materials will contract in directions transverse to the direction of exten-
sion. If the transverse size, D, of a string changes by y, the transverse strain
becomes of the order of uyy = y/D and will in general be negative for positive
stretching force F . In linear materials, the transverse strain is also proportional
to F , so that the ratio uyy/uxx will be independent of F . The negative of this
ratio is called Poisson’s ratio (1829),

-
F

x

y

L

D

A string normally contracts
in transverse directions
when pulled at the ends.ν = −uyy

uxx
, (11-5)

and is another constant characterizing isotropic material. It is dimensionless,
and typical values lie around 0.30 in metals. We shall see below that it cannot
exceed 0.5 in isotropic materials. -¾

-¾

Stretching a ladder with
purely transverse rungs will
not create transverse forces.

Whereas longitudinal extension can be understood as a consequence of elastic
atomic bonds being stretched, it is harder to understand why materials should
contract transversally. The reason is, however, that in an isotropic material
there are atomic bonds in all directions, and when bonds that are neither purely
longitudinal nor purely transverse are stretched, they create a transverse tension
which can only be relieved by contracting the material.
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174 11. LINEAR ELASTICITY

Example 11.1.2: A ladder constructed from ideal springs with rungs orthogonal
to the sides, will not experience a transverse contraction when stretched. If, on the
other hand, some of the rungs are skew (making the ladder unusable), they will be
stretched along with the ladder. But that will necessarily generate forces that tend
to contract the ladder, i.e. a negative transverse tension, which either has to be
balanced by external forces or relieved by contraction of the ladder.
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Stretching a ladder with
skew rungs creates trans-
verse forces which must be
balanced by external forces
at the boundary (as here)
or relieved by transverse
contraction.

11.2 Hooke’s law in isotropic materials

For a string-like object laid out along the x-direction of the coordinate system,
Hooke’s law for isotropic and homogeneous materials leads to proportionality
between the tension in the x-direction

σxx = P , (11-6)

and the strains it provokes in directions parallel and orthogonal to it,

uxx =
P

E
, uyy = uzz = −ν

P

E
. (11-7)

In an arbitrary coordinate system, the components of strain tensor will be com-
pletely mixed with each other, as illustrated by the simple rotation (2-88), and
there will also arise shear stresses and strains. In order to express Hooke’s law,
such that it takes the same form in all coordinate systems, a linear relationship
must be established between the complete stress tensor and the complete strain
tensor.

In an isotropic material, there are no internal directions defined which can
be used to construct such a relationship, and this means that the only tensors
at our disposal are the strain tensor, uij , itself and the Kronecker delta, δij ,
multiplied with the trace

∑
k ukk, which is the only scalar quantity that can be

formed from a linear combination of strain tensor components. The most general
linear tensor relation between stress and strain in an isotropic material therefore
becomes (Cauchy, 1822; Lamé, 1852)Gabriel Lamé (1795–1870).

French mathematician.
Worked on curvilinear
coordinates, number theory
and mathematical physics.

σij = 2µ uij + λ δij

∑

k

ukk . (11-8)

Here λ and µ are material constants, called elastic moduli or Lamé coefficients,
and we shall see below that they are directly related to Young’s modulus and
Poisson’s ratio. Explicitly, we find for the diagonal elements of the stress tensor

σxx = (2µ + λ)uxx + λ(uyy + uzz) , (11-9a)
σyy = (2µ + λ)uyy + λ(uzz + uxx) , (11-9b)
σzz = (2µ + λ)uzz + λ(uxx + uyy) , (11-9c)

and for the off-diagonal elements

σxy = σyx = 2µuxy , σyz = σzy = 2µuyz , σzx = σxz = 2µuzx . (11-10)
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11.2. HOOKE’S LAW IN ISOTROPIC MATERIALS 175

The coefficient λ has no special name, whereas µ is called the shear modulus or the
modulus of rigidity, because it controls the magnitude of shear stresses. For µ = 0
there are no shear stresses and all pressures become equal px = py = pz = p, just
as in a fluid. Since the strain tensor is dimensionless, the Lamé coefficients are,
like the stress tensor itself, measured in units of pressure.

Since Hooke’s law (11-8) and Cauchy’s strain tensor (10-17) are both linear rela-
tionships, successive small deformations may simply be added together. Hooke’s
law (11-8) can therefore also be interpreted as a relation between the extra stress
σij and the extra strain uij , imposed on top of an already existing stress and
strain in the material. The extra stress and strain could, for example, be caused
by wind forces on a bridge or a skyscraper, which is already stressed and strained
by the forces of gravity.

Young’s modulus and Poisson’s ratio

The relations between Young’s moduls, Poisson’s ratio, and the Lamé coefficients
are obtained by inserting stresses and strains for simple stretching, (11-6) and
(11-7), into (11-9), to obtain

P = (2µ + λ)
P

E
− 2λν

P

E
,

0 = −(2µ + λ)ν
P

E
+ λ(−ν + 1)

P

E
.

Solving for E and ν, we obtain

E =
µ(3λ + 2µ)

λ + µ
, (11-11)

and1

ν =
λ

2(λ + µ)
. (11-12)

Conversely, we may express the Lamé coefficients in terms of Young’s modulus
and Poisson’s ratio,

λ =
Eν

(1− 2ν)(1 + ν)
, (11-13a)

µ =
E

2(1 + ν)
, (11-13b)

Typical values for the Lamé coefficients in metals are thus of the same magnitude
as Young’s modulus, i.e. of the order of 1011 Pa = 106 bar.

1The use of the symbols E for Young’s modulus is conventional and should of course not
be confused with the use of similar symbols for the energy. Poisson’s ratio is also sometimes
denoted σ, but that clashes too much with the symbol for the stress tensor. Later we shall in
the context of fluid mechanics also use ν for the kinematic viscosity.
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176 11. LINEAR ELASTICITY

Average pressure and bulk modulus

The trace of the stress tensor (11-8) becomes
∑

i

σii = (2µ + 3λ)
∑

i

uii , (11-14)

because the trace of the Kronecker delta is
∑

i δii = 3. This allows us to calculate
the change in average pressure (9-12) due to deformation

∆p = −1
3

∑

i

σii = −
(

λ +
2
3
µ

) ∑

i

uii . (11-15)

The trace of the strain tensor has previously been shown (see (10-28)) to be
proportional to the relative volume change,

∑
i uii = ∇ · u = ∆V/V , and since

the bulk modulus (4-33) is defined to be minus the ratio of pressure change to
relative volume change, we must have

Material K[GPa]

Plain steel 205
Nickel 200
Copper 120
Titanium 110
Brass 100
Zirconium 95
Cast iron 90
Aluminium 70
Magnesium 45
Lead 13

Typical values for the bulk
modulus of various metals
and alloys [3].

K =
−∆p

∆V/V
= λ +

2
3
µ =

E

3(1− 2ν)
. (11-16)

In elastic materials, the bulk modulus is always a function of the material con-
stants. The bulk modulus is equal to Young’s modulus for ν = 1/3, which is a
typical value for ν.

Typical values of the bulk modulus for metals are huge, of the order of
megabars (1011 Pa or 100 GPa). This means that it requires about a million
atmospheres of pressure to squash iron.

Inverting Hooke’s law

Hooke’s law (11-8) may be inverted so that strain instead is expressed as a linear
function of stress. Solving (11-8) for uij and inserting

∑
k ukk =

∑
k σkk/(3λ+2µ)

from (11-14), we get

uij =
1
2µ

σij − λ

2µ(3λ + 2µ)
δij

∑

k

σkk . (11-17)

Introducing Young’s modulus (11-11) and Poisson’s ratio (11-12), this takes the
much simpler form

uij =
1 + ν

E
σij − ν

E
δij

∑

k

σkk . (11-18)
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11.2. HOOKE’S LAW IN ISOTROPIC MATERIALS 177

Explicitly, we find for the diagonal components

uxx =
1
E

σxx − ν

E
(σyy + σzz) , (11-19a)

uyy =
1
E

σyy − ν

E
(σzz + σxx) , (11-19b)

uzz =
1
E

σzz − ν

E
(σxx + σyy) , (11-19c)

and

uxy =
1 + ν

E
σxy , uyz =

1 + ν

E
σyz , uzx =

1 + ν

E
σzx , (11-20)

for the off-diagonal ones. Evidently, if the only stress is σxx = P , we obtain
immediately from (11-17) the correct relations for simple stretching, (11-6) and
(11-7).

Positivity constraints

The bulk modulus K = λ + 2µ/3 cannot be negative, because a material with
negative K would expand when put under pressure in a closed vessel containing
normal material, say air or water. This would make the pressure increase, caus-
ing further expansion until the whole thing blew up. Likewise, materials with
negative shear modulus, µ, would behave strangely and mimosa-like pull away
from a shearing force instead of yielding to it. Formally, it may be shown (see
section 11.4) that the conditions 3λ+2µ ≥ 0 and µ ≥ 0 follow from requiring the
elastic energy density to be bounded from below. Although λ in principle may
assume negative values, natural materials always have λ ≥ 0.

Young’s modulus cannot be negative because of these constraints, and this
confirms our intuition that strings always stretch when pulled at the ends. If
there were materials with the ability to contract when pulled, one could get
magical-looking behavior out of them. At the moment you began climbing up a
rope made from such material, it would pull you further up. Presumably, if such
materials were ever created, they would spontaneously contract into nothingness
at first possible occasion, or at least into a state with a normal relationship
between stress and strain.

Poisson’s ratio depends only on the ratio λ/µ and reaches its maximum
ν = 1/2 for λ/µ = ∞ and its minimum ν = −1 for λ/µ = −2/3. The definition
of Poisson’s ratio reflects the fact that most bodies shrink in the transverse di-
rections when stretched, but since λ in principle could be negative, bodies might
actually expand transversally without violating the laws of physics. In practice,
all bodies made from natural materials undergo a transverse contraction when
stretched, so Poisson’s ratio may always be taken to be positive. It is, however,
fairly easy to construct artificial models of materials that expand when pulled,
for example a grid of connected umbrellas. The extreme value, ν = 1/2, corre-
sponds to µ = 0, implying that there are no shear stresses in the material which
therefore behaves like a fluid at rest.
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178 11. LINEAR ELASTICITY

Limits to Hooke’s law

-

6
..................................................................................................................................................................................................................................

P

E

Sketch of how Young’s mod-
ulus might vary as a func-
tion of increased tension.
Beyond the proportionality
limit, its effective value
becomes generally smaller.

Hooke’s law in isotropic materials, expressed by the linear relationships, (11-8)
or (11-18), between stress and strain, is only valid for stresses up to a certain
value, called the proportionality limit. Beyond the proportionality limit, non-
linearities set in, and the present formalism becomes invalid. Eventually, one
reaches a point, called the elasticity limit, where the material ceases be elastic
and undergoes permanent deformation, or even fracture, without much further
increase of stress. Hooke’s law is, however, a very good approximation for most
metals under normal conditions where stresses are tiny compared to the elastic
moduli.

∗ Anisotropic materials

Anisotropic (also called aeolotropic) materials having different properties in dif-
ferent directions are of great technical importance. In an anisotropic material,
a linear relationship connecting the 6 independent components of the symmetric
stress tensor with the 6 independent components of the symmetric strain tensor
could in principle require 6 × 6 = 36 independent coefficients, but an energy
argument (Green, 1837) requires that this 6 × 6 array of coefficients must be
symmetric, and thus reduces the number of independent parameters to 21 (see
problem 11.7). The orientation of the material relative to the coordinate system
requires 3 parameters (angles), so altogether there may be up to 18 independent
constants characterizing the elastic properties of a general anisotropic material,
a number actually realized by triclinic crystals [10, 29]. We shall, however, in
this book limit ourselves to the isotropic ones, for which Hooke’s law takes the
simple form (11-8).

11.3 Static uniform deformation

To see how Hooke’s law works for continuous systems, we now turn to the ex-
tremely simple case of a static uniform deformation, for which the strain tensor,
uij , takes the same value everywhere in a body at all times. Hooke’s law (11-8)
then ensures that the stress tensor is likewise constant everywhere in the body,
so that all its derivatives vanish, ∇kσij = 0. Comparing with the condition
for mechanical equilibrium (9-19), it follows that uniform deformation excludes
body forces such as gravity. Conversely, in the presence of gravity, there must
always be non-uniform deformation of an isotropic material, a quite reasonable
conclusion.

Furthermore, at the boundary of a uniformly deformed body, the stress vector
is as always required to be continuous, and this puts strong restrictions on the
form of the external forces that may act on the surface of the body. Uniform
deformation is for this reason only possible under very special conditions.
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11.3. STATIC UNIFORM DEFORMATION 179

Uniform compression

Consider a fluid with a constant pressure P , so that the stress tensor is σij =
−Pδij everywhere in the fluid. If a solid body made from isotropic material is
immersed into this fluid, the natural guess is that the pressure will also be P inside
the body. Inserting σij = −Pδij into (11-18) and using that

∑
k σkk = −3P , we

obtain
uij = − P

3K
δij . (11-21)

Since
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A body made from isotropic,
homogenous material sub-
ject to a uniform external
pressure will be uniformly
compressed.

uxx = ∇xux = − P

3K
, (11-22)

we may immediately integrate this equation (and the similar ones for uyy and
uzz) and obtain a particular solution to the displacement field,

ux = − P

3K
x ,

uy = − P

3K
y ,

uz = − P

3K
z .

(11-23)

The most general solution is obtained by adding an arbitrary small rigid body
displacement to this solution.

The result was obtained by making an educated guess on the form of the stress
tensor inside the body. It could in principle be wrong, but is in fact correct due
to a uniqueness theorem to be derived in section 11.4. The theorem guarantees
in analogy with the uniqueness theorems of electrostatics, that provided the
equations of mechanical equilibrium and the boundary conditions are fulfilled
(which they are here), there is essentially only one solution to any elastostatic
problem. The only liberty left is an arbitrary rigid body displacement which may
always be added to the solution.

Uniform stretching

Consider now as in the beginning of the chapter a string-like body which is
stretched along its main axis, say the x-direction, by means of a tension σxx = P
acting uniformly over its cross section. If there are no other external forces acting
on the body, the natural guess is that the only non-vanishing component of the
stress tensor is σxx = P everywhere in the body. Inserting that into (11-17), we
obtain as before the strains (11-7).
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Uniformly stretched body
with a constant tension P .

The corresponding displacement field is again obtained by integrating∇xux =
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uxx etc, and we find the particular solution

ux =
P

E
x ,

uy = −ν
P

E
y ,

uz = −ν
P

E
z .

(11-24)

The solution describes as expected a simple dilatation along the x-axis and a
contraction along the other axes.

Uniform shear

Finally we return to the example from section 9.2 of a clamped slab of homo-
geneous, isotropic material in the xz-plane, subjected to a shear force in the
x-direction. As we argued, the shear stress σxy = P must be constant every-
where in the material. Assuming that there are no other stresses, the only strain
component becomes uxy = P/2µ, and using that 2uxy = ∇xuy +∇yux, we find
a particular solution

6

-

y

x

-

-
-
-
-

Clamped slab of homoge-
neous material under shear
stress. The displacement
grows linearly with y.

ux =
P

µ
y , uy = uz = 0 . (11-25)

As expected, the displacement in the x-direction vanishes for y = 0 and grows
linearly with y. In problem 11.5 the displacement field is calculated without
making the assumption of small strains.

∗ 11.4 Energy of deformation

The work performed by the external force in extending a spring further by the
amount dx is dW = Fdx = kxdx. Integrating this expression, we obtain the
total work W = 1

2kx2, which is (of course) the well-known expression for the
elastic energy, E = W , stored in a stretched spring. Calculated per unit of
volume V = AL for a material string, we find the density of elastic energy in the
material

E
V

=
kx2

2V
=

1
2
Eu2

xx =
P 2

2E
. (11-26)

The transverse contraction controlled by Poisson’s ratio, ν, can play no role in
building up the energy, because there are no forces acting on the sides of the
string.

Elastic energy

In the general case, strains and stresses vary over the body, and the calculation
becomes more complicated. In section 10.4 we determined the work that must
be performed in order to change the strain infinitesimally.
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11.4. ENERGY OF DEFORMATION 181

If the strain uij describes the extra deformation of a body already pre-stressed
by σ0

ij , assumed to be independent of the strain, we may immediately integrate
(10-31) to obtain the work performed against the already existing stress

W0 =
∫

V

∑

ij

σ0
ijuij dV . (11-27)

Alternatively, one may view E0 = W0 as the potential energy of the deformation
in the given stress field. It is, for example, the energy you must spend against
the already existing strong tension in a bow when you wish to shoot an arrow.

For the part of the stress tensor which depends linearly on the strain ten-
sor one must build up the deformation in infinitesimal steps, as we did for the
gravitational self-energy in section 6.4. The elastic self-energy, i.e. the energy
of a deformation in its own stress field, becomes in this way quadratic in the
small strain tensor, and we expect as in the gravitational case also a factor 1/2
here. For isotropic materials, the work performed in building up a deformation,
or equivalently the total elastic energy, thus becomes

E =
1
2

∫

V

∑

ij

σijuij dV , (11-28)

where σij is given by Hooke’s law (11-8). For anisotropic materials the existence
of such an energy function will impose a further condition on the coefficients in
the generalized Hooke’s law (see problem 11.7).

Energy density

The quantity

ε =
1
2

∑

ij

σijuij = µ
∑

ij

u2
ij +

1
2
λ

(∑

i

uii

)2

(11-29)

must be interpreted as the elastic energy density in a deformed isotropic material.
It is instructive to write out the sums explicitly to get

ε = µ(u2
xx + u2

yy + u2
zz + 2u2

xy + 2u2
yz + 2u2

zx) +
1
2
λ(uxx + uyy + uzz)2 .

Inserting the strains for uniform stretching (11-7), all the dependence on ν cancels
out, and we obtain again the energy density (11-26).

Positivity of the energy density

The energy density must be bounded from below, for if it were not, elastic ma-
terials would be unstable, and an unlimited amount of work could be obtained
by increasing the state of deformation. Imagine for a moment how magically a
body made from such material would behave when squeezed.
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From the boundedness, it follows immediately that the shear modulus must
be non-negative, µ ≥ 0, because otherwise we might let one of the off-diagonal
components of the strain tensor, say uxy, grow without limit while the energy
density became more and more negative. The condition on λ is more subtle
because the diagonal components of the strain tensor are involved in both terms.
For a uniform deformation with uij = αδij we get the energy density ρelastic =
3
2 (3λ + 2µ)α2, and consequently we must demand that 3λ + 2µ ≥ 0, implying
that the bulk modulus (11-16) is positive, K > 0 (see problem 11.6 for the proof
that there are no stronger conditions).

Total energy in the gravitational field

In an external gravitational potential, Φ(x), the change in gravitational energy
due to the displacement of a material particle of fixed mass dM is

dM Φ(x + u(x))− dM Φ(x) ≈ −g(x) · u(x) dM ,

where the last expression is obtained under the assumption that the displacement
is small compared to the length scale for variations in the gravitational field. The
total (potential) energy of a deformed body in a gravitational field is therefore
the sum of the internal energy of deformation and the extra gravitational energy
due to the deformation

E =
1
2

∫

V

∑

ij

uijσij dV +
∫

V

ρ(−g · u)dV , (11-30)

where ρ(x) is the mass density of the undeformed body.
Consider now the change in total energy due to a small variation δui(x) in

the displacement. Using that σij is linear in uij and symmetric, we find for the
variation in the first term

∫

V

∑

ij

δuijσij dV =
∫

V

∑

ij

(∇jδui)σij dV

=
∮

S

∑

ij

δuiσij dSj −
∫

V

∑

ij

δui∇jσij dV ,

where we have used Gauss’ theorem in the last step. The variation in total energy
thus becomes

δE =
∮

S

∑

ij

δuiσij dSj −
∫

V

∑

ij

δui(∇jσij + ρgi) dV . (11-31)

The first term is the change in energy due to the forces acting on the surface
of the body and the second the change in energy due to volume forces. The
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surface integral vanishes if the boundary is either fixed or free, i.e. δui = 0 or∑
j σijnj = 0, whereas the volume integral vanishes in mechanical equilibrium.
This result shows that the total energy is stationary, δE = 0, under variations

in displacement around mechanical equilibrium. Since the elastic energy density
is a positive definite quadratic form in the strain tensor, mechanical equilibrium
must correspond to an absolute minimum in the total energy.

A non-singular quadratic form can only have one minimum, and this result
guarantees that there is only one solution to Navier’s equation of equilibrium.
We shall now explicitly prove that the minimum is indeed unique.

Uniqueness of elastostatic solutions

We shall now prove uniqueness of the solutions to the mechanical equilibrium
equations (9-19) with elastic stresses given by Hooke’s law (11-8) and strains
given Cauchy’s expression (10-17). Let us assume that there are actually two
displacement fields u

(1)
i and u

(2)
i which both satisfy these equations with the

same external volume forces fi and the same boundary conditions. Then we
have

∑

j

∇jσ
(1)
ij + fi = 0

∑

j

∇jσ
(2)
ij + fi = 0

σ
(1)
ij = 2µu

(1)
ij + λδij

∑

k

u
(1)
kk σ

(2)
ij = 2µu

(2)
ij + λδij

∑

k

u
(2)
kk

u
(1)
ij =

1
2
(∇iu

(1)
j +∇ju

(1)
i ) u

(2)
ij =

1
2
(∇iu

(2)
j +∇ju

(2)
i )

For the difference field ui = u
(1)
i − u

(2)
i , the corresponding stress tensor σij =

σ
(1)
ij −σ

(2)
ij must satisfy

∑
j ∇jσij = 0, and we obtain by means of Gauss’ theorem

(4-22)

0 =
∫

V

uij

∑

j

∇jσij dV =
∮

S

∑

ij

uiσij dSj −
∫

V

∑

ij

∇juiσij dV .

Here the surface integral vanishes because of the boundary conditions, which
either specify the same displacements for the two solutions at the surface, i.e.
ui = 0, or the same stress vectors, i.e.

∑
j σijnj = 0. Using the symmetry of the

stress tensor σij = σji, we have

∑

ij

∇juiσij =
∑

ij

∇iujσji =
1
2

∑

ij

(∇iuj +∇jui)σij =
∑

ij

uijσij ,

and we get, ∫

V

∑

ij

uijσij dV = 0 . (11-32)
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The integrand is of the same form as the energy density (11-29), which has been
shown to be strictly positive definite for µ > 0 and 3λ+2µ > 0, and consequently,
the integral can only vanish if the strain tensor for the difference field vanishes
everywhere in the body, i.e. uij = 0.

Given the boundary conditions, there is essentially only one solution to the
equations of mechanical equilibrium in linear elastic materials. Although the
two displacement fields may in principle be different, they must correspond to
identical deformations everywhere in the body, and can thus at most differ by a
rigid body displacements. If we can guess a solution satisfying the equations of
mechanical equilibrium and the boundary conditions, it must be the right one.
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Problems

11.1 Two particles interact with a smooth distance dependent force f(r). Show that
the force obeys Hooke’s law in the neighborhood of any fixed separation r = a.

11.2 A one-dimensional open (in contrast to circular) elastic chain hangs vertically in
a gravitational field and will be stretched by the weight of the particles (the springs are
assumed to be weightless). a) Calculate the equilibrium lengths of all the springs, and
the equilibrium length of the chain. b) Find the equations of motion for displacements
of the particles away from the equilibrium in this situation.

11.3 Show that we may write (11-8) in the form

σij = 2µ

 
uij − 1

3
δij

X
k

ukk

!
+ Kδij

X
k

ukk . (11-33)

The first term gives no contribution to the average pressure.

11.4 Show that if the sides of an elastic cylinder are kept fixed, while the cylinder is
uniformly stretched in the z-direction, the only non-vanishing strain is

uzz =
1

λ + 2µ
P =

(1 + ν)(1− 2ν)

1− ν

P

E
. (11-34)

whereas the stress in the xy-plane becomes

σxx = σyy = λuzz =
λ

λ + 2µ
P =

ν

1− ν
P . (11-35)

∗ 11.5 Consider a shear deformation of a slab of elastic material in the xz-plane by a
force in the x-direction. Assume that the sides of the slab are kept free to move, so that
the only non-vanishing components of the strain tensor are uxy = uyx = α. Show that
the displacement becomes

ux = αy , (11-36)

uy = −
�
1−

p
1− α2

�
y . (11-37)

for a deformation which is not assumed to be small. Describe what happens for α → 1.

∗ 11.6 Show that one may write the energy density (11-29) in the following form

E =
1

2
[λ− 2µ(3α2 − 2α)]uiiujj + µ (uij − αukkδij)(uij − αullδij) (11-38)

where α is arbitrary. Use this to argue that 3λ + 2µ > 0 and that this is the strictest
condition on λ.
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∗ 11.7 The most general linear relation between stress and strain is of the form

σij =
X
kl

λijklukl (11-39)

where λijkl is called the elasticity tensor.

(a) Show that the elasticity tensor is symmetric in the two first and two last indices.

(b) Show that for the elastic energy (10-31) to be integrable, the tensor must obey
the further symmetry relation

λijkl = λklij (11-40)

(c) Show that these symmetry conditions leave only 21 free parameters in the tensor.

(d) Show that 3 of these are angles that fix the orientation of the material.
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