
26
Rotating fluids

The conductor of a carousel knows about fictitious forces. Moving from horse to
horse while collecting tickets, he not only has to fight the centrifugal force trying
to kick him off, but also has to deal with the dizzying sideways Coriolis force. On
a typical carousel with a five meter radius and turning once every six seconds,
the centrifugal force is strongest at the rim where it amounts to about 50% of
gravity. Walking across the carousel at a normal speed of one meter per second,
the conductor experiences a Coriolis force of about 20% of gravity. Provided the
carousel turns anticlockwise seen from above, as most carousels seem to do, the
Coriolis force always pulls the conductor off his course to the right. The conductor
seems to prefer to move from horse to horse against the rotation, and this is quite
understandable, since the Coriolis force then counteracts the centrifugal force.

The whole world is a carousel, and not only in the metaphorical sense. The
centrifugal force on Earth acts like a cylindrical antigravity field, reducing gravity
at the equator by 0.3%. This is hardly a worry, unless you have to adjust Olympic
records for geographic latitude. The Coriolis force is even less noticeable at
Olympic speeds. You have to move as fast as a jet aircraft for it to amount to
0.3% of a percent of gravity. Weather systems and sea currents are so huge and
move so slowly compared to Earth’s local rotation speed that the weak Coriolis
force can become a major player in their dynamics. It is the Coriolis force which
guarantees that weather cyclones on the northern half of the globe always turn
anticlockwise around low pressure regions. For small scale flows, like that of a
bathtub drain, its influence is tiny and cannot, contrary to myth, systematically
determine the sense of the flow.

In this chapter we shall investigate the strange behaviors of fluids in rotating
reference systems. At the end of the chapter we shall also debunk the persistent
“urban legend” about the sense of rotation in toilets and bathtubs.

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



518 26. ROTATING FLUIDS

26.1 Fictitious forces

When dealing with a moving object, for example a rotating planet, it is often
convenient to give up the inertial coordinate system and instead attach a fixed
coordinate system to the moving object. If the object is neither accelerating nor
rotating, the attached coordinate system is itself inertial, and the relativity of
Newtonian mechanics then tells us that all physical laws take the same form.
That is why there is no way of determining the absolute state of inertial motion
in Newtonian mechanics. As mentioned before, this property of Newton’s laws
was extended to a fundamental principle for all of physics by Einstein in his
special theory of relativity.

In a non-inertial, accelerated coordinate system, the Newtonian principle of
relativity ceases to be valid, and the laws of mechanics take a different form. The
acceleration on the left hand side of Newton’s second law must be corrected by
terms deriving from the motion of the coordinate system, and when these terms
are shifted to the right hand side they may be interpreted as forces. Since these
forces apparently have no objective cause, in contrast to forces caused by other
bodies, they are called fictitious. A better name might be inertial forces, since
there is nothing fictitious about the jerk you experience when the bus suddenly
stops. In this chapter we shall only be concerned with steadily rotating coordinate
systems, such as those we use one Earth.

Steady rotation

Consider a Cartesian coordinate system (x, y, z) rotating with constant angu-
lar velocity Ω around the z-axis relative to an inertial system (x′, y′, z′). The
coordinates of a point particle are related by the transformation

x′ = x cosΩt− y sinΩt , (26-1a)
y′ = x sinΩt + y cosΩt , (26-1b)
z′ = z . (26-1c)

The transformation expresses as usual that the position of a point has a geo-
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inertial system, is related to the force F in the rotating system by the same
transformation,

F ′x = Fx cosΩt− Fy sinΩt , (26-2a)
F ′y = Fx sinΩt + Fy cosΩt , (26-2b)

F ′z = Fz , (26-2c)

which expresses that force is a vector quantity. It is the only sensible way to
define what is meant by force in the rotating system.

Newton’s second law connects acceleration and force in the inertial system,
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26.1. FICTITIOUS FORCES 519

md2x′/dt2 = F ′. Differentiating (26-1) twice after t we find

d2x′

dt2
=

(
d2x

dt2
− Ω2x− 2Ω

dy

dt

)
cosΩt−

(
d2y

dt2
− Ω2y + 2Ω

dx

dt

)
sinΩt ,

d2y′

dt2
=

(
d2x

dt2
− Ω2x− 2Ω

dy

dt

)
sinΩt +

(
d2y

dt2
− Ω2y + 2Ω

dx

dt

)
cosΩt ,

d2z′

dt2
=

d2z

dt2
.

Multiplying these equations with m and comparing with (26-2), the equations of
motion in the rotating coordinates become,

m

(
d2x

dt2
− Ω2x− 2Ω

dy

dt

)
= Fx ,

m

(
d2y

dt2
− Ω2y + 2Ω

dx

dt

)
= Fy ,

m
d2z

dt2
= Fz .

At this point it is better to leave the particular coordinate system where the ro-
tation vector points along the z-axis and write these equations in vector notation

m

(
d2x

dt2
+ Ω× (Ω× x) + 2Ω× dx

dt

)
= F . (26-3)

Clearly, the rotating coordinates have generated extra acceleration terms on the
left hand side. Moving these terms to the right hand side, we obtain the standard
expression for Newton’s second law in a steadily rotating coordinate system,

m
d2x

dt2
= F −mΩ× (Ω× x)− 2mΩ× dx

dt
. (26-4)

The extra terms on the right hand side now appear as fictitious forces: the
centrifugal force −mΩ× (Ω× x) and Coriolis force −2mΩ× dx/dt.

In a general moving coordinate system, there are two further fictitious forces, the
linear acceleration force −ma(t) where a(t) is the acceleration of the origin of the
moving coordinate system, and the angular acceleration force −mdΩ/dt×x. The
complete expression for Newton’s second law in any moving Cartesian coordinate
system thus becomes

m
d2x
dt2

= F −ma−mΩ× (Ω× x)− 2mΩ× dx
dt
−m

dΩ

dt
× x (26-5)

The extra fictitious forces are of no importance for the following discussion, but
are derived by a general method in problem 26.1.
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520 26. ROTATING FLUIDS

Centrifugal force on Earth

The effect of the centrifugal force on Earth is primarily to flatten the spherical
shape in such a way that it conforms to an equipotential surface (see chapter
7). The direction of the combined gravitational and centrifugal force is always
orthogonal to the equipotential surface everywhere on Earth, i.e. by definition
vertical. The local vertical component of the centrifugal force becomes in Earth-
centered polar coordinates for r = a,

er · (−Ω× (Ω× x)) = aΩ2(er × ez)2 = aΩ2 sin2 θ , (26-6)

where θ is the polar angle. This is the amount by which local gravity is reduced
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by the centrifugal “antigravity”. The ratio of centrifugal acceleration to gravity
is smaller than Ω2a/g0 ≈ 3.5 × 10−3 and thus generally negligible, except when
precision is needed.
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The Coriolis force is different. It acts along different directions in different places
of the Earth, because the true rotation axis is not vertical, except at the poles.
In a local flat-earth coordinate system tangential to the surface in a given point
with the x-axis towards the east and the y-axis towards the north, the rotation
vector is Ω = Ω(0, sin θ, cos θ) where θ is the polar angle. The components of the
Coriolis acceleration gC = −2Ω×v, expressed in terms of the velocity v = dx/dt,
are

gC
x = 2Ω cos θ vy − 2Ω sin θ vz , (26-7a)

gC
y = −2Ω cos θ vx , (26-7b)

gC
z = 2Ω sin θ vx . (26-7c)

At the poles the Coriolis force is always horizontal, and at the equator it is
always vertical for horizontal motion (vz = 0). A good number to remember
is the projection of Earth’s rotation on the local vertical at middle latitudes
(θ = 45◦) which comes to 2Ω cos θ ≈ 10−4 s−1.
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The vertical Coriolis force gC
z is very small compared to gravity. Even for a

modern jet aircraft flying on an east-west course at middle latitudes at a speed
close to the velocity of sound, it amounts to only about 0.3% of gravity, which
accidentally is of the same order of magnitude as the centrifugal force. So we
may happily ignore the vertical Coriolis force along with the centrifugal force in
most Earthly considerations. We shall also ignore the Coriolis force due to the
vertical component of velocity vz. The jet plane from before experiences again
only a Coriolis acceleration in westerly direction of magnitude 0.3% of gravity
during upwards vertical flight at the speed of sound. For large scale systems, like
weather cyclones, the horizontal motion is also by far the most important.
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26.2. FLOW IN A ROTATING SYSTEM 521

Local angular velocity

The conclusion is that under normal circumstances only the first terms in gx

and in gy need to be considered, leading to a purely two-dimensional Coriolis
acceleration which we write in the form,

gC
x = 2Ω⊥vy , (26-8a)

gC
y = −2Ω⊥vx , (26-8b)

gC
z = 0 . (26-8c)

Here Ω⊥ is the local angular velocity

Ω⊥ = Ωcos θ . (26-9)

For all practical purposes, the Coriolis force in a local flat-earth coordinate system
looks as if the Earth were indeed flat and rotated around the local vertical with
the local angular velocity. The important part of the Coriolis force is thus in
vector notation,

gC = −2Ω⊥ × v , (26-10)

with Ω⊥ = Ω⊥ez. The magnitude of the local angular velocity at a given polar
angle (or latitude) can be experimentally verified by means of a Foucault pendu-
lum, an experiment which ought impress the members of the Flat Earth Society
about the fallacy of their convictions.

The similarity of fictitious and gravitational forces is part of a much deeper equiv-
alence between gravity and accelerated motion. Einstein raised it to a Principle
of Equivalence stating that gravity locally, i.e. in sufficiently small regions of
space and time, in all respects is indistinguishable from accelerated motion. But
if that is the case, Mach then asked, why distinguish at all? Could inertial forces
also be due to subtle gravitational effects of the mass distribution of distant fixed
stars? Then inertial systems would be defined to be moving with constant veloc-
ity relative to the average motion of this distribution. This would in turn imply
that inertial forces on Earth could depend on the presence of huge masses in our
cosmic neighborhood, for example the center of the Milky Way, violating thereby
the strict Equivalence Principle. No such effects have ever been observed, but
the jury is still out [14].

26.2 Flow in a rotating system

In a steadily rotating coordinate system, the Navier-Stokes equations must also
include the fictitious forces. The centrifugal force resembles the usual gravita-
tional force and may be written as the gradient of a potential (7-3). Including
this in the effective pressure p∗ = p + ρ0Φ, the Navier-Stokes equation for an
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522 26. ROTATING FLUIDS

incompressible fluid becomes,

∂v

∂t
+ (v ·∇)v = −∇p∗

ρ0
+ ν∇2v − 2Ω× v . (26-11)

Provided the origin of the coordinate system resides on the axis of rotation, the
effective pressure is

p∗ = p + ρ0Φ− 1
2
ρ0(Ω× x)2 . (26-12)

As discussed in the preceding section, the centrifugal force can generally be ig-
nored at the surface of the Earth, though not in laboratory experiments with
rotating containers, such as Newton’s bucket (page 111). The Coriolis force can
also, at Earth’s surface, be calculated to a good approximation from the vertical
local angular velocity vector.

The Rossby number
Carl-Gustav Arild Rossby
(1898–1957). Swedish born
meteorologist who mostly
worked in the US. Con-
tributed to the understand-
ing of large-scale motion
and general circulation of
the atmosphere.

Let us again characterize the flow by a length scale L and a velocity scale U .
For nearly ideal steady flow with large Reynolds number, Re = UL/ν À 1,
the advective term dominates the viscous term (except near boundaries). The
interesting quantity is accordingly the ratio between the advective acceleration
and the Coriolis acceleration, called the Rossby number

Ro =
|(v ·∇)v|
|2Ω× v| ≈

U2/L

2ΩU
=

U

2ΩL
. (26-13)

For nearly ideal flow the Coriolis force is significant only if Ro . 1, or in other
words U . 2ΩL. Thus, the general rule is that the Coriolis force only matters,
when the flow velocity U is of the same magnitude or smaller as the typical
variation ±ΩL in the local rotation velocity across the system.

Ocean currents and weather cyclones are relatively steady phenomena. The char-
acteristic speeds are meters per second for the ocean currents and tens of meters
per second for the winds over distances of the order of thousand kilometers. The
Reynolds number comes to about Re ≈ 1012 in both cases, because the larger
wind speeds are offset by the larger kinematic viscosity of air. The Rossby num-
bers are, however, different. With a local angular velocity 2Ω ≈ 10−4 per second,
one gets a Rossby number Ro ≈ 0.01 for ocean currents and Ro ≈ 0.1 for weather
cyclones. Both of these phenomena are thus dominated by the Coriolis force, but
the ocean currents by far the most.

Example 26.2.1: When you (of size L = 1 m) swim with a speed of U ≈ 1 m s−1,
the Rossby number becomes Ro ≈ 104, and the Coriolis force can be completely
neglected. The water draining out of your toilet or bathtub moves with similar
speeds over similar distances, making the Rossby number just as large and the
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26.3. GEOSTROPHIC FLOW 523

Coriolis force just as insignificant as for swimming (see also section 26.5). In a pool
on a carousel rotating with Ω ≈ 1 s−1, the Rossby number for swimming is Ro ≈ 1,
and you probably become quite dizzy. In space stations designed for long-term
habitation, gravity must for health reasons be simulated by rotation, and the large
Coriolis force will presumably play havoc with ping-pong and other ballistic games
(see problem 26.3).

The Ekman number
Vagn Walfrid Ekman (1874–
1954). Swedish physical
oceanographer. Contributed
to the understanding of dy-
namics of ocean currents.

The ratio between viscous and Coriolis forces is called the Ekman number,

Ek =
|ν∇2v|
|2Ω× v| ≈

νU/L2

2ΩU
=

ν

2ΩL2
=

Ro

Re
. (26-14)

When the Ekman number is small, the viscous force can be neglected relative to
the Coriolis force. For large Reynolds number and moderate Rossby number, the
Ekman number is automatically small. In natural systems on Earth, such as the
sea and the atmosphere, the huge Reynolds number makes the Ekman number
extremely small. The Ekman number is normally only of order unity close to
boundaries where viscosity always comes to dominate over advection. Here the
interplay between viscous and Coriolis forces gives rise to a highly interesting
boundary layer, called the Ekman layer (section 26.4).

26.3 Geostrophic flow

In natural large-scale systems, the Reynolds number is so huge and the Rossby
number so small that one can in the first approximation ignore both the viscous
and the advective terms in the Navier-Stokes equations. A flow is said to be
geostrophic if it is completely dominated by the Coriolis force. More formally, it
is the limit of Ro → 0 and Ek → 0.

Dropping both advective and viscous terms in (26-11), we arrive at the re-
markably simple field equation for geostrophic flow,

− 1
ρ0

∇p∗ − 2Ω× v = 0 . (26-15)

It states that the effective pressure gradient must everywhere balance the Coriolis
force. Inserting the effective pressure (26-12) and leaving out the contribution
from the centrifugal force, this becomes

− 1
ρ0

∇p + g − 2Ω× v = 0 , (26-16)

an equation of basically the same form as the hydrostatic equation (4-19).
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524 26. ROTATING FLUIDS

Water level in an open canal

Let a constant water current with velocity U flow through a canal of width d.
If the canal runs along the x-direction and the angular rotation is Ω around the
z-direction, we find from the y-component of (26-15)

1
ρ0

∂p∗

∂y
= −2ΩU . (26-17)

For positive Ω and U , the Coriolis force wants to turn the water towards the right,
creating an increasing effective pressure in the negative y-direction. Intuitively
this seems to indicate that the Coriolis force will raise the water level for negative
y and lower it for positive.
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The water level is tilted by
the Coriolis force, so that
the surface stays orthogonal
to the gradient of the true
pressure. Here the Earth’s
rotation is positive around
z and water flows out of
the picture in the positive
x-direction.

In order to check our intuition, we solve the above equation, making use of (26-
12) with a gravitational potential Φ = g0z, and get (apart from an unimportant
constant)

p∗

ρ0
=

p

ρ0
+ g0z = −2ΩUy . (26-18)

The water level z = h(y) is determined from the requirement that the true
pressure p should be constant at the free surface, so with the boundary condition
h(0) = 0 we get

h(y) = −2ΩU

g0
y , (26-19)

which confirms our intuition. In a north-south canal with the current running
towards the north, the water level will be highest at the eastern bank.

Example 26.3.1: For a 10 km wide strait and a current velocity of 1 m/s, the
difference in water level at the two sides of the strait due to the Coriolis force is
about 10 cm. Although Ro = U/2Ωd ≈ 1, the use of the geostrophic equation (26-
15) is nevertheless fully justified, because the inertial term vanishes for a constant
flow in the x-direction (like for Poiseuille flow).

Isobaric flow and weather maps

An immediate consequence of the geostrophic equation (26-15) is that

v ·∇p∗ = 0 , (26-20)

which means that the effective pressure is constant along stream lines. In hor-
izontal motion the gravitational force plays no role and the effective pressure is
the same as the hydrostatic pressure. This means that streamlines and isobars
coincide in geostrophic flow. This is also well-known from weather maps where
wind directions can be read off from the isobars. To read off the correct sign for
the wind direction one must also use that the Coriolis force make winds on the
northern hemisphere turn anti-clockwise around low pressure regions (cyclones)
and clockwise around regions with high pressure (anti-cyclones).
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26.3. GEOSTROPHIC FLOW 525

Quantitatively we we may invert the geostrophic equation (26-15) to calculate
the wind velocities from the pressure gradients. Using that Ω · v = 0 we find
Ω× (Ω× v) = −Ω2v, and then

v =
Ω×∇p∗

2Ω2ρ0
. (26-21)

Were it not for the Coriolis force, air masses would stream along the negative pres-
sure gradient, from high pressure towards low pressure regions. On the northern
hemisphere, the Coriolis force generates cyclones by making the air that streams
towards the low pressure veer to the right until it gets aligned with the isobars,
and — funnily enough — the same mechanism creates anticyclones.

Two-dimensionality of geostrophic flow

The geostrophic equation (26-15) is an extremely serious constraint on the flow.
Forming the scalar product with Ω we get

(Ω ·∇)p∗ = Ω
∂p∗

∂z
= 0 . (26-22)

The effective pressure is evidently constant along the axis of rotation. In a
constant gravitational field g0 anti-parallel with the axis of rotation, we may
use (26-12) to obtain the hydrostatic pressure (ignoring again the centrifugal
contribution)

p = p∗(x, y)− ρ0g0z , (26-23)

just as we did in the case of the open canal. Geoffrey Ingram Taylor
(1886–1975). British physi-
cist, mathematician and
engineer. Had great impact
on all aspects of 20’th cen-
tury fluid mechanics from
aircraft and explosions. De-
vised a method to determine
the bulk viscosity of com-
pressible fluids. Studied the
movements of unicellular
marine creatures.

Joseph Proudman (1888–
1975). British mathemati-
cian and oceanographer.
First proved the Taylor-
Proudman theorem in
1915.

The invariance under translations along the axis of rotation actually extends
to the whole flow. To verify this, we calculate the ∇× of the geostrophic equation
(26-15), using that the ∇× of a gradient vanishes.

0 = ∇× (Ω× v) = Ω∇ · v − (Ω ·∇)v = −(Ω ·∇)v = −Ω
∂v

∂z
.

The flow field v is consequently a function of x and y only. When the z-component
vz vanishes, the flow becomes entirely two-dimensional. This result is the Taylor-
Proudman theorem (Proudman 1916). To the extent that weather cyclones satisfy
the conditions for steady geostrophic flow, one may conclude that the same large-
scale wind patterns are found all way up through the atmosphere [17].

The Taylor-Proudman theorem is a strange result, which predicts that if one
disturbs the flow of a rotating fluid at, say, z = 0, then the pattern of the
disturbance will, after all time-dependence has died away, have become copied
to all other values of z. This is also true if the disturbance is caused by a
three-dimensional object with finite extent in the z-direction. A so-called Taylor
column (of disturbed flow) is created in the rotating fluid. Taylor columns are
sometimes also called Proudman pillars.
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The strangeness is however only in the mind, for many experiments beginning
with Taylor’s in 1923 have amply verified the existence of Taylor columns. Even a
body moving steadily along the axis of rotation, such as a falling sphere, will push
a long column of fluid in front of itself, and trail another behind. The mechanics
underlying the formation of Taylor columns results from a complicated interplay
between the inertial and viscous terms left out in the geostrophic equation (26-
15), and it is not easy to give an explanation in simple physical terms (see for
example [18]).

26.4 The Ekman layer

Boundary layers arise around a body in nearly ideal flow, because viscous forces
must necessarily come into play to secure the no-slip boundary condition. Steady
boundary layers are normally asymmetric with respect to the direction of the slip-
flow outside the layer, being thinnest at the leading edge of a body and thickening
towards the rear. This happens even at an otherwise featureless body surface and
may be understood as a cumulative effect of the slowing down of the fluid by the
contact with the boundary. At a point downstream from the leading edge of a
body, the fluid has been under the influence of shear forces from the boundary for
a longer time than upstream and their effect have spread farther into the fluid.
Boundary layers may, as discussed in chapter 25, even separate from the body
and create a completely new flow pattern in the fluid at large.

A rotating fluid in geostrophic flow must also form boundary layers around
the bodies immersed in it. For small bodies the effect of the rotation is negligible,
but for larger bodies with flow velocity of the same scale as the local rotation
speed, i.e. for Ro = U/2LΩ . 1, the Coriolis force comes to play a major role
in the formation of boundary layers. As the flow velocity rises from zero at the
boundary to its asymptotic value in the geostrophic slip-flow outside the bound-
ary, the Coriolis force becomes progressively stronger, making the flow veer more
and more to the right (for anti-clockwise rotation). The geostrophic cross-wind
effectively “blows away” accumulated fluid and prevents the downstream growth
of the boundary layer. Such a boundary layer, confined to a finite thickness by
the Coriolis force is called an Ekman layer.

One may estimate the thickness of the Ekman layer by comparing the Coriolis
acceleration |2Ω×v| ≈ 2ΩU with the viscous acceleration |ν∇2v| ≈ νU/δ2 across
the Ekman layer. Since they must be approximately equal in magnitude we get
(apart from a numeric factor)

δ ≈
√

ν

Ω
≈ L

√
Ek , (26-24)

where Ek is the value of the Ekman number (26-14) in the geostrophic flow outside
the boundary layer. Notice that the estimate is independent of the velocity U .
The Ekman layer has the same thickness everywhere even if the velocity of the
geostrophic flow should vary from place to place.
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Shape of the Ekman layer

Outside the Ekman layer we assume that there is a steady geostrophic flow
in the x-direction with velocity vx = U , accompanied by an effective pressure
p∗/ρ0 = −2ΩUy in the y-direction, as for canal flow (26-18). In looking for
a solution which interpolates between the static boundary and the geostrophic
flow, we again exploit the symmetry of the problem. As long as the centrifugal
acceleration can be ignored, the equations of motion as well as the boundary
conditions are independent of the exact position in x and y, i.e. invariant under
arbitrary translations in these coordinates. It is then natural to guess that there
may be a maximally symmetric solution v = v(z) which is also independent of x
and y and only depends on the height z.

With this assumption, mass conservation ∂vz/∂z = 0 implies that the vertical
velocity is a constant. Since it has to vanish on the non-permeable boundary z =
0 it vanishes everywhere, vz = 0. The flow in the transition layer is entirely two-
dimensional, but varies with height z, and the Navier-Stokes equations become

0 = − 1
ρ0

∂p∗

∂x
+ ν

d2vx

dz2
+ 2Ωvy ,

0 = − 1
ρ0

∂p∗

∂y
+ ν

d2vy

dz2
− 2Ωvx ,

0 = − 1
ρ0

∂p∗

∂z
.

The inertial term automatically vanishes for the assumed form of the solution.
From the last equation it follows that the effective pressure is independent

of height z and consequently must be everywhere equal to its terminal value
p∗/ρ0 = −2ΩUy in the geostrophic flow outside the boundary layer. Inserting
this result, the equations of motion now simplify to

ν
d2vx

dz2
= −2Ωvy , (26-25a)

ν
d2vy

dz2
= −2Ω(U − vx) . (26-25b)

This is a pair of coupled homogenous differential equations for U − vx and vy.
Solving the first for vy and inserting it into the second, we get a single fourth
order equation

d4(U − vx)
dz4

= −4Ω2

ν2
(U − vx) .

The general solution to this linear fourth order differential equation is a linear
combination of four terms of the form exp(kz/δ) where

δ =
√

ν

Ω
, (26-26)
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Figure 26.1: Plot of Ekman layer velocity components. (a) The velocity components
as a function of height z. (b) Parametric plot of the velocities as a function of z leads
to the characteristic Ekman spiral.

is the Ekman layer thickness parameter and k = ±(1 ± i) are the four roots of
k4 = −4. The roots with positive real part are of no use, because the solution
then would grow exponentially for z → ∞. Thus, the most general acceptable
solution is

U − vx = Ae−(1+i)z/δ + Be−(1−i)z/δ ,

vy = i
(
Ae−(1+i)z/δ −Be−(1−i)z/δ

)
,

where we in the last equation have used (26-25a) to get vy.
Applying the no-slip boundary condition, vx = vy = 0 for z = 0, we find

A = B = U/2, and the final solution becomes
Ekman flow pattern in a
vertical box. Notice how
the fluid close to the ground
flows to the left of the
geostrophic flow higher up.

vx = U
(
1− e−z/δ cos z/δ

)
,

vy = Ue−z/δ sin z/δ .
(26-27)

In fig. 26.1a the velocity components are plotted as a function of height. One
notices that vx first overshoots its terminal value, and then quickly returns to it.
The y-component also oscillates but is 90◦ out of phase with the x-component.
The direction of the velocity close to z = 0 is 45◦ to the left of the asymptotic
geostrophic flow. Plotted parametrically as a function of height, the velocity
components create a characteristic spiral, called the Ekman spiral, shown in fig.
26.1b. The damping is however so strong that only the very first turn in this
spiral is visible.

The presence of an Ekman layer of the right thickness has been amply
confirmed by laboratory experiments. For the atmosphere at middle lati-
tudes the thickness (26-26) becomes δ = 56 cm when the diffusive viscosity
ν = 1.57× 10−5 m2/s is used. This disagrees with the measured thickness of the
Ekman layer in the atmosphere which is about 1000 m. The reason is that atmo-
spheric flow tends to be turbulent rather than laminar with an effective viscosity
that can easily be up to a million times larger than the diffusive viscosity[17].
We shall not go further into this question here.
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Displacement loss and cross-flow

The Ekman layer slows down the flow near the plate as does any boundary layer.
The loss of volumetric discharge rate in the x-direction is normally compensated
by an upflow from the boundary layer, but for the Ekman layer, this upflow is
replaced by a net cross-flow in the y-direction. To verify this we calculate both
the loss in discharge rate along x and the cross-flow discharge rate along y, and
find from (26-27)

∫ ∞

0

(U − vx) dz =
∫ ∞

0

vy dz =
1
2
U δ . (26-28)

Both quantities are calculated per unit of length orthogonal to the flow. The
equality of the loss in the x-direction with the gain in the y-direction may be
seen as a quantitative explanation for the constant thickness of the Ekman layer
as opposed to the growing thickness of non-rotating boundary layers.

∗ Upwelling and suction

The Ekman flow (26-27) may be rewritten in vector notation as

v = U
(
1− e−z/δ cos z/δ

)
+ ez ×Ue−z/δ sin z/δ , (26-29)

which should be valid for any choice of constant U . If the geostrophic velocity
vector U = (Ux(x, y), Uy(x, y), Uz(x, y)) actually changes slowly with x and y on
a large scale L À δ this expression should still be valid. The thickness (26-26)
is as mentioned before independent of the velocity of the asymptotic geostrophic
flow.

One would think that the z-independent vertical geostrophic upflow Uz should
vanish, because it cannot penetrate into the ground at z = 0, but we shall now see
that a varying geostrophic flow in fact generates a non-vanishing upflow from the
Ekman layer. The derivative of the vertical flow component inside the Ekman
layer may be calculated from mass conservation ∇ · v = 0, and we find from
(26-27)

∂vz

∂z
= −∂vx

∂x
− ∂vy

∂y
=

(
∂Uy

∂x
− ∂Ux

∂y

)
e−z/δ sin z/δ .

Here we have used that geostrophic flow also has to satisfy horizontal mass con-
servation ∂Ux/∂x + ∂Uy/∂y = 0. We recognize the factor in parenthesis on the
right hand side as the vorticity ωz of the geostrophic flow. Integrating over z and
using that vz = 0 for z = 0, we obtain

vz =
1
2
δ

(
∂Uy

∂x
− ∂Ux

∂y

) [
1− e−z/δ(cos z/δ + sin z/δ)

]
, (26-30)

an equation which is most easily verified by differentiation. Evidently, the vertical
velocity is of size Uδ/L, which is always smaller than the geostrophic flow U by
a factor δ/L ¿ 1.
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For z À δ, there remains a vertical component in the asymptotic geostrophic
flow

Uz =
1
2
δ

(
∂Uy

∂x
− ∂Ux

∂y

)
. (26-31)

Since it is independent of z, it is not at variance with the geostrophic nature of
the exterior flow or the Taylor-Proudman “vertical copy” theorem.

If the geostrophic vorticity ωz = ∂Uy/∂x − ∂Ux/∂y is positive, i.e. of the
same sign as the global rotation, fluid wells up from the Ekman layer (without
changing its thickness). This is, for example, the case for a low-pressure cyclone,
where the upwelling of fluid must be accompanied by a cross-isobaric flow inside
the Ekman layer towards the center of the cyclone. Conversely if the geostrophic
vorticity is negative, as in high-pressure anticyclones, fluid is sucked down into
the Ekman layer from the geostrophic flow. Both of these effects tend to equalize
the pressure between the center and the surroundings of these vast vortices.

26.5 Steady vortex in rotating container

In the laboratory, gravity-sustained vortices may be created by letting a liquid,
typically water, run freely out through a small drain-hole in the center of a slowly
rotating cylindrical container. The liquid lost through the drain is constantly
pumped back into the container. In the steady state the pump provides the
kinetic energy of the falling liquid, and its angular momentum is provided by
the motor rotating the container. The container is drained through a very small
hole of radius r = a. We shall for simplicity disregard the influence of the outer
container wall at r = A, and thus think of the container as having infinite radius.

In the following we shall repeatedly refer to the experiment shown in fig. 26.2
(with the parameters given in the figure caption)1. In this experiment, a steady
flow pattern with a beautiful central vortex gets established after about half an
hour. The vortex is remarkably stable and its flow can be studied experimentally
by modern imaging techniques. The needle-like central depression is accompanied
by a very rapid central rotation of at least 50 turns per second, or 3000 rpm,
which is as fast as a typical medium-sized car engine rotates at a cruising speed
of 100 km/h!

Experimentally, the bulk of the vortex outside the surface depression is found
to have the shape of a line vortex with azimuthal velocity, vφ = C/r in the
rotating coordinate system of the container. The azimuthal Reynolds number of
the line vortex is independent of r,

Reφ =
rvφ

ν
=

C

ν
, (26-32)

and in the experiment it has the value Reφ ≈ 1600, somewhat below the onset of
turbulence.

1A. Andersen, T. Bohr, B. Lautrup, J. J. Rasmussen, and B. Stenum, “Bathtub vortex flows
with a free surface”
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Figure 26.2: Water vortex in a rotating container. The upper part is the reflection of
the vortex in the water surface. The radius of the drain-hole is a = 1 mm, the radius
of the container is A = 20 cm, the asymptotic water level is L = 11 cm, and the whole
apparatus rotates at Ω = 18 rpm. After about 30 minutes the vortex stabilizes with
a central dip of L − h0 = 6 cm, or h0 = 5 cm. The volume discharge through the
drain is measured to be Q = 3.16 cm3 s−1 corresponding to an average drain velocity
of W = 101 cm s−1 and a Reynolds number Rez = 2328. The circulation constant is
C = 16.0 cm2 s−1, and the Rossby radius R = 2.9 cm. The core rotates more 50 times
per second!

Rossby radius

The local Rossby number of the line vortex at a distance r from its axis is,

Ro =
vφ

2Ωr
=

C

2Ωr2
(26-33)

It decreases rapidly with growing r and drops below unity for r & R where

R =

√
C

2Ω
. (26-34)

We shall call this the Rossby radius, and in the experiment of fig. 26.2 we find
R = 2.1 cm. Well inside the Rossby radius for r ¿ R, the Coriolis force is
small compared to the advective force, and the vortex will resemble the bathtub
vortices discussed in chapter 23, except that there is upflow from the Ekman
layer outside the drain proper. At the other extreme, well beyond the Rossby
radius for r À R, the flow will be purely geostrophic.
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Cylindrical geostrophic flow

The Taylor-Proudman “copycat” theorem guarantees that in the geostrophic
regime, the flow cannot depend on the vertical height z. Assuming further that
the flow is cylindrical, it follows that the velocity components in cylindrical co-
ordinates, vr,φ,z, are only functions of r. The geostrophic equation (26-16) now
decomposes into the three equations,

1
ρ0

∂p

∂r
= 2Ωvφ , (26-35a)

1
ρ0

∂p

∂φ
= −2Ωvr , (26-35b)

1
ρ0

∂p

∂z
= −g0 . (26-35c)

By the usual argument, the uniqueness of the pressure forbids any φ-dependence,
so that the second equation leads to vr = 0. The pressure can then be obtained by
integrating the two other equations. Notice that whereas the radial flow always
has to vanish, we find apparently no restrictions on the azimuthal flow vφ or the
upflow vz. In particular, it does not follow from this argument that the azimuthal
flow takes the form of a line vortex.

The main conclusion is, that geostrophic flow can never carry any inflow
towards the drain. This is in fact equivalent to the previously derived result that
flow lines and isobars coincide in geostrophic flow. The only way inflow can occur
is through deviations from clean geostrophic flow, and that happens primarily
inside the Rossby radius and close to the bottom of the container, where an
Ekman layer must form.

The Ekman layer valve

In the preceding section we saw that the asymptotic upflow from the Ekman layer
(26-31) is controlled by the vorticity of the geostrophic flow. Since the Taylor-
Proudman theorem guarantees that the upflow is independent of z, and since
there can be no geostrophic inflow, this upflow will unabated reach the nearly
horizontal open surface at top of the vortex. But there it has nowhere to go2,
so the only possibility that remains is for the vorticity of the geostrophic flow to
vanish, and this is only possible for a line vortex, vφ = C/r. It is essentially the
presence of an open surface that forces the flow to be that of a line vortex.

The constant thickness of the Ekman layer

δ =
√

ν

Ω
(26-36)

comes to merely 0.7 mm in the experiment (fig. 26.2). The radial volume dis-
charge can now be calculated from the cross-flow in (26-28) by taking U = C/r

2To complete the argument, one also has to verify that the Ekman layer which will also form
at the upper open surface is incapable of diverting any large upflow towards the drain.
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and multiplying with the length of the circumference, 2πr, to get the constant
radial discharge rate,

Q = πCδ . (26-37)

This is a fundamental result which connects the primary circulating flow with
the secondary inflow towards the drain. The Ekman layer in effect acts as a valve
that only allows a certain amount of fluid to flow towards the drain per unit of
time.

Alternatively, one can use this relationship to calculate the circulation con-
stant C from the more easily measured drain-flow Q. In the experiment of
fig. 26.2 where the drain flow is measured to be Q = 3.16 cm3/s, we pre-
dict C = 15 cm2 s−1 which is in good agreement with the measured value
C = 16.0 cm2 s−1. If at all significant, the discrepancy could be caused by
the finite size of the container.

Inner vortex

Inside the Rossby radius the non-linear advective forces take over, but there will
still exist a thin — in fact thinner — Ekman-like layer close to the bottom. But
even if the circulating primary flow is that of a line vortex, the non-linearities will
now cause an upwelling of fluid from the bottom layer. The bulk flow is no more
geostrophic, so there is no injunction against the upflow turning into an inflow
directed towards the center of the vortex. Thus, the general picture is that the
secondary flow creeps inwards along the bottom through the Ekman layer outside
the Rossby radius, flares up vertically from the bottom inside and turns towards
the center in the bulk, for finally to dive sharply down into the drain. Along its
way it carries energy and angular momentum to sustain the primary vortex flow.

- r

6
z

...............................................................................................
........................................

...............................
..........................

.......................
.....................

...................
..................
.................
.......................
.............................
..................................................

........................................................................................................................................................................................................................................................................................................................... R

Typical flowline for fluid
streaming in through the
Ekman layer outside the
Rossby radius R, welling up
inside R and finally falling
through the drain.

Modelling of the inner vortex, in particular the core region near the drain, is
a rather complex task. The main difficulty lies in matching the upflow from the
bottom layer to the bulk flow. The narrow drain, the thin Ekman-like bottom
layer, and the very high rotation speeds in the vortex core, in excess of 50 cps
for the case of fig. 26.2, makes the differential equations “stiff” and numerically
unwieldy. Surface tension will also influence the needle-like depression and make
it less needle-like, but this effect has yet to be properly included.

Concluding the discussion of the vortex in a rotating container, it appears that
even if the experiment is fairly easy to set up, the physics is extremely varied in
different regions. The only perfectly understood region is the bulk-flow outside
the Rossby radius, not too close to the outer container wall, and the associated
bottom Ekman layer. The inner vortex may be modelled as a cylindrical vortex,
but its coupling to the bottom layer is not well understood. The central core acts
as a pipe, funnelling fluid towards the drain, but the shape of the open surface of
the needle-like depression is still not fully understood, especially what concerns
the influence of surface tension.
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26.6 Debunking an urban legend

Finally, we turn to the “urban legend” concerning the direction of rotation of
real bathtub vortices and their dependence on the Earth’s rotation. The legend
originates in the correct physical theory of the Coriolis force, amply confirmed by
the everyday observation of weather cyclones. So the urban legend can only be
debunked by quantitative arguments, usually not given much attention in urban
circles.

Suppose to begin with that our bathtub is essentially infinitely large and that
the water level is L = 50 cm. Bernoulli’s theorem tells us that the drain velocity
is at most W =

√
2g0L ≈ 300 cm s−1. Taking the drain radius to be a = 2.5 cm,

the maximal drain discharge rate becomes Q ≈ 6 liter s−1. This seems seems
not unreasonable for bathtubs that typically contain hundreds of liters of water
(and excessively waste both water and heat!). Assuming furthermore that the
flow is perfectly laminar, we find the Ekman thickness δ = 14 cm, and from
(26-37) we get C = 140 cm2/s, corresponding to a Rossby radius of R = 17 m.
Most bathtubs are not that big and this shows that Earth’s rotation can only
have little influence on a real bathtub vortex, in spite of the many claims to
the contrary. A swimming pool of Olympic dimensions is on the other hand of
the right scale. What matters for the man-sized bathtub is much more, as we
discussed in chapter 23, the bather’s accidental deposition of angular momentum
in the water while getting out.

There is, however, the objection that the effect of the Earth’s rotation could
show up, if the water were left to settle down for some time before the plug
is pulled. For that to happen, the Rossby number (26-13) would have to be
comparable to unity. Taking the diameter of a real tub to be A ≈ 1 m, this
implies that the water velocity near the rim of the tub should not be much larger
than ΩA ≈ 5 × 10−3 cm/s. This seems terribly small, about the thickness of a
human hair per second!

The following argument indicates what patience is needed to make an exper-
iment3. After the initial turbulence from filling the tub has died out, we shall
assume that the water settles down under the action of viscous forces (although
the Reynolds number for a flow with the above velocity is still about 60). Vis-
cosity not only smoothes out local velocity differences but also secures that the
fluid eventually comes to rest with respect to the container. The typical viscous
diffusion time over a distance d is t ≈ d2/4ν, as we have seen for momentum
diffusion on page 333 or vortex spin-down on page 452. In a bathtub with a
water level of L = 50 cm, the time it takes for the bottom of the container to
influence the water at the top is about t ≈ 75, 000 s or about 20 hours! To make
the experiment work, you must not only let the water settle for a few times 20
hours, but also secure that no heat is added to the water (which may generate
convection), and no air drafts are present in and around the container.

3Some experimenters are patient and careful enough to observe the effect. See for example
the very enjoyable paper by L. M. Trefethen et al, Nature 207, 1084 (1965).
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Problems

26.1 Write the inertial coordinates in terms of the unit vectors along the axes of the
moving coordinate system, x′ = xex + yey + ze′z, and use that the time derivative of
the unit vectors may always be written ėx = Ω × ex, ėy = Ω × ey, and ėz = Ω × ez.
Find and characterize all the fictitious forces due to rotation.

26.2 In the Danish Great Belt, which is a strait with a width of 20 km, the typical
current velocity is 1 m/s, there are two layers of water, a lower and slower saline
layer with a lighter brackish one on top. Assuming a density difference of about 4%
and a velocity difference of about 25%, calculate the difference in water levels for the
separation surface between saline and brackish water.
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