
2
Space and time

In classical Newtonian physics space is absolute and eternal, obeying the rules
of Euclidean geometry everywhere. It is the perfect stage on which all physical
phenomena play out. Time is equally uniform and absolute all over space from
the beginning to the end, and matter has no influence on the properties of space
and time. Rulers to measure length never stretch, clocks to measure time never
lose a tick, and both can be put to work anywhere from the deepest levels of
matter to the farthest reaches of outer space. It is a clockwork universe, orderly,
rigorous, and deterministic.

This semblance of perfection was shattered in the beginning of the twentieth
century by the theories of relativity and quantum mechanics. Space and time
became totally intertwined with each other and with matter, and the determinism
of classical physics was replaced by the still-disturbing quantum indeterminism.
Relativity and quantum mechanics are both theories of extremes. Although they
in principle apply to the bulk of all physical phenomena, their special features
become dominant only at velocities approaching the velocity of light in the case
of relativity, or length scales approaching the size of atoms in the case of quantum
mechanics. Newtonian space and time remain a valid, if not “true”, conceptual
framework over the vast ranges of length and velocity scales covered by classical
continuum physics.

In this chapter the basic ideas behind space and time are introduced in a way
which emphasizes the operational aspects of physical concepts. Care is exerted
in order that the concepts defined here should remain valid in more advanced
theories. A certain familiarity with Euclidean geometry in Cartesian coordinates
is assumed, and the chapter serves in most respects to define the mathematical
notation to be used in the remainder of the book. It may be sampled at leisure,
as the need arises.
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16 2. SPACE AND TIME

2.1 Reference frames

Physics is a quantitative discipline using mathematics to relate measurable quan-
tities expressed in terms of real numbers. In formulating the laws of nature,
undefined mathematical primitives — for example the points, lines and circles of
Euclidean geometry — are not particularly useful, and such concepts have for this
reason been eliminated and replaced by numerical representations everywhere in
physics. This necessitates a specification of the practical procedures by which
these numbers are obtained in an experiment, for example, what units are being
used.

Behind every law of nature and every formula in physics, there is a framework
of procedural descriptions, a reference frame, supplying an operational meaning
to all physical quantities. Part of the art of doing physics lies in comprehending
this — often tacitly understood — infrastructure to the mathematical formalism.
The reference frame always involves physical objects — balances to measure mass,
clocks to measure time, and rulers to measure length — that are not directly a
part of the mathematical formalism. Precisely because they are physical objects,
they can at least in principle be handed over or copied, and thereby shared among
experimenters. This is what is really meant by the objectivity of physics.

The system of units, the Système Internationale (SI), is today fixed by inter-
national agreement. But even if our common frame of reference is thus defined
by social convention, physics is nevertheless objective. In principle our frames of
reference could be shared with any other being in the universe.

The unit of mass, the kilogram, is defined by a prototype stored by the Inter-
national Bureau of Weights and Measures near Paris, France. Copies of this
prototype and balances for weighing them can be made to a precision of one part
in 109 [2].

2.2 Time

Time is the number you read on your clock. There is no better definition. Clocks
are physical objects which may be shared, compared, copied, and synchronized to
create an objective meaning of time. Most clocks, whether they are grandfather
clocks based on a swinging pendulum or oscillating quartz crystals, are based
on periodic physical systems that return to the same state again and again, and
time intervals are simply measured by counting periods. There are also aperiodic
clocks, for example hour glasses, and clocks based on radioactive elements. It
is especially the latter that allow time to be measured on geological time scales.
Beyond that, the concept of time becomes increasingly more theory-laden.

Like all macroscopic physical systems, clocks are subject to small fluctuations
in the way they run. The most stable clocks are those that keep time best with
respect to copies of themselves as well as with clocks built on other principles.
Grandfather clocks are much less stable than maritime chronometers that in turn
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2.3. SPACE 17

are less stable than quartz clocks. The international frame of reference for time
is always based on the currently most stable clocks.

Formerly the unit of time, the second, was defined as 1/86,400 of a mean solar day,
but the Earth’s rotation is not that stable, and since 1966 the second has been
defined by international agreement as the duration of 9,192,631,770 oscillations of
the microwave radiation absorbed in a certain hyperfine transition in the cesium-
133 atom. A beam of cesium-133 atoms is used to stabilize a quartz oscillator
at the right frequency by a resonance method, so what we call an atomic clock
is really an atomically stabilized quartz clock. The intrinsic relative precision in
this time standard is about 4× 10−14, or about one second in a million years [2].

In the extreme mathematical limit, time may be assumed to be a real number,
say t, and in Newtonian physics its value is assumed to be universally known.

2.3 Space

It is a mysterious and so far unexplained fact that physical space has three
dimensions, which means that it takes exactly three real numbers — say x1, x2

and x3 — to locate a point in space. These numbers are called the coordinates of
the point, and the reference frame for coordinates is called the coordinate system.
It must contain all the operational specifications for locating a point given the
coordinates, and conversely obtaining the coordinates given the location. In
this way we have relegated all philosophical questions regarding the real nature
of points and of space to the operational procedures contained in the reference
frame.

On Earth everybody navigates by means of a geographical system, in which a
point is characterized by latitude, longitude and height. The geographical co-
ordinate system is based on agreed-upon fixed points on Earth: the north pole,
Greenwich near London, and the average sea level. The modern Global Posi-
tioning System uses “fixed” points in the sky in the form of satellites, and the
coordinates of any point on Earth is determined from differences in the time-of-
flight of radio signals.

It is convenient to collect the coordinates x1, x2, and x3 of a point in a single
object, a triplet of real numbers

x = (x1, x2, x3) , (2-1)

called the position of the point in the coordinate system1. The triplet notation
is just a notational convenience, so a function of the position f(x) is completely
equivalent to a function of the three coordinates f(x1, x2, x3).

rx

ra
rb

Points may be visualized as
dots on a piece of paper.1In almost all modern textbooks it is customary to use boldface notation for triplets of real

numbers (“vectors”) and we shall also do so here. In calculations with pencil on paper many
different notations are used to distinguish such a symbol from other uses, for example a bar
(x), an arrow (~x), or underlining (x).
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18 2. SPACE AND TIME

There is nothing sacred about the names of the coordinates. In physics and
especially in practical calculations, the coordinate variables are often renamed
x1 → x, x2 → y and x3 → z, so that the general point becomes x → (x, y, z). It is
also customary to write a = (ax, ay, az) for a general triplet, with the coordinate
labels used as indices instead of 1, 2 and 3. It is of course of no importance
whether the range of indices is labeled x, y, z or 1, 2, or 3 or something else, as
long as there are three of them.

Coordinate transformations

Having located a point by a set of coordinates x = (x1, x2, x3) in one coordinate
system, the coordinates x′ = (x′1, x

′
2, x

′
3) of the exact same point in another

coordinate system must be calculable from the first

x′1 = f1(x1, x2, x3) ,

x′2 = f2(x1, x2, x3) ,

x′3 = f3(x1, x2, x3) ,

In triplet notation this is written

x′ = f(x) . (2-2)

This postulate reflects that physical reality is unique and that different coordinate

rx↔ x′

ra↔ a′

rb↔ b′

In different coordinate sys-
tems the same points have
different coordinates.

systems are just different ways of representing the same physical space in terms
of real numbers. Conversely, every such one-to-one mapping of the coordinates
defines another coordinate system. The study of coordinate transformations is
central to analytic geometry and permits characterization of geometric quantities
by the way they transform rather than in abstract terms (see section 2.7).

Length

From the earliest times humans have measured the length of a road between two
points, say a and b, by counting the number of steps it takes to walk along this
road. In order to communicate to others the length of a road, the count of steps
must be accompanied by a clear definition of a step, for example in terms of an
agreed-upon unit of length.

¡
¡

¡
¡

s
r

r
r

s

a

b

shortest
¥
¥
·· PP

r
r
r

r r
road

The length of the road be-
tween a and b is measured
by counting steps along the
road. The distance is the
length of the shortest road.

Originally the units of length — inch, foot, span, and fathom — were directly
related to the human body, but increasing precision in technology demanded
better-defined units. In 1793 the meter was introduced as a ten millionth of
the distance from equator to pole on Earth, and until far into the twentieth
century a unique “normal meter” was stored in Paris, France. Later the meter
became defined as a certain number of wave lengths of a certain spectral line in
krypton-86, an isotope of a noble gas which can be found anywhere on Earth
(thereby eliminating the need for a trip to Paris!). Since 1983 the meter has
been defined by international convention to be the distance traveled by light in
exactly 1/299,792,458 of a second [2]. The problem of measuring lengths has thus
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been transferred to the problem of measuring time, which makes sense because
the precision of the time standard is at least a thousand times better than any
proper length standard.
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path

In the mathematical limit
the shortest continuous
path connecting a and b is
called the geodesic (“straight
line”).

This method for determining length may be refined to any desired practical
precision by using very short steps. In the extreme mathematical limit, the
steps become infinitesimally small, and the road becomes a continuous path.
The shortest such path is called a geodesic and represents the “straightest line”
between the points. Airplanes and ships travel along geodesics, i.e. great circles
on the spherical surface of the Earth.

Distance

The distance between to points is defined to be the length of the shortest path
between them. Since the points are completely defined by their coordinates, a
and b (relative to the coordinate system), the distance must be a real function
d(a, b) of the two sets of coordinates. This function is not completely general;
certain axioms have to be fulfilled by any distance function (see problem 2.1).

From the definition it is clear that the distance between two points must be the
same in all coordinate systems, because it can in principle be determined by laying
out rulers between points without any reference to coordinate systems. The
actual distance function d′(a′, b′) in a new coordinate system may be different
from the old, d(a, b), but the numerical value have to be the same,

d′(a′, b′) = d(a, b) , (2-3)

where a′ = f(a) and b′ = f(b) are calculated by the coordinate transformation
(2-2). Knowing the distance function d(a, b) in one coordinate system, it may be
calculated in any other coordinate system by means of the appropriate coordinate
transformation.

r

r
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¡
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¡

¡

a′ ↔ a

b′ ↔ b

d′(a′, b′) = d(a, b)

Invariance of the distance.This expresses the invariance of the distance under all coordinate transforma-
tions. In the same way as (2-2) may be viewed mathematically as a definition of
what is meant by “another coordinate system”, the equation (2-3) may be viewed
mathematically as a definition of what is meant by distance in an arbitrary other
coordinate system.

Cartesian coordinate systems
René Descartes (1596–
1650). French scientist
and philosopher, father of
analytic geometry. Devel-
oped a theory of mechanical
philosophy, later to be
superseded by Newton’s
work. Confronted with
doubts about reality, he
saw thought as the only
argument for existence: “I
think, therefore I am”.

It is another fundamental physical fact that it is possible (within limited regions
of space and time) to construct coordinate systems, in which the distance between
any two points, a and b, is given by the expression

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2 . (2-4)

Such coordinate systems were first analyzed by Descartes and are called Carte-
sian. The distance function implies that space is Euclidean and therefore has all
the properties one learns about in elementary geometry.
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20 2. SPACE AND TIME

2.4 Vector algebra

Triplets of real numbers play a central role in everything that follows, and it is
convenient immediately to introduce a set of algebraic rules for these objects.
We shall see below (section 2.8) that vectors in Cartesian coordinate systems are
triplets that transform in a special way under coordinate transformations.

r¡
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sa

Geometric scaling of a vec-
tor.
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a− b

b

Geometric addition and sub-
traction of vector.

Basic algebraic rules

The following operations endow triplets with the properties of the familiar geo-
metric vectors. Visualization on paper is of course as useful as ever, so we shall
also draw triplets and illustrate their properties by means of arrows.

Linear operations: Linear operations lie at the core of triplet algebra,

s a = (sa1, sa2, sa3) (scaling) , (2-5)
a + b = (a1 + b1, a2 + b2, a3 + b3) (addition) , (2-6)
a− b = (a1 − b1, a2 − b2, a3 − b3) (subtraction) . (2-7)

These rules tell us that the set of all triplets, also called R3, mathematically is
a 3-dimensional vector space. A straight line with origin a and direction b is
described by the linear function a + b s with −∞ < s < ∞.

r

.......................................................

θ

�
�
�
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���
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a

b

The dotproduct of two vec-
tors is |a| |b| cos θ where θ
is the angle between them.

Bilinear products: There are three different bilinear products of triplets, of
which the two first are well-known from ordinary vector calculus,

a · b = a1b1 + a2b2 + a3b3 (dot product) , (2-8)
a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) (cross product) . (2-9)

Two triplets are said to be orthogonal when their dot product vanishes. Notice

r

...............................................................................................................
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............
...........
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�
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HHHHj

6

a
b

a× b

θ

The cross product of two vec-
tors is a vector orthogonal
to both of length |a| |b| sin θ,
here drawn using a right-
hand rule.

that the cross product is defined entirely in terms of the coordinates, and that
we do not in the rule itself distinguish between left-handed and right-handed
coordinate systems. Whether you use your right or left hand when you draw a
cross product on paper does not matter for the triplet product rule, as long as
you consistently use the same hand for all such drawings.

The last one,

ab =




a1

a2

a3


 (b1, b2, b3) =




a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3


 (tensor product) , (2-10)

called the tensor product, is unusual in that it produces a 3× 3 matrix from two
triplets, but otherwise it is perfectly well-defined and useful to have around. It is
nothing but an ordinary matrix product of a column-matrix and a row-matrix,
also called the direct product and sometimes in the older literature the dyadic
product. In section 2.8 we shall introduce more general geometric objects, called
tensors, of which the simplest are matrices of this kind. The tensor product, and
tensors in general, cannot be given a simple visualization on paper.
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Further definitions

Besides the basic algebraic rules for triplets, a number of other definitions are
useful in practical calculations.

Volume product: The trilinear product of three triplets obtained by combin-
ing the cross product and the dot product is called the volume product,

a× b · c = a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 − a3b2c1 . (2-11)

The right hand side shows that the volume product equals the determinant of
the matrix constructed from the three vectors,

a× b · c =

∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
(volume product) . (2-12)

The volume product is antisymmetric under exchange of any pair of vectors. Its
""
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""







""""""










""
""
""










a

b c

Three vectors spanning a
parallelepiped.

value is the (signed) volume of the parallelepiped spanned by the vectors.

Square and norm: The square and the norm are standard definitions

a2 = a · a = a2
1 + a2

2 + a3
3 (square) , (2-13)

|a| =
√

a2 =
√

a2
1 + a2

2 + a3
3 (norm or length) . (2-14)

This definition of the norm is closely related to the form of the Cartesian distance
(2-4) which may now be written d(a, b) = |a− b|.

Vector derivatives Various types of derivatives involving triplets may also be
defined,

∂a

∂s
=

(
∂a1

∂s
,
∂a2

∂s
,
∂a3

∂s

)
(scalar derivative) , (2-15)

∂

∂a
=

(
∂

∂a1
,

∂

∂a2
,

∂

∂a3

)
(vector derivative) . (2-16)

In the first line, the derivative of a triplet after a parameter is defined. In the
second line, a symbolic notation is introduced for the three derivatives after a
triplet’s coordinates (see problem 2.9 for simple uses of this notation).

2.5 Basis vectors

The coordinate axes of a Cartesian coordinate system are straight lines with a
common origin 0 = (0, 0, 0) and directions,

e1 = (1, 0, 0) , (2-17a)
e2 = (0, 1, 0) , (2-17b)
e3 = (0, 0, 1) . (2-17c)
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These triplets are called the basis vectors of the coordinate system2, or just the-
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x3

e1

e2

e3

Visualization of the Carte-
sian coordinate system.

basis, and every position x may trivially be written as a linear combination of
the basis vectors with the coordinates as coefficients,

x = x1e1 + x2e2 + x3e3 . (2-18)

The basis vectors are normalized and mutually orthogonal,

|e1| = |e2| = |e3| = 1 , (2-19)
e1 · e2 = e2 · e3 = e3 · e1 = 0 . (2-20)

Using these relations and (2-18) we find

x1 = e1 · x , (2-21a)
x2 = e2 · x , (2-21b)
x3 = e3 · x , (2-21c)

showing that the coordinates of a point may be understood as the normal pro-
jections of the point on the axes of the coordinate system.
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A Cartesian coordinate sys-
tem with axes labeled x, y
and z. Completeness of basis

Combining (2-18) with (2-21) we obtain the identity

e1(e1 · x) + e2(e2 · x) + e3(e3 · x) = x ,

valid for all x. Since this is a linear identity, we may remove x and express this
completeness relation in a compact form by means of the tensor product (2-10),

e1e1 + e2e2 + e3e3 = 111 , (2-22)

where on the right hand side the symbol 111 stands for the 3× 3 unit matrix3.

Handedness

It must be emphasized that the handedness of the coordinate system has not
entered the formalism. Correspondingly, the volume of the unit cube,

e1 · e2 × e3 = +1 , (2-23)

is always +1, independently of whether you call the hand you write with the left
or the right!

2In some texts the basis vectors are symbolized by the coordinate label with a hat above:
1̂, 2̂, and 3̂.

3In order to distinguish a matrix from a triplet, the matrix symbol will be written in heavy
unslanted boldface. The distinction is not particularly visible in print. With pencil on paper,

3× 3 matrices are sometimes marked with a double bar (1) or a double arrow (
←→
1 ).
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2.6 Index notation

Triplet notation for vectors is sufficient in most areas of physics, because physical
quantities are mostly scalars (i.e. single numbers like mass) or vectors such as
velocity, but sometimes it is necessary to use a more powerful and transparent
notation which generalizes better to more complex expressions and quantities. It
is called index notation or tensor notation, and consists in all simplicity in writing
out the coordinate indices explicitly wherever they occur. Instead of thinking of
a position as a triplet x, we think of it as the set of coordinates xi with the index
i running implicitly over the coordinate labels, i = 1, 2, 3 or i = x, y, z, without
having to state it every time.

Algebraic operations

Triplet and index notations coexist quite peacefully as witnessed by the linear
operations

(sa)i = sai , (2-24)
(a + b)i = ai + bi , (2-25)
(a− b)i = ai − bi . (2-26)

For the scalar product we let the sum range implicitly over the coordinate labels,

a · b =
∑

i

aibi . (2-27)

In full-fledged tensor calculus even the summation symbol is left out and under-
stood as implicitly present for all indices that occur precisely twice in a term.
We shall, however, refrain from doing so here.

The Kronecker delta

The nine scalar products of basis vectors has two indices that each run implicitly
over the three coordinate labels, and is written

ei · ej = δij . (2-28)

The expression δij is nothing but the unit matrix in index notation, Leopold Kronecker (1823–
1891). German mathemati-
cian, contributed to the the-
ory of elliptic functions, al-
gebraic equations, and alge-
braic numbers.

δij =

{
1 for i = j

0 otherwise
, (2-29)

also called the Kronecker delta. This is the first example of a true tensor of rank
2. Another is the tensor product (2-10) of two vectors, which takes the form

(ab)ij = aibj . (2-30)

It is in fact not enough for a tensor just to have two (or more) indices, but it
suffices for now. In section 2.8 we shall see what really characterizes tensors.

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



24 2. SPACE AND TIME

The Levi-Civita symbol

The volume product (2-11) becomes a triple sum over indices,

a× b · c =
∑

ijk

εijk aibjck , (2-31)

with 27 coefficients,

εijk =





+1 ijk = 123, 231, 312 ,

−1 ijk = 132, 213, 321 ,

0 otherwise .

(2-32)

The symbol εijk is in fact a tensor of third rank, called the Levi-Civita symbol.Tullio Levi-Civita (1873–
1941). Italian mathemati-
cian, contributed to differen-
tial calculus, relavitivy, and
founded (with Ricci) tensor
analysis in curved space.

Finally, the cross product (2-9) may be written as a double sum over two
indices of the form,

(a× b)i =
∑

jk

εijkajbk . (2-33)

Mostly we shall avoid this complicated notation, although it does come in handy
in general discussions.

2.7 Cartesian coordinate transformations

The same Euclidean world may be described geometrically by different observers
with different reference frames. Each observer constructs his own preferred Carte-
sian coordinate system and determines all positions relative to that. Every ob-
server thinks that his basis vectors have the simple form (2-17) and satisfy the
same orthogonality and completeness relations. Every observer believes he is
right-handed. How can they ever agree on anything with such a self-centered
view of the world?

-
6

��	

HHj
�
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A
AK

old

new

The old and the new Carte-
sian systems.

The answer is — as indicated in section 2.3 — that the two descriptions
are related by a coordinate transformation (2-2). Since the distance between
any two points is independent of the coordinate system, the shortest paths must
coincide, and straight lines must be mapped onto straight lines by any Cartesian
coordinate transformation. Seen from one Cartesian coordinate system, which
we shall call the “old”, the axes of another Cartesian coordinate system, called
the “new”, will therefore also appear to be straight lines with a common origin.
Furthermore, since the scalar product of two vectors can be expressed in terms
of the norm (problem 2.5), it must like distance be independent of the specific
coordinate system, so that the new axes will also appear to be orthogonal in the
geometry of the old coordinate system. Different observers will thus agree that
their respective coordinate systems are indeed Cartesian.
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Simple transformations

We begin the analysis of coordinate transformations with the familiar elementary
transformations: translation, rotation, and reflection. These transformations are
of the general form (2-2), expressing the coordinates of a geometrical point in
the new system as a function of the coordinates of the same point in the old.
The simple transformations are related to a special choice of coordinate axes,
and similar simple transformations may be defined for other choices.

Simple translation: A simple translation of the origin of coordinates along
the x-axis by a constant amount c is given by

x′ = x− c , (2-34a)
y′ = y , (2-34b)
z′ = z . (2-34c)

The axes of the new coordinate system are in this case parallel with the axes of

- x, x′

6
y

6
y′

rx,x′

c

Simple translation of the
coordinate system by c along
the x-axis.

the old.

Simple rotation: A simple rotation of the coordinate system through an angle
φ around the z-axis is described by the transformation

x′ = x cosφ + y sin φ , (2-35a)
y′ = −x sin φ + y cos φ , (2-35b)
z′ = z . (2-35c)

In this case the z-axes are parallel in the old and the new systems.
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Simple reflection: A simple reflection in the yz-plane is described by

-

6

¾ xx′

y, y′

rx,x′

A simple reflection in the
yz-plane.

x′ = −x ,

y′ = y ,

z′ = z .

(2-36)

A simple reflection always transforms a right-handed coordinate system into a
left-handed one, and conversely, independently of which hand you may claim to
be the right one.

General transformations

Let the new Cartesian coordinate system be characterized (in the old) by its
origin c and its three orthogonal and normalized basis vectors a1, a2, and a3,
satisfying the usual relations,

|a1| = |a2| = |a3| = 1

a1 · a2 = a2 · a3 = a3 · a1 = 0

}
. (2-37)

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



26 2. SPACE AND TIME

A position x′ = (x′1, x
′
2, x

′
3) in the new coordinate system must then correspond

to the (old) position,

x = c + x′1a1 + x′2a2 + x′3a3 . (2-38)

The new coordinates are obtained by multiplying from the left with the new basis
vectors and using orthonormality (2-37)

x′1 = a1 · (x− c) = a11(x1 − c1) + a12(x2 − c2) + a13(x3 − c3) ,

x′2 = a2 · (x− c) = a21(x1 − c1) + a22(x2 − c2) + a23(x3 − c3) ,

x′3 = a3 · (x− c) = a31(x1 − c1) + a32(x2 − c2) + a33(x3 − c3) .

where aij = (ai)j are the coordinates of the new basis vectors. This is the
most general coordinate transformation between any two Cartesian coordinate
systems. It is not very difficult to show that the most general transformation
may be composed from a sequence of simple transformations (problem 2.22).

- e1

6
e2

�
�	

e3

HHHj a1

�
���
a3

A
AAK

a2

¡
¡

¡
¡

¡µ

©©©©©*?
c

x

x′

old

new

Arrangement of the old and
new coordinate systems.

Using index notation, the general coordinate transformation may be written,

x′i =
∑

j

aij(xj − cj) . (2-39)

It is characterized by the translation vector c = {ci} and the transformation
matrix AAA = (ai)j = {aij} having the new basis vectors as rows. In matrix
notation the transformation becomes even more compact4,

x′ = AAA · (x− c) . (2-40)

The transformation matrix for a simple translation along the x-axis (2-34) is just
the unit matrix, AAA = 111, whereas for a simple rotation around the z-axis (2-35)
we obtain the non-trivial matrix,

AAA =




cosφ sin φ 0
− sin φ cosφ 0

0 0 1


 . (2-41)

A simple reflection in the yz-plane (2-36) is characterized by a diagonal trans-
formation matrix with (−1, 1, 1) along the diagonal.

Orthogonality and completeness of the new basis

The orthogonality and completeness of the new basis vectors implies that

ai · aj = δij , (2-42)
a1a1 + a2a2 + a2a2 = 111 . (2-43)

4In ordinary mathematical matrix calculus one would not use the dot to indicate multi-
plication (nor to indicate a scalar product), but this notation is quite natural for the three-
dimensional vectors and matrices that we encounter so often in physics.
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In index notation these two relations take the form,
∑

k

aikajk =
∑

k

akiakj = δij , (2-44)

which in matrix notation become the usual conditions for the matrix to be or-
thogonal,

AAA ·AAA> = AAA> ·AAA = 111 . (2-45)

Here (AAA>)ij = (aj)i = aji is the transposed matrix having the new basis vectors
as columns. Since AAA−1 = AAA>, the second of the above relations actually follows
from the first. Orthogonality of the basis implies completeness.

The transposed matrix has the same determinant as the original matrix and
the determinant of a product of matrices is the product of the determinants.
Calculating the determinant of (2-45) we obtain (detAAA)2 = 1, or

detAAA = ±1 . (2-46)

The transformation matrices are thus divided into two completely separate
classes, those with determinant +1, called rotations or sometimes proper ro-
tations, and those with determinant −1, generically called reflections. Since the
simple reflection (2-36) has determinant −1, all reflections may be composed of
a simple reflection followed by a rotation.

2.8 Scalars, vectors, and tensors

Geometric quantities may be classified according to their behavior under pure
rotations. When you rotate the coordinate system the world stays the same; it
is only the way you describe it that changes. Some geometrical quantities, for
example the distance between two points, are unaffected by a rotation; others
like the coordinates of your current position will change.

Scalar quantities

A single quantity S is called a scalar, if it is invariant under rotations

S′ = S (2-47)

Thus the distance, the norm, and the dot product are scalars. In physics the
natural constants, material constants, as well as mass and charge are scalars.
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Vector quantities

Any triplet of quantities, V , is called a vector, if it transforms under rotations
according to

V ′
i =

∑

j

aijVj , (2-48)

or equivalently in matrix form,

V ′ = AAA · V . (2-49)

In physics, velocity, acceleration, momentum, force, and many other quantities
are vectors in this sense. The coordinates x of a point may also be called a
vector according to this definition, but that is only correct in Cartesian coordinate
systems, and would be very wrong in curvilinear coordinates or curved spaces.

The above definition of a vector demonstrates that triplets must have special
transformation properties to qualify as vectors. A triplet containing your weight,
your height, and your age, is not a vector but a collection of three scalars.

Tensor quantities

Using the vector transformation (2-48) the tensor product of two vectors V W
is found to transform according to the rule,

(V ′W ′)ij = V ′
i W ′

j =

(∑

k

aikVk

)(∑

l

ajlWl

)
=

∑

kl

aikajlVkWl .

In the last step we have reordered the sums into a convenient form.
More generally, any set of 9 quantities arranged in a matrix

TTT = {Tij} =




T11 T12 T13

T21 T22 T23

T31 T32 T33


 (2-50)

is called a tensor of rank 2, provided it obeys the transformation law,

T ′ij =
∑

kl

aikajlTkl , (2-51)

which in matrix form may be written,

TTT′ = AAA ·TTT ·AAA> . (2-52)

In physics, the moment of inertia of an extended body and the quadrupole mo-
ment of a charge distribution are well-known tensors of second rank.

Tensors of higher rank may be constructed in a similar way. A tensor of rank
r has r indices and is a collection of 3r quantities that transform as the direct
product of r vectors. We have so far only met one third rank tensor, the Levi-
Civita symbol (2-32) (see problem 2.24). When nothing else is said, a tensor is
always assumed to be of rank 2.
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2.9 Scalar, vector, and tensor fields

In continuum physics the basic quantities are functions of the spatial coordinates,
called fields, which may also be classified according to their behavior under ro-
tations. The transformation laws are quite similar to the ones above, the only
difference being that the coordinates of the spatial position must also transform.

For scalar, vector, and tensor fields we thus have (with x′ = AAA · x),

S′(x′) = S(x) , (2-53a)
V ′(x′) = AAA · V (x) , (2-53b)

TTT′(x′) = AAA ·TTT(x) ·AAA> . (2-53c)

These definitions express that the new fields in the new position are obtained
from the old fields in the old position by transforming them according to their
type. In the following chapters we shall meet a number of such fields, such as
the scalar mass density field, the vector velocity field, and the tensor stress field.

Gradient, divergence and curl

In Cartesian coordinates a special symbol is introduced for the triplet of spatial
derivatives, called the gradient operator or nabla,

∇ =
∂

∂x
=

(
∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
. (2-54)

Apart from being a differential operator, ∇ acts in all respects as a vector (see
problem 2.16).

When this operator acts on a scalar field S(x) it creates a vector field, called
the gradient of S,

∇S = (∇1S,∇2S,∇3S) =
(

∂S

∂x1
,

∂S

∂x2
,

∂S

∂x3

)
, (2-55)

where we for clarity have suppressed the explicit dependence on the spatial co-
ordinates x. Similarly, by dotting ∇ with a vector field V (x) we obtain a scalar
field, called the divergence of V ,

∇ · V = ∇1V1 +∇2V2 +∇3V3 =
∂V1

∂x1
+

∂V2

∂x2
+

∂V3

∂x3
. (2-56)

Finally, if we use the gradient operator as the left hand component in the cross-
product (2-9) with a vector field V (x) we obtain another vector field, called the
curl of V ,

∇× V = (∇2V3 −∇3V2,∇3V1 −∇1V3,∇1V2 −∇2V1) . (2-57)

Various combinations of these three operations obey important identities (see
problem 2.15)5.

5In the older literature the gradient, divergence, and curl are often denoted byrS = gradS,
r · V = divV and r× V = curlV or r× V = rotv. This notation is now all but obsolete.
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∗ 2.10 Pseudo and improper quantities

Geometric quantities may be further subclassified according to their behavior
under reflections and translations. Quantities that transform nontrivially under
reflections are called pseudo-quantities whereas quantities that transform non-
trivially under translations are said to be improper.

Classification under reflections

Instead of a simple reflection in the yz-plane, we shall use a complete reflection
of the coordinate system through its origin,

r -

6

¾

?

¡
¡

¡µ

¡
¡

¡ª

xx′

y

y′
z

z′

rx′x

A complete reflection of the
coordinate system in the
origin. A rotation through π
around the x-axis converts
this to a simple reflection in
the yz-plane.

x′ = −x . (2-58)

Geometrically, the reflection in the origin may be viewed as a composite of three
simple reflections along the three coordinate axes, or as a simple reflection of a
coordinate axis followed by a simple rotation through π around the same axis.

Polar vectors: A vector which obeys the usual transformation equation (2-
48) under rotations as well as under reflections is called a polar vector. Under
a reflection in the origin, the coordinates of a polar vector change sign just like
the coordinates of a point, i.e. V ′ = −V . Since the coordinate axes all reverse
direction, the geometrical position in space of a polar vector is unchanged by a
reflection of the coordinate system, and the vector may faithfully be represented
by an arrow, also under reflections. In physics, acceleration, force, velocity, and
momentum are all polar vectors.
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a reflection of the coordinate
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Axial vectors: There is, however, another possibility. The cross product of
two polar vectors, U = V × W , behaves differently than a polar vector under
a reflection. According to our rules for calculating the cross product, which are
the same in all coordinate systems, we find
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Geometrically, an axial vec-
tor has its geometric
direction reversed under a
reflection of the coordinate
system in the origin because
it has the same coordinates
in the reflected system as in
the original.

U ′ = V ′ ×W ′ = (−V )× (−W ) = V ×W = U , (2-59)

without the expected change of sign. Since U behaves normally under rotations
with determinant +1, we conclude that the missing minus sign is associated with
any transformation with determinant −1, in other words with any reflection.
Generalizing, we define an axial vector U as a set of three quantities, transforming
according to the rule

U ′
i = detAAA

∑

j

aijUj , (2-60)

under a Cartesian coordinate transformation. The extra determinant eliminates
the over-all sign change otherwise associated with reflections in the origin. In
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physics, angular momentum, moment of force, and magnetic dipole moments,
are axial vectors.

The basis vectors of the old coordinate system have the coordinates, e′i = −ei,
in the new (reflected) coordinate system. Basis vectors are proper geometric
quantities and always transform as polar vectors under reflection. One may
easily get confused by the fact that the new basis vectors in the new system have
(by definition) the same coordinates ei as the old basis vectors in the old system,
but it would be a mistake to take this to mean that the basis vectors are axial.

The geometric direction of an axial vector depends on what we choose to be right
and left. It is for this reason wrong to think of an axial vector as an arrow in space.
Geometrically, it has magnitude and direction, but not sense, meaning that the
positive direction of an axial vector is not a geometric property, but a property
fixed by convention which changes under a reflection of the coordinate system.
For consistency, all humans (even the British) have agreed that one particular
coordinate system, and all coordinate systems that are obtained from it by proper
rotation, are right-handed, whereas coordinate systems that are related to it by
reflection, are left-handed. We do not know whether non-human aliens would
have adopted the same convention, but if we should ever meet such beings we
would be able to find the correct transformation between our reference frames
and theirs.

Pseudo-scalars: The volume product of three polar vectors P = a · b × c is
a scalar quantity which changes sign under a reflection of the coordinate system
because the cross product is an axial vector which does not change sign. More
generally a pseudo-scalar transforms like

P ′ = detAAA P , (2-61)

under an arbitrary rotation or reflection.
The sign of a pseudo-scalar is not absolute, but depends on the handedness

of the coordinate system, and thus on convention. One might think that physics
had no use for such quantities, because after all physics itself does not depend
on coordinate systems, only its mathematical description does. Nevertheless,
magnetic charge, if it were ever found, would be pseudo-scalar, and more impor-
tantly, some of the familiar elementary particles, for example the pi-mesons, are
described by pseudo-scalar fields.

Pseudo-tensors: Axial vectors are also called pseudo-vectors, and one may
similarly define pseudo-tensors of higher rank. The Levi-Civita symbol is a
pseudo-tensor of third rank (problem 2.24).

Classification under translation

A true vector may always be viewed as the difference between two positions
v = b− a, and is thus invariant under a pure translation x → x′ = x− c. Such
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vectors are called proper. Triplets that transform as vectors under rotations
but change under translations, like the position x itself, are called improper.
In physics electric dipole moments are improper polar vectors, whereas angular
momentum, momentum of force, and magnetic dipole moments are improper
axial vectors.
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Problems

2.1 Any distance function must satisfy the axioms

d(a,a) = 0 , (2-62a)

d(a, b) = d(b,a) , (symmetry) (2-62b)

d(a, b) ≤ d(a, c) + d(c, b) . (triangle inequality) (2-62c)

Show that a distance function defined by step counting satisfies these axioms.

2.2 Let a = (2, 3,−6) and b = (3,−4, 0). Calculate

(a) the lengths of the vectors,

(b) the dot product,

(c) the cross product,

(d) and the tensor product.

2.3 Are the vectors a = (3, 1,−2), b = (4,−1,−1) and c = (1,−2, 1) linearly depen-
dent (meaning that there exists a non-trivial set of coefficients such that αa+βb+γc =
0)?

2.4 Calculate the distance between two points on Earth in terms of longitude α,
latitude δ and height h over the average sea level. Try to write this elegantly, using
rotational invariance of the distance function.

2.5 Show that

|a · b| ≤ |a| |b| , (2-63a)

|a+ b| ≤ |a|+ |b| , (2-63b)

2.6 Show that

(a× b · c) (d× e · f) =

������a · d a · e a · f
b · d b · e b · f
c · d c · e c · f

������ . (2-64)

2.7 Show that

a× b · c = b× c · a = c× a · b , (2-65)

(a× b)× c = (a · c) b− (b · c)a , (2-66)

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) , (2-67)

|a× b|2 = |a|2 |b|2 − (a · b)2 . (2-68)

2.8 Show that with the normal definition of the matrix product the following relations
make sense for the tensor product

(ab) · c = a(b · c) (2-69)

a · (bc) = (a · b)c (2-70)

This is sometimes quite useful.
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2.9 Show that

∂(a · b)
∂a

= b (2-71)

and that

∂ |a|
∂a

=
a
|a| . (2-72)

2.10 Show that

(a · b× c)d = (a · d)b× c+ (b · d)c× a+ (c · d)a× b (2-73)

for arbitrary vectors a, b, c, and d.

2.11 Show that X
i

δii = 3 (2-74)X
j

δijδjk = δik (2-75)

2.12 Show that X
i

∇ixi = 3 , (2-76)

∇ixj = δij , (2-77)

∇i∇j(xkxl) = δikδjl + δilδjk , (2-78)

2.13 Show that the Levi-Civita symbol is completely antisymmetric in all three in-
dices,

εijk = −εikj = −εjik = −εkji (2-79)

2.14 Show that the product of two Levi-Civita symbols is (see problem 2.6)

εijk εlmn =

������δil δim δin

δjl δjm δjn

δkl δkm δkn

������
= δilδjmδkn + δimδjnδkl + δinδjlδkm

− δinδjmδkl − δilδjnδkm − δimδjlδkn

(2-80)

and derive from this X
k

εijk εlmk =

����δil δim

δjl δjm

���� = δilδjm − δimδjl , (2-81)X
jk

εijk εljk = 2δil , (2-82)X
ijk

εijk εijk = 6 . (2-83)
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2.15 Prove the following relations involving the nabla operator (here Φ is a scalar
field and v a vector field),

r · (r× v) = 0 , (2-84)

r× (rΦ) = 0 , (2-85)

r× (r× v) =r(r · v)− (r ·r)v (2-86)

Where in these relations does it make sense to remove the parentheses?

2.16 Show that the nabla operator (2-54) transforms as a vector, ∇′i =
P

j aij∇j

under an arbitrary rotation.

2.17 Show that the trace
P

i Tii of a tensor is invariant under a rotation.

2.18 Show that the Kronecker delta transforms as a tensor.

2.19 Show that the distance |x− y| is invariant under any transformation between
Cartesian coordinate systems.

∗ 2.20 Show that if Wi =
P

j TijVj and if it is known that W is a vector for all vectors
V , then Tij must be a tensor. This is called the quotient rule.

∗ 2.21 Consider two Cartesian coordinate systems and make no assumptions about the
transformation x′ = f(x) between them. Show that the invariance of the distance,��x′ − y′�� = |x− y| , (2-87)

implies that the transformation is of the form x′ = AAA ·x+ b where AAA is an orthogonal
matrix.

∗ 2.22 Show that the general Cartesian coordinate transformation may be built up from
a combination of simple translations, rotations and reflections.

∗ 2.23 Show that under a simple rotation, a tensor Tij transforms into

T ′xx = cos φ(Txx cos φ + Txy sin φ) + sin φ(Tyx cos φ + Tyy sin φ) , (2-88a)

T ′xy = cos φ(−Txx sin φ + Txy cos φ) + sin φ(−Tyx sin φ + Tyy cos φ) , (2-88b)

T ′xz = cos φTxz + sin φTyz , (2-88c)

T ′yx = − sin φ(Txx cos φ + Txy sin φ) + cos φ(Tyx cos φ + Tyy sin φ) , (2-88d)

T ′yy = − sin φ(−Txx sin φ + Txy cos φ) + cos φ(−Tyx sin φ + Tyy cos φ) , (2-88e)

T ′yz = − sin φTxz + cos φTyz , (2-88f)

T ′zx = Tzx cos φ + Tzy sin φ , (2-88g)

T ′zy = −Tzx sin φ + Tzy cos φ . (2-88h)

T ′zz = Tzz (2-88i)
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∗ 2.24 Show that

(a) the Levi-Civita symbol satisfiesX
lmn

ailajmaknεlmn = detAAA εijk (2-89)

where AAA is an arbitrary matrix.

(b) the Levi-Civita symbol (which by the definition of the cross product must be
invariant, ε′ijk = εijk) obeys the rule

ε′ijk = εijk = detAAA
X
lmn

ailajmaknεlmn (2-90)

for an arbitrary coordinate transformation (which has detAAA = ±1).

(c) the cross product of two vectors W = U × V must transform like

W ′
i = detAAA

X
j

aijWj (2-91)
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